Skip to content

maranasgroup/dGPredictor-py2

Repository files navigation

dGPredictor

==================================

Requirements:

  1. Python 2.7
  2. RDkit (http://www.rdkit.org/)
  3. pandas (https://pandas.pydata.org/)
  4. matplotlib (https://matplotlib.org/stable/users/installing.html)
  5. Scikit-learn (https://scikit-learn.org/stable/)
  6. Streamlit==0.55.2 (https://streamlit.io/)
  7. Component-contribution (https://pennstateoffice365-my.sharepoint.com/:f:/g/personal/vuu10_psu_edu/EvF9kttgsvlJnhAs1FDRWFcBu0obprfFFjrZKJbq-Yw5sw?e=dPHo2w)
  8. Openbabel (https://anaconda.org/openbabel/openbabel)
  9. ChemAxon's Marvin >= 5.11

Installing on windows

  1. Python 2.7 (https://www.python.org/downloads/release/python-2718/) Recommended-
  • Create anaconda environment using command "conda create -n dGPredictor python=2.7"
  • activate the env using command "conda activate dGPredictor" or "source activate dGPredictor"
  1. RDkit
  • type command "conda install -c conda-forge rdkit" in your dGPredictor env to install rdkit
  1. Pandas
  • "conda install pandas"
  1. matplotlib
  • "conda install -c conda-forge matplotlib"
  1. Scikit-learn
  • use command "pip install -U scikit-learn"
  1. Streamlit
  • use command "pip install -U streamlit"
  1. Component-contribution
  • download the package folder using the link provided
  • save the folder inside dGPredictor (delete the empty component-contribution folder)
  1. Openbabel
  • run "conda install -c conda-forge openbabel"
  1. ChemAxon's Marvin (Component-contribution use this to estimate PkA values)
  • Marvin is only required for adding structures of novel metabolites/compounds that are not in the KEGG database
  • instructions (https://chemaxon.com/products/marvin/download)
  • add cxcalc.bat to PATH
  • you will need to get a license to use ChemAxon (it is free for academic use)

==================================

Running web-interface loacally using streamlit

  • Generate model file by "running model_gen.py" using "python model_gen.py"
  • run "streamlit run ./streamlit/main.py" from dGPredictor folder
  • running KEGG reaction (doesn't require ChemAxon's Marvin) : copy paste the reaction equation into reaction section and click search

Gibbs free energy prediction use automated group decomposition method

  • Step 1: decompose the metabolites based on smiles files (see function decompse_ac in decompose_groups.py or notebook )
  • Step 2: create group changes vectors (i.e. reaction rules) based on group changes in metabolites of reactions (see get_rxn_rule om decompose_groups.py)
  • Step 3: cross validation to check model accuracy (note that for experimental replicates, we take the median value of measurements of the same chemical reaction in different conditions or by different researchers)
  • Step 4: linear regression, Ridge Regression and Bayesian Ridge Regression in "predict.py"
  • Step 5: Multiple regression models in notebook "analysis_dGPredictor.ipynb"

Pathway design using novoStoic

  • See "mini_novoStoic.py"

demo

dGPredictor Demo

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published