-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpile.cpp
1162 lines (934 loc) · 42.2 KB
/
pile.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <iostream>
#include <vector>
#include <set>
#include <cmath>
#include <fstream>
#include <iterator>
#include <algorithm>
#include <functional>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/parse.h>
#include <pcl/search/search.h>
#include <pcl/search/kdtree.h>
#include <pcl/features/normal_3d.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/surface/mls.h>
#include <pcl/io/vtk_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/surface/concave_hull.h>
#define RD 60
// declare class
class RemoveWallResult {
public:
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_no_wall;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_wall;
RemoveWallResult(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_no_wall, const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_wall): cloud_no_wall(cloud_no_wall), cloud_wall(cloud_wall) {}
};
class EdgeInfo {
public:
float cx;
float cy;
std::vector<int> edge_idx;
std::vector<int> back_idx;
std::vector<int> far_point_idx;
EdgeInfo(float cx, float cy, const std::vector<int> edge_idx, const std::vector<int> back_idx, const std::vector<int> far_point_idx): cx(cx), cy(cy), edge_idx(edge_idx), back_idx(back_idx), far_point_idx(far_point_idx) {}
};
class Result {
public:
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_final;
float volume;
Result(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_final, float volume): cloud_final(cloud_final), volume(volume) {}
};
class Point {
public:
float x;
float y;
Point(float x, float y): x(x), y(y) {}
};
class PointPotentialEdge {
public:
int idx;
float rho;
float z;
float z2base;
PointPotentialEdge(int idx, float rho, float z): idx(idx), rho(rho), z(z), z2base(0.0) {}
};
class ByRhoPPE {
public:
bool operator()(PointPotentialEdge const &a, PointPotentialEdge const &b) {
return a.rho < b.rho;
}
};
class PolygonRaster {
public:
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_polygon_raster;
std::vector<int> polygon_raster_idx;
PolygonRaster(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_polygon_raster, const std::vector<int> &polygon_raster_idx):
cloud_polygon_raster(cloud_polygon_raster), polygon_raster_idx(polygon_raster_idx) {}
};
// declare function
float median(std::vector<float> vec);
int plot(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr remove_outliers(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud);
pcl::PointCloud <pcl::Normal>::Ptr compute_normals(const pcl::search::Search<pcl::PointXYZ>::Ptr &tree,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud);
float z_median(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
const std::vector<int> &indices);
std::vector<float> normal_median(const pcl::PointCloud<pcl::Normal>::Ptr &normals,
const std::vector<int> &indices);
int normalize_normal(std::vector<float> &normal);
int smooth_cloud (pcl::PointCloud <pcl::PointXYZ>::Ptr &cloud);
float sign (Point &p1, Point &p2, Point &p3);
bool PointInTriangle (Point &pt, Point &v1, Point &v2, Point &v3);
float x_median(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
const std::vector<int> &indices);
float y_median(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
const std::vector<int> &indices);
pcl::PointCloud<pcl::PointXYZ>::Ptr transform2cylinder(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
float cx, float cy);
RemoveWallResult remove_wall(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr complete_back_data(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_back,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_wall,
const std::vector<int> &far_point_idx,
float bottom_z);
pcl::PointCloud<pcl::PointXYZ>::Ptr refine_cloud(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
float bottom_z,
bool ground);
pcl::PointCloud<pcl::PointXYZ>::Ptr compute_upper_surface_cloud (const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_refine,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_hull,
const PolygonRaster &polygon_raster,
const std::vector< pcl::Vertices> &polygons,
float bottom_z,
float raster_size);
Result compute_volume(const pcl::PointCloud <pcl::PointXYZ>::Ptr &cloud_refine,
float bottom_z, float raster_size);
PolygonRaster compute_polygon_raster(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_hull,
const std::vector< pcl::Vertices > &polygons,
float raster_size);
std::vector<int> compute_edge(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_cylinder);
EdgeInfo auto_compute_edge(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud);
std::vector<float> slice(float le, float re, int slice_num);
std::vector<float> set_le_re(float le, float re, int i, int slice_num);
//-----------------------------------------------------------------------------------------------------//
// utinity
float median(std::vector<float> vec) {
size_t size = vec.size();
if (size == 0) {
return 0; // Undefined, really.
}
else {
std::sort(vec.begin(), vec.end());
if (size % 2 == 0) {
return (vec[size / 2 - 1] + vec[size / 2]) / 2;
}
else {
return vec[size / 2];
}
}
}
int plot(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud) {
pcl::visualization::PCLVisualizer viewer ("viewer");
viewer.setBackgroundColor (0, 0, 0);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_color_handler (cloud, 255, 255, 255);
viewer.addPointCloud(cloud, cloud_color_handler, "cloud");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "cloud");
viewer.addCoordinateSystem (1.0);
// viewer.initCameraParameters ();
while (!viewer.wasStopped ()) { // Display the visualiser until 'q' key is pressed
viewer.spinOnce ();
}
return 0;
}
pcl::PointCloud<pcl::PointXYZ>::Ptr remove_outliers(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud) {
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
sor.setInputCloud (cloud);
sor.setMeanK (200);
sor.setStddevMulThresh (2.0);
sor.filter(*cloud_filtered);
return cloud_filtered;
}
pcl::PointCloud <pcl::Normal>::Ptr compute_normals(const pcl::search::Search<pcl::PointXYZ>::Ptr &tree,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud) {
pcl::PointCloud <pcl::Normal>::Ptr normals (new pcl::PointCloud <pcl::Normal>);
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
normal_estimator.setSearchMethod (tree);
normal_estimator.setInputCloud (cloud);
normal_estimator.setKSearch (50);
normal_estimator.compute (*normals);
return normals;
}
float x_median(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
const std::vector<int> &indices) {
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>(*cloud, indices));
std::vector<float> vec_x;
for (size_t i = 0; i < cloud_cluster->points.size(); i++) {
vec_x.push_back(cloud_cluster->points[i].x);
}
return median(vec_x);
}
float y_median(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
const std::vector<int> &indices) {
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>(*cloud, indices));
std::vector<float> vec_y;
for (size_t i = 0; i < cloud_cluster->points.size(); i++) {
vec_y.push_back(cloud_cluster->points[i].y);
}
return median(vec_y);
}
float z_median(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
const std::vector<int> &indices) {
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>(*cloud, indices));
std::vector<float> vec_z;
for (size_t i = 0; i < cloud_cluster->points.size(); i++) {
vec_z.push_back(cloud_cluster->points[i].z);
}
return median(vec_z);
}
std::vector<float> normal_median(const pcl::PointCloud<pcl::Normal>::Ptr &normals,
const std::vector<int> &indices) {
pcl::PointCloud<pcl::Normal>::Ptr normal_cluster (new pcl::PointCloud<pcl::Normal>(*normals, indices));
std::vector<float> vec_x, vec_y, vec_z;
for (size_t i = 0; i < normal_cluster->points.size(); i++) {
vec_x.push_back(normal_cluster->points[i].normal_x);
vec_y.push_back(normal_cluster->points[i].normal_y);
vec_z.push_back(normal_cluster->points[i].normal_z);
}
std::vector<float> m_normal;
float m_x, m_y, m_z;
m_x = median(vec_x);
m_y = median(vec_y);
m_z = median(vec_z);
m_normal.push_back(m_x);
m_normal.push_back(m_y);
m_normal.push_back(m_z);
normalize_normal(m_normal);
return m_normal;
}
int normalize_normal(std::vector<float> &normal) {
float length = std::sqrt(std::pow(normal[0], 2) + std::pow(normal[1], 2) + std::pow(normal[2], 2));
for (int i=0; i < normal.size(); i++) {
normal[i] = normal[i] / length;
}
return 0;
}
int smooth_cloud (pcl::PointCloud <pcl::PointXYZ>::Ptr &cloud) {
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ> mls_points;
pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ> mls;
// mls.setComputeNormals (true);
mls.setInputCloud (cloud);
mls.setPolynomialFit (true);
mls.setSearchMethod (tree);
mls.setSearchRadius (0.5);
mls.process (mls_points);
pcl::io::savePCDFile ("mls.pcd", mls_points);
return 0;
}
float sign (Point &p1, Point &p2, Point &p3)
{
return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}
bool PointInTriangle (Point &pt, Point &v1, Point &v2, Point &v3)
{
bool b1, b2, b3;
b1 = sign(pt, v1, v2) < 0.0f;
b2 = sign(pt, v2, v3) < 0.0f;
b3 = sign(pt, v3, v1) < 0.0f;
return ((b1 == b2) && (b2 == b3));
}
pcl::PointCloud<pcl::PointXYZ>::Ptr compute_upper_surface_cloud (const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_refine,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_hull,
const PolygonRaster &polygon_raster,
const std::vector< pcl::Vertices> &polygons,
float bottom_z,
float raster_size=0.2) {
std::vector<float> vec_x, vec_y;
for (int i=0; i < cloud_refine->size(); i++) {
vec_x.push_back(cloud_refine->points[i].x);
vec_y.push_back(cloud_refine->points[i].y);
}
float max_x = *std::max_element(vec_x.begin(), vec_x.end());
float min_x = *std::min_element(vec_x.begin(), vec_x.end());
float max_y = *std::max_element(vec_y.begin(), vec_y.end());
float min_y = *std::min_element(vec_y.begin(), vec_y.end());
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
kdtree.setInputCloud(polygon_raster.cloud_polygon_raster);
// int K = 1500;
// std::vector<int> pointIdxNKNSearch(K);
// std::vector<float> pointNKNSquaredDistance(K);
float radius = raster_size;
std::vector< pcl::Vertices> polygons2use;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_final (new pcl::PointCloud<pcl::PointXYZ>);
// for (int i=0; i < polygons.size(); i++) {
for (float i=min_x; i <= max_x; i+=raster_size) {
for (float j=min_y; j <= max_y; j+=raster_size) {
if (std::pow(i, 2) + std::pow(j, 2) > std::pow(RD, 2)) {
continue;
} // wall
std::vector<int> pointIdxNKNSearch;
std::vector<float> pointNKNSquaredDistance;
pcl::PointXYZ searchPoint;
searchPoint.x = i;
searchPoint.y = j;
searchPoint.z = 0;
Point pt = Point(searchPoint.x, searchPoint.y);
float max_z = -999;
int remain_idx = -1;
// if ( kdtree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 ) {
if ( kdtree.radiusSearch(searchPoint, radius, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 ) {
std::vector<int> polygon_idx2use;
for (int t = 0; t < pointIdxNKNSearch.size (); t++) {
polygon_idx2use.push_back(polygon_raster.polygon_raster_idx[pointIdxNKNSearch[t]]);
}
std::set<int> s(polygon_idx2use.begin(), polygon_idx2use.end());
polygon_idx2use.assign(s.begin(), s.end());
for (int t=0; t < polygon_idx2use.size(); t++) {
Point v1 = Point(cloud_hull->points[polygons[polygon_idx2use[t]].vertices[0]].x,
cloud_hull->points[polygons[polygon_idx2use[t]].vertices[0]].y);
Point v2 = Point(cloud_hull->points[polygons[polygon_idx2use[t]].vertices[1]].x,
cloud_hull->points[polygons[polygon_idx2use[t]].vertices[1]].y);
Point v3 = Point(cloud_hull->points[polygons[polygon_idx2use[t]].vertices[2]].x,
cloud_hull->points[polygons[polygon_idx2use[t]].vertices[2]].y);
if (PointInTriangle(pt, v1, v2, v3)) {
Eigen::Vector3f p0;
Eigen::Vector3f p1;
Eigen::Vector3f p2;
float x0 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[0]].x;
float y0 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[0]].y;
float z0 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[0]].z;
float x1 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[1]].x;
float y1 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[1]].y;
float z1 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[1]].z;
float x2 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[2]].x;
float y2 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[2]].y;
float z2 = cloud_hull->points[polygons[polygon_idx2use[t]].vertices[2]].z;
p0 << x0, y0, z0;
p1 << x1, y1, z1;
p2 << x2, y2, z2;
Eigen::Vector3f normal_polygon = (p1 - p0).cross(p2 - p0);
float nx = normal_polygon[0];
float ny = normal_polygon[1];
float nz = normal_polygon[2];
float length = std::sqrt(std::pow(nx, 2) + std::pow(ny, 2) + std::pow(nz, 2));
nx /= length;
ny /= length;
nz /= length;
float polygon_z = -1000;
if (std::abs(nz) >= 0.3) {
polygon_z = (nx * x0 + ny * y0 + nz * z0 - nx * i - ny * j) / nz;
}
if ((polygon_z > max_z) & (polygon_z > bottom_z)) {
max_z = polygon_z;
remain_idx = polygon_idx2use[t];
}
}
}
}
if (remain_idx >= 0) {
polygons2use.push_back(polygons[remain_idx]);
(*cloud_final).insert( (*cloud_final).end(), 1, pcl::PointXYZ(i, j, max_z) );
}
}
}
cloud_final = remove_outliers(cloud_final);
// std::cout << "origin size: " << polygons.size() << std::endl;
// std::cout << "current size: " << polygons2use.size() << std::endl;
// plot(cloud_final);
return cloud_final;
}
Result compute_volume(const pcl::PointCloud <pcl::PointXYZ>::Ptr &cloud_refine,
float bottom_z, float raster_size=0.2) {
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_hull (new pcl::PointCloud<pcl::PointXYZ>);
std::vector< pcl::Vertices > polygons;
pcl::ConcaveHull<pcl::PointXYZ> chull;
chull.setInputCloud(cloud_refine);
chull.setAlpha(4.0);
chull.reconstruct (*cloud_hull, polygons);
// -- extract the upper polygon
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_final;
if (polygons[0].vertices.size() == 3) {
// 1. construct polygon raster point cloud for polygons
PolygonRaster polygon_raster = compute_polygon_raster(cloud_hull, polygons, raster_size);
// 2. just remain those in the lower surface (use kdtree to fast the process)
cloud_final = compute_upper_surface_cloud (cloud_refine, cloud_hull,
polygon_raster, polygons, bottom_z, raster_size);
} else {
for (int i=0; i < cloud_refine->size(); i++) {
if (cloud_refine->points[i].z > (bottom_z) && ((std::pow(cloud_refine->points[i].x, 2) + std::pow(cloud_refine->points[i].y, 2)) <= std::pow(RD, 2))) {
(*cloud_final).insert( (*cloud_final).end(), 1, cloud_refine->points[i] );
}
}
}
// --compute volume under the upper polygons
float volume = 0;
for (int i = 0; i< cloud_final->size(); i++) {
volume += std::pow(raster_size, 2) * (cloud_final->points[i].z - bottom_z);
}
return Result(cloud_final, volume);
}
PolygonRaster compute_polygon_raster(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_hull,
const std::vector< pcl::Vertices > &polygons,
float raster_size=0.2) {
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_polygon_raster (new pcl::PointCloud<pcl::PointXYZ>);
std::vector<float> vec_rx;
std::vector<float> vec_ry;
std::vector<int> vec_idx;
for (int i=0; i < polygons.size(); i++) {
std::vector<float> vec_vx;
std::vector<float> vec_vy;
for (int j=0; j < polygons[i].vertices.size(); j++) {
vec_vx.push_back(cloud_hull->points[polygons[i].vertices[j]].x);
vec_vy.push_back(cloud_hull->points[polygons[i].vertices[j]].y);
}
Point v1 = Point(vec_vx[0], vec_vy[0]);
Point v2 = Point(vec_vx[1], vec_vy[1]);
Point v3 = Point(vec_vx[2], vec_vy[2]);
float min_x = *std::min_element(vec_vx.begin(), vec_vx.end());
float max_x = *std::max_element(vec_vx.begin(), vec_vx.end());
float min_y = *std::min_element(vec_vy.begin(), vec_vy.end());
float max_y = *std::max_element(vec_vy.begin(), vec_vy.end());
float start_x = min_x;
float start_y = min_y;
if (max_x - min_x <= raster_size) {
start_x = (min_x + max_x) / 2;
}
if (max_y - min_y <= raster_size) {
start_y = (min_y + max_y) / 2;
}
for (float rx = start_x; rx <= max_x; rx += raster_size) {
for (float ry = start_y; ry <= max_y; ry += raster_size) {
Point pt(rx, ry);
if (PointInTriangle(pt, v1, v2, v3)) {
vec_rx.push_back(rx);
vec_ry.push_back(ry);
vec_idx.push_back(i);
}
}
}
}
cloud_polygon_raster->width = vec_idx.size();
cloud_polygon_raster->height = 1;
cloud_polygon_raster->points.resize(vec_idx.size());
for (int i=0; i<cloud_polygon_raster->size(); i++) {
cloud_polygon_raster->points[i].x = vec_rx[i];
cloud_polygon_raster->points[i].y = vec_ry[i];
cloud_polygon_raster->points[i].z = 0;
}
PolygonRaster polygon_raster(cloud_polygon_raster, vec_idx);
return polygon_raster;
}
pcl::PointCloud<pcl::PointXYZ>::Ptr transform2cylinder(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
float cx, float cy) {
// ofstream file;
// file.open ("cylinder.csv");
// file << "theta,rho,z\n";
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cylinder(new pcl::PointCloud<pcl::PointXYZ>);
cloud_cylinder->width = cloud->width;
cloud_cylinder->height = 1;
cloud_cylinder->points.resize(cloud->size());
for (int i=0; i < cloud->size(); i++) {
float x = cloud->points[i].x - cx;
float y = cloud->points[i].y - cy;
float theta = std::atan2(y, x) * 180 / M_PI;
if (theta <= 0 ) {
theta += 360;
}
float rho = std::sqrt(std::pow(x, 2) + std::pow(y, 2));
float h = cloud->points[i].z;
// file << (std::to_string(theta) + "," + std::to_string(rho) +
// "," + std::to_string(z) + "\n");
cloud_cylinder->points[i].x = theta;
cloud_cylinder->points[i].y = rho;
cloud_cylinder->points[i].z = h;
}
// file.close();
return cloud_cylinder;
}
RemoveWallResult remove_wall(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud) {
float radius = 0.5;
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2filter(new pcl::PointCloud<pcl::PointXYZ>(*cloud));
std::vector<float> vec_x, vec_y;
for (int i=0; i < cloud2filter->size(); i++) {
cloud2filter->points[i].z = 0;
vec_x.push_back(cloud2filter->points[i].x);
vec_y.push_back(cloud2filter->points[i].y);
}
kdtree.setInputCloud(cloud2filter);
float max_x = *std::max_element(vec_x.begin(), vec_x.end());
float min_x = *std::min_element(vec_x.begin(), vec_x.end());
float max_y = *std::max_element(vec_y.begin(), vec_y.end());
float min_y = *std::min_element(vec_y.begin(), vec_y.end());
std::vector<int> remain_index;
std::vector<int> wall_index;
ofstream result_file;
result_file.open ("z_desnsity.csv");
result_file << "x,y,diff_z\n";
for (float i=min_x; i <= max_x; i++) {
for (float j=min_y; j <= max_y; j++) {
std::vector<int> pointIdxRadiusSearch;
std::vector<float> pointRadiusSquaredDistance;
pcl::PointXYZ searchPoint;
searchPoint.x = i;
searchPoint.y = j;
searchPoint.z = 0;
if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 ) {
std::vector<float> vec_z;
for (int m=0; m < pointIdxRadiusSearch.size(); m++) {
vec_z.push_back(cloud->points[pointIdxRadiusSearch[m]].z);
}
float max_z = *std::max_element(vec_z.begin(), vec_z.end());
float min_z = *std::min_element(vec_z.begin(), vec_z.end());
result_file << (std::to_string(i) + "," + std::to_string(j) +
"," + std::to_string(max_z-min_z) + "\n");
if (max_z-min_z<2.5) {
remain_index.insert(remain_index.end(), pointIdxRadiusSearch.begin(), pointIdxRadiusSearch.end());
} else {
wall_index.insert(wall_index.end(), pointIdxRadiusSearch.begin(), pointIdxRadiusSearch.end());
}
}
}
}
result_file.close();
std::set<int> s0(remain_index.begin(), remain_index.end());
remain_index.assign(s0.begin(), s0.end());
std::set<int> s1(wall_index.begin(), wall_index.end());
wall_index.assign(s1.begin(), s1.end());
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_no_wall (new pcl::PointCloud<pcl::PointXYZ>(*cloud, remain_index));
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_wall (new pcl::PointCloud<pcl::PointXYZ>(*cloud, wall_index));
RemoveWallResult remove_wall_result (cloud_no_wall, cloud_wall);
return remove_wall_result;
}
std::vector<int> compute_edge(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_cylinder) {
std::vector<int> edge_idx;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_theta (new pcl::PointCloud<pcl::PointXYZ>(*cloud_cylinder));
std::vector<float> vec_theta;
for (int i=0; i < cloud_theta->size(); i++) {
cloud_theta->points[i].y = 0;
cloud_theta->points[i].z = 0;
vec_theta.push_back(cloud_theta->points[i].x);
}
float min_theta = *std::min_element(vec_theta.begin(), vec_theta.end());
float max_theta = *std::max_element(vec_theta.begin(), vec_theta.end());
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
kdtree.setInputCloud(cloud_theta);
float radius = 0.5;
for (float t=min_theta; t<max_theta; t++) {
std::vector<int> pointIdxRadiusSearch;
std::vector<float> pointRadiusSquaredDistance;
pcl::PointXYZ searchPoint;
searchPoint.x = t;
searchPoint.y = 0;
searchPoint.z = 0;
if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 ) {
std::vector<float> vec_z;
for (int i=0; i<pointIdxRadiusSearch.size(); i++) {
vec_z.push_back(cloud_cylinder->points[pointIdxRadiusSearch[i]].z);
}
edge_idx.push_back(pointIdxRadiusSearch[std::distance(vec_z.begin(), std::max_element(vec_z.begin(), vec_z.end()))]);
}
}
return edge_idx;
}
std::vector<float> slice(float le, float re, int slice_num=8) {
std::vector<float> vec_chosen_element;
float step = (re - le) / slice_num;
vec_chosen_element.push_back(le + step / 2);
while (true) {
float new_element = vec_chosen_element.back() + step;
if (new_element <= re) {
vec_chosen_element.push_back(new_element);
} else {
break;
}
}
return vec_chosen_element;
}
std::vector<float> set_le_re(float le, float re, int i, int slice_num=8) {
float step = (re - le) / slice_num;
float new_le = le + step * i;
float new_re = new_le + step;
std::vector<float> vec_new_le_re;
vec_new_le_re.push_back(new_le);
vec_new_le_re.push_back(new_re);
return vec_new_le_re;
}
EdgeInfo auto_compute_edge(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud) {
int selected_c_idx;
float cx;
float cy;
std::vector<int> edge_idx;
std::vector<int> back_idx;
std::vector<int> far_point_idx;
std::vector<float> vec_x;
std::vector<float> vec_y;
for (int i=0; i<cloud->size(); i++) {
vec_x.push_back(cloud->points[i].x);
vec_y.push_back(cloud->points[i].y);
}
float min_x = *std::min_element(vec_x.begin(), vec_x.end());
float max_x = *std::max_element(vec_x.begin(), vec_x.end());
float min_y = *std::min_element(vec_y.begin(), vec_y.end());
float max_y = *std::max_element(vec_y.begin(), vec_y.end());
float min_cell_size = 2.5;
float lx = min_x;
float rx = max_x;
float ly = min_y;
float ry = max_y;
float min_r_std = 99999;
int slice_num = 8;
while ((rx - lx >= min_cell_size) && (ry - ly >= min_cell_size)) {
std::vector<float> vec_chosen_x = slice(lx, rx, slice_num);
std::vector<float> vec_chosen_y = slice(ly, ry, slice_num);
std::vector<float> vec_r_std;
std::vector<std::vector<int>> vec_edge_idx;
std::vector<std::vector<int>> vec_back_idx;
std::vector<std::vector<int>> vec_far_point_idx;
std::vector<float> vec_cx;
std::vector<float> vec_cy;
std::vector<int> vec_ix;
std::vector<int> vec_iy;
for (int icx=0; icx <= vec_chosen_x.size(); icx++) {
for (int icy=0; icy <= vec_chosen_y.size(); icy++) {
float cx = vec_chosen_x[icx];
float cy = vec_chosen_y[icy];
vec_ix.push_back(icx);
vec_iy.push_back(icy);
vec_cx.push_back(cx);
vec_cy.push_back(cy);
std::vector<float> vec_r;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cylinder = transform2cylinder(cloud, cx, cy);
std::vector<int> edge_idx;
std::vector<int> back_idx;
std::vector<int> far_point_idx;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_theta (new pcl::PointCloud<pcl::PointXYZ>(*cloud_cylinder));
std::vector<float> vec_theta;
for (int i=0; i < cloud_theta->size(); i++) {
cloud_theta->points[i].y = 0;
cloud_theta->points[i].z = 0;
vec_theta.push_back(cloud_theta->points[i].x);
}
float min_theta = *std::min_element(vec_theta.begin(), vec_theta.end());
float max_theta = *std::max_element(vec_theta.begin(), vec_theta.end());
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
kdtree.setInputCloud(cloud_theta);
float radius = 0.5;
for (float t=min_theta; t<max_theta; t++) {
std::vector<int> pointIdxRadiusSearch;
std::vector<float> pointRadiusSquaredDistance;
pcl::PointXYZ searchPoint;
searchPoint.x = t;
searchPoint.y = 0;
searchPoint.z = 0;
if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 ) {
std::vector<PointPotentialEdge> PPEs;
for (int i=0; i<pointIdxRadiusSearch.size(); i++) {
int ppe_idx = pointIdxRadiusSearch[i];
float ppe_rho = cloud_cylinder->points[ppe_idx].y;
float ppe_z = cloud_cylinder->points[ppe_idx].z;
PointPotentialEdge ppe(ppe_idx, ppe_rho, ppe_z);
PPEs.push_back(ppe);
}
std::sort(PPEs.begin(), PPEs.end(), ByRhoPPE());
float rho_start = PPEs[0].rho;
float z_start = PPEs[0].z;
float rho_end = PPEs.back().rho;
float z_end = PPEs.back().z;
float n_rho_base = z_start - z_end;
float n_z_base = -(rho_start - rho_end);
float n_length = std::sqrt(std::pow(n_rho_base, 2) + std::pow(n_z_base, 2));
n_rho_base /= n_length;
n_z_base /= n_length;
float max_z2base = -999;
int potential_idx = -1;
int edge_i = -1;
for (int i=0; i<PPEs.size(); i++) {
float diff_rho_ppe = PPEs[i].rho - PPEs[0].rho;
float diff_z_ppe = PPEs[i].z - PPEs[0].z;
float z2base_ppe = std::abs(n_rho_base * diff_rho_ppe + n_z_base * diff_z_ppe);
PPEs[i].z2base = z2base_ppe;
if (PPEs[i].z2base > max_z2base) {
max_z2base = PPEs[i].z2base;
potential_idx = PPEs[i].idx;
edge_i = i;
}
}
if ((potential_idx >= PPEs.size()) && max_z2base > 1) {
edge_idx.push_back(potential_idx);
for (int back_i=edge_i+1; back_i<PPEs.size(); back_i++) {
back_idx.push_back(PPEs[back_i].idx);
}
far_point_idx.push_back(PPEs.back().idx);
float r = std::sqrt(std::pow(cloud->points[edge_idx.back()].x - cx, 2) + std::pow(cloud->points[edge_idx.back()].y - cy, 2));
vec_r.push_back(r);
}
}
}
vec_edge_idx.push_back(edge_idx);
vec_back_idx.push_back(back_idx);
vec_far_point_idx.push_back(far_point_idx);
float sum_r = std::accumulate(vec_r.begin(), vec_r.end(), 0.0);
float mean_r = sum_r / vec_r.size();
std::vector<float> vec_r_diff_square(vec_r.size());
for (int i=0; i<vec_r.size(); i++) {
vec_r_diff_square.push_back(std::pow(vec_r[i] - mean_r, 2));
}
float sq_sum_r = std::accumulate(vec_r_diff_square.begin(), vec_r_diff_square.end(), 0.0);
vec_r_std.push_back(std::sqrt(sq_sum_r / vec_r.size()));
}
}
selected_c_idx = std::distance(vec_r_std.begin(), std::min_element(vec_r_std.begin(), vec_r_std.end()));
if (vec_r_std[selected_c_idx] < min_r_std) {
min_r_std = vec_r_std[selected_c_idx];
cx = vec_cx[selected_c_idx];
cy = vec_cy[selected_c_idx];
edge_idx = vec_edge_idx[selected_c_idx];
back_idx = vec_back_idx[selected_c_idx];
far_point_idx = vec_far_point_idx[selected_c_idx];
int chosen_ix = vec_ix[selected_c_idx];
int chosen_iy = vec_iy[selected_c_idx];
std::vector<float> vec_new_x_le_re = set_le_re(lx, rx, chosen_ix, slice_num);
std::vector<float> vec_new_y_le_re = set_le_re(ly, ry, chosen_iy, slice_num);
lx = vec_new_x_le_re[0];
rx = vec_new_x_le_re[1];
ly = vec_new_y_le_re[0];
ry = vec_new_y_le_re[1];
} else {
break;
}
}
EdgeInfo edge_info(cx, cy, edge_idx, back_idx, far_point_idx);
return edge_info;
}
pcl::PointCloud<pcl::PointXYZ>::Ptr complete_back_data(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_back,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_wall,
const std::vector<int> &far_point_idx,
float bottom_z) {
pcl::search::Search<pcl::PointXYZ>::Ptr tree_back = boost::shared_ptr<pcl::search::Search<pcl::PointXYZ>> (new pcl::search::KdTree<pcl::PointXYZ>);
pcl::PointCloud <pcl::Normal>::Ptr normals_back = compute_normals(tree_back, cloud_back);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_wall2use (new pcl::PointCloud<pcl::PointXYZ> (*cloud_wall));
for (int i=0; i<cloud_wall2use->size(); i++) {
cloud_wall2use->points[i].z = 0;
}
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
kdtree.setInputCloud(cloud_back);
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree_wall;
kdtree_wall.setInputCloud(cloud_wall2use);
float radius0 = 3;
float radius = 1;
std::vector<float> vec_added_x, vec_added_y, vec_added_z;
for (int i=0; i < far_point_idx.size(); i++) {
pcl::PointXYZ far_point0 (cloud->points[far_point_idx[i]].x,
cloud->points[far_point_idx[i]].y,
0);
std::vector<int> vec_idx_wall;
std::vector<float> vec_d_wall;
if (kdtree_wall.radiusSearch(far_point0, radius0, vec_idx_wall, vec_d_wall) > 0) {
continue;
}
pcl::PointXYZ far_point (cloud->points[far_point_idx[i]].x,
cloud->points[far_point_idx[i]].y,
cloud->points[far_point_idx[i]].z);
std::vector<int> vec_idx2use;
std::vector<float> vec_d2use;
if ( kdtree.radiusSearch(far_point, radius, vec_idx2use, vec_d2use) > 0 ) {
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2use (new pcl::PointCloud<pcl::PointXYZ>(*cloud_back, vec_idx2use));
pcl::search::Search<pcl::PointXYZ>::Ptr tree2use = boost::shared_ptr<pcl::search::Search<pcl::PointXYZ>> (new pcl::search::KdTree<pcl::PointXYZ>);
pcl::PointCloud <pcl::Normal>::Ptr normals2use = compute_normals(tree2use, cloud2use);
float z_over_xy;
std::vector<float> vec_z_over_xy;
std::vector<float> vec_normal_x;
std::vector<float> vec_normal_y;
std::vector<float> vec_normal_z;
for (int ii=0; ii<vec_idx2use.size(); ii++) {
float normal_x = normals2use->points[ii].normal_x;
float normal_y = normals2use->points[ii].normal_y;
float normal_z = normals2use->points[ii].normal_z;
if (normal_z < 0) {
normal_x = -normal_x;
normal_y = -normal_y;
normal_z = -normal_z;
}
vec_normal_x.push_back(normal_x);
vec_normal_y.push_back(normal_y);
vec_z_over_xy.push_back(std::abs(normal_z / std::sqrt(std::pow(normal_x, 2) + std::pow(normal_y, 2))));
}
std::sort(vec_z_over_xy.begin(), vec_z_over_xy.end());
z_over_xy = vec_z_over_xy[vec_z_over_xy.size() / 2];
std::sort(vec_normal_x.begin(), vec_normal_x.end());
std::sort(vec_normal_y.begin(), vec_normal_y.end());
float normal_x = vec_normal_x[vec_normal_x.size() / 2];
float normal_y = vec_normal_y[vec_normal_y.size() / 2];
float lx = normal_x;
float ly = normal_y;
float lz = - std::sqrt(std::pow(lx, 2) + std::pow(ly, 2)) / z_over_xy;
float length = std::sqrt(std::pow(lx, 2) + std::pow(ly, 2)) * 2;
lx /= length;
ly /= length;
lz /= length;
// std::cout << "nz: " << normal_z << std::endl;
// std::cout << "lz: " << lz << std::endl;
if (lz < -0.2) {
float added_x = cloud->points[far_point_idx[i]].x;
float added_y = cloud->points[far_point_idx[i]].y;
float added_z = cloud->points[far_point_idx[i]].z;
while (added_z + lz > bottom_z + 0.01) {
added_x += lx;
added_y += ly;
added_z += lz;
vec_added_x.push_back(added_x);
vec_added_y.push_back(added_y);
vec_added_z.push_back(added_z);
}
}
}
}
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_added (new pcl::PointCloud<pcl::PointXYZ>);
cloud_added->width = vec_added_x.size();
cloud_added->height = 1;
cloud_added->points.resize (cloud_added->width * cloud_added->height);
for (int i=0; i < cloud_added->size(); i++) {
cloud_added->points[i].x = vec_added_x[i];
cloud_added->points[i].y = vec_added_y[i];
cloud_added->points[i].z = vec_added_z[i];
}
return cloud_added;
}
pcl::PointCloud<pcl::PointXYZ>::Ptr refine_cloud(const pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud,
float bottom_z, bool ground=true) {
float radius = 0.5;
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2filter(new pcl::PointCloud<pcl::PointXYZ>(*cloud));
std::vector<float> vec_x, vec_y;
for (int i=0; i < cloud2filter->size(); i++) {