Skip to content

maranasgroup/dGPredictor

Repository files navigation

dGPredictor

==================================

Requirements:

  1. Python 3.8.10
  2. RDkit (http://www.rdkit.org/)
  3. pandas (https://pandas.pydata.org/)
  4. matplotlib (https://matplotlib.org/stable/users/installing.html)
  5. Scikit-learn (https://scikit-learn.org/stable/)
  6. Streamlit (https://streamlit.io/)
  7. Openbabel (https://anaconda.org/openbabel/openbabel)
  8. ChemAxon's Marvin >= 5.11

Installation

  1. Python 3.8.10 (https://www.python.org/downloads/windows/) Recommended-
  • Create anaconda environment using command "conda create -n dGPredictor python=3.8 ipython"
  • activate the env using command "conda activate dGPredictor" or "source activate dGPredictor"
  1. RDkit
  • type command "conda install -c conda-forge rdkit" in your dGPredictor env to install rdkit
  1. Pandas
  • "conda install pandas"
  1. matplotlib
  • "conda install -c conda-forge matplotlib"
  1. Scikit-learn
  • use command "pip install -U scikit-learn"
  1. Streamlit
  • use command "pip install -U streamlit"
  1. Openbabel
  • run "conda install -c conda-forge openbabel"
  1. ChemAxon's Marvin (PkA value estimation)
  • Marvin is only required for adding structures of novel metabolites/compounds that are not in the KEGG database
  • instructions (https://chemaxon.com/products/marvin/download)
  • add "cxcalc.bat (macOS) /cxcalc.exe (Windows)" to PATH and also in "./CC/chemaxon.py" file
  • you will need to get a license to use ChemAxon (it is free for academic use)

==================================

Running web-interface loacally using streamlit

  • Model generation: Run "model_gen.py" using "python model_gen.py" once to create dGPredictor model file :- (Running this might take some time)
  • run "streamlit run ./streamlit/main.py" from dGPredictor folder
  • running KEGG reaction (doesn't require ChemAxon's Marvin) : copy paste the reaction equation into reaction section and click search

Gibbs free energy prediction use automated group decomposition method

  • Step 1: decompose the metabolites based on smiles files (see function decompse_ac in decompose_groups.py or notebook )
  • Step 2: create group changes vectors (i.e. reaction rules) based on group changes in metabolites of reactions (see get_rxn_rule in decompose_groups.py)
  • Step 3: linear regression, Ridge Regression and Bayesian Ridge Regression in "predict.py"
  • Step 4: Multiple regression models in notebook "analysis_dGPredictor.ipynb"

Pathway design using novoStoic

  • Run "mini_novoStoic.py" to see an example to design pathways for Isobutanol synthesis

demo

dGPredictor Demo

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published