-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
319 lines (222 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from tensorflow.keras.utils import get_file
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import LeakyReLU, ReLU, Conv2D, Conv2DTranspose, \
Concatenate, concatenate, BatchNormalization, Dropout, ZeroPadding2D, \
Input
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.optimizers import Adam
from IPython import display
import matplotlib.pyplot as plt
import tensorflow as tf
import time
import os
URl = "http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/maps.tar.gz"
zip_path = get_file('maps.tar.gz',
origin=URl,
extract=True)
path = os.path.join(os.path.dirname(zip_path), "maps/")
def load_img(image_file):
image = tf.io.read_file(image_file)
image = tf.image.decode_jpeg(image) # decode to jpg file
width = tf.shape(image)[1]
width = width // 2
input_img = image[:, :width, :] # [600, :600, 3]
target_img = image[:, width:, :] # [600, 600:, 3]
input_img = tf.cast(input_img, tf.float32)
target_img = tf.cast(target_img, tf.float32)
return input_img, target_img
IMAGE_COLS = 256 # for resize
IMAGE_ROWS = 256 # for resize
BUFFER_SIZE = 400
BATCH_SIZE = 1
IMAGE_CHANNELS = 3 # RGB
LAMBDA = 100
Epochs = 50
def resize(input_img, target_img, height, width):
input_img = tf.image.resize(input_img, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
target_img = tf.image.resize(target_img, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return input_img, target_img
def random_crop(input_img, target_image):
stacked_image = tf.stack([input_img, target_image], axis=0)
cropped_image = tf.image.random_crop(stacked_image,
size=[2, IMAGE_ROWS, IMAGE_COLS, 3])
return cropped_image[0], cropped_image[1]
def normal(input_img, target_img):
input_img = (input_img / 127.5) - 1 # [-1, 1]
target_img = (target_img / 127.5) - 1 # [-1, 1]
return input_img, target_img
def random_jitter(input_img, target_img):
input_img, target_img = resize(input_img, target_img, 286, 286)
input_img, target_img = random_crop(input_img, target_img)
if tf.random.uniform(()) >= 0.5: # random flip
input_img = tf.image.flip_left_right(input_img) # flip
target_img = tf.image.flip_left_right(target_img) # flip
return input_img, target_img
def load_train(image_file):
input_img, target_img = load_img(image_file) # load image
input_img, target_img = random_jitter(input_img, target_img) # apply random jitter
input_img, target_img = normal(input_img, target_img) # normalizer image
return input_img, target_img
def load_test(image_file):
input_img, target_img = load_img(image_file)
input_img, target_img = resize(input_img, target_img, IMAGE_ROWS,
IMAGE_COLS)
input_img, target_img = normal(input_img, target_img)
return input_img, target_img
train_dataset = tf.data.Dataset.list_files(path + "train/*.jpg")
train_dataset = train_dataset.map(load_train,
num_parallel_calls=tf.data.AUTOTUNE) # mapping dataset to load_test function
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.batch(BATCH_SIZE)
test_dataset = tf.data.Dataset.list_files(path + "val/*.jpg")
test_dataset = test_dataset.map(load_test) # mapping dataset to load_test function
test_dataset = test_dataset.batch(BATCH_SIZE)
def downsample(filters, size, batch_norm=True):
initializer = tf.random_normal_initializer(0., 0.02) # mean 0 and standard deviation 0.02
model = Sequential()
model.add(Conv2D(filters, size, strides=2, padding="same",
kernel_initializer=initializer))
if batch_norm:
model.add(BatchNormalization())
model.add(LeakyReLU()) # f(x) = return x if x >= 0
# f(x) = return alpha * x if x < 0
return model
def upsample(filters, size, dropout=True):
initializer = tf.random_normal_initializer(0., 0.02)
model = Sequential()
model.add(Conv2DTranspose(filters, size, strides=2, padding="same",
kernel_initializer=initializer,
use_bias=False))
model.add(BatchNormalization())
if dropout:
model.add(Dropout(0.5)) # add dropout to prevent over fitting
model.add(ReLU()) # max(x, 0)
return model
# U-NET
def Generator():
inputs = Input(shape=[IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS])
downs = [
downsample(64, 4, batch_norm=False), # (batch_size, 128, 128, 64)
downsample(256, 4), # (batch_size, 64, 64, 256)
downsample(512, 4), # (batch_size, 32, 23, 512)
downsample(512, 4), # (batch_size, 16, 16, 512)
downsample(512, 4), # (batch_size, 8, 8, 512)
downsample(512, 4), # (batch_size, 4, 4, 512)
downsample(512, 4), # (batch_size, 2, 2, 512)
downsample(512, 4), # (batch_size, 1, 1, 512)
]
ups = [
upsample(512, 4, dropout=True), # (batch_size, 1, 1, 1024)
upsample(512, 4, dropout=True), # (batch_size, 2, 2, 1024)
upsample(512, 4, dropout=True), # (batch_size, 4, 4, 1024)
upsample(512, 4), # (batch_size, 16, 16, 1024)
upsample(256, 4), # (batch_size, 32, 32, 512)
upsample(128, 4), # (batch_size, 64, 64, 256)
upsample(64, 4), # (batch_size, 128, 128, 128)
]
initializer = tf.random_normal_initializer(0., 0.02)
last_layer = Conv2DTranspose(IMAGE_CHANNELS,
4,
strides=2,
padding="same",
kernel_initializer=initializer,
activation="tanh") # (batch_size, 256, 256, 3)
x = inputs
skips = []
for down in downs:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1]) # E.g [1, 2, 3] ---> [3, 2]
for up, skip in zip(ups, skips):
x = up(x)
x = Concatenate()([x, skip]) # skip connection
x = last_layer(x)
return Model(inputs=inputs, outputs=x)
generator = Generator()
# tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)
loss_object = BinaryCrossentropy(from_logits=True)
def generator_loss(disc_gen_output, gen_output, target):
gan_loss = loss_object(tf.ones_like(disc_gen_output), disc_gen_output) # sigmoid
l1_loss = tf.reduce_mean(tf.abs(target - gen_output)) # MAE(Mean Absolute Error)
total_gen_loss = gan_loss + (LAMBDA * l1_loss) # total loss
return total_gen_loss, gan_loss, l1_loss
def Discriminator():
initializer = tf.random_normal_initializer(0., 0.02)
input_image = Input(shape=[IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS], name="input_img")
target_image = Input(shape=[IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS], name="target_image")
x = concatenate([input_image, target_image])
down1 = downsample(64, 4, batch_norm=False)(x)
down2 = downsample(128, 4)(down1)
down3 = downsample(256, 4)(down2)
zero_pad1 = ZeroPadding2D()(down3)
conv_layer = Conv2D(512, 4, strides=1,
kernel_initializer=initializer,
use_bias=False)(zero_pad1)
batch_norm1 = BatchNormalization()(conv_layer)
leaky_relu = LeakyReLU()(batch_norm1)
zero_pad2 = ZeroPadding2D()(leaky_relu)
last_layer = Conv2D(1, 4, strides=1,
kernel_initializer=initializer)(zero_pad2)
return Model([input_image, target_image], last_layer)
discriminator = Discriminator()
# tf.keras.utils.plot_model(discriminator, show_shapes=True, dpi=64)
def disc_loss(disc_real_out, disc_gen_out):
real_loss = loss_object(tf.ones_like(disc_real_out), disc_real_out)
fake_loss = loss_object(tf.zeros_like(disc_gen_out), disc_gen_out)
return real_loss + fake_loss
generator_optim = Adam(2e-4, beta_1=0.5)
discriminator_optim = Adam(2e-4, beta_1=0.5)
checkpoint_path = './train_check'
checkpoint_prefix = os.path.join(checkpoint_path, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optim=generator_optim,
discriminator_optim=discriminator_optim,
generator=generator,
discriminator=discriminator)
def generate_images(model, test_image, target):
prediction = model(test_image, training=True)
plt.figure(figsize=(15, 15))
display_list = [test_image[0], target[0], prediction[0]]
title = ['Input Image', 'Ground Truth', 'Predicted Image']
for i in range(3):
plt.subplot(1, 3, i + 1)
plt.title(title[i])
plt.imshow(display_list[i] * 0.5 + 0.5) # [0, 1]
plt.axis('off')
plt.show()
@tf.function
def train_step(input_image, target_image):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = generator(input_image, training=True)
disc_real_output = discriminator([input_image, target_image], training=True)
disc_generated_output = discriminator([input_image, gen_output], training=True)
gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target_image)
dis_loss = disc_loss(disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(gen_total_loss,
generator.trainable_variables)
discriminator_gradients = disc_tape.gradient(dis_loss,
discriminator.trainable_variables)
generator_optim.apply_gradients(zip(generator_gradients,
generator.trainable_variables))
discriminator_optim.apply_gradients(zip(discriminator_gradients,
discriminator.trainable_variables))
return dis_loss, gen_total_loss
def fit(train_ds, epochs, test_ds):
for epoch in range(epochs):
start = time.time()
display.clear_output(wait=True)
for example_input, example_target in test_ds.take(1):
generate_images(generator, example_input, example_target)
print("Epoch: ", epoch)
for n, (input_image, target) in train_ds.enumerate():
print('=', end='')
dis_loss, gen_loss = train_step(input_image, target)
if (n + 1) % 100 == 0:
print(" Discriminator loss: {}, Generator Loss: {}".format(dis_loss, gen_loss))
print()
print()
checkpoint.save(file_prefix=checkpoint_prefix) # saves data every epoch
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1,
time.time() - start))
fit(train_dataset, Epochs, test_dataset)