Skip to content
This repository was archived by the owner on Nov 7, 2020. It is now read-only.

Commit 65be3e6

Browse files
authored
Update README.md
1 parent 485ff22 commit 65be3e6

File tree

1 file changed

+20
-6
lines changed

1 file changed

+20
-6
lines changed

README.md

Lines changed: 20 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,16 @@
22

33
Python Implementations of Embedding-based methods for Knowledge Base Completion tasks, mainly inspired by [scikit-kge](https://github.com/mnick/scikit-kge) and [complex](https://github.com/ttrouill/complex).
44

5-
Currently, This repository contains the reimplementation of Complex Embeddings [Trouillon el al. 2016].
6-
I plan to add the other baseline methods, such as TransE, RESCAL or Holographic Embeddings.
5+
## List of methods
6+
- RESCAL [Nickel+. 2011]
7+
- TransE [Bordes+. 2013]
8+
- DistMult [Yang+. 2015]
9+
- HolE [Nicklel+. 2016]
10+
- This model is equivalent to ComplEx, and the computation cost for ComplEx is lower than of HolE.
11+
- ComplEx [Trouillon+. 2016]
12+
- ANALOGY [Liu+. 2017] (not implemented yet)
13+
- This model can be regarded as a hybrid between DistMult and RESCAL.
14+
715

816
## Run to train and test
917

@@ -28,7 +36,8 @@ optional arguments:
2836
--rel REL relation list
2937
--train TRAIN training data
3038
--valid VALID validation data
31-
--method METHOD method ["complex"]
39+
--method METHOD method ["complex", "distmult", "transe", "hole",
40+
"rescal"]
3241
--epoch EPOCH number of epochs
3342
--batch BATCH batch size
3443
--lr LR learning rate
@@ -63,7 +72,8 @@ optional arguments:
6372
--data DATA test data
6473
--filtered use filtered metric
6574
--graphall GRAPHALL all graph file for filtered evaluation
66-
--method METHOD method ["complex"]
75+
--method METHOD method ["complex", "distmult", "transe", "hole",
76+
"rescal"]
6777
--model MODEL trained model path
6878
```
6979

@@ -91,10 +101,14 @@ optional arguments:
91101

92102
## References
93103

94-
* Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and Yakhnenko, O. 2013. Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems (NIPS)
104+
* Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and Yakhnenko, O. 2013. Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems (NIPS).
95105

96-
* Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and Bouchard, G. 2016. Complex embeddings for simple link prediction. In International Conference on Machine Learning (ICML).
106+
* Liu, H.; Wu, Y.; and Yang, Y. 2017. Analogical inference for multi-relational embeddings. In Proceedings of the 34th International Conference on Machine Learning (ICML).
97107

98108
* Nickel, M.; Rosasco, L.; and Poggio, T. 2016. Holographic embeddings of knowledge graphs. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16.
99109

100110
* Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A threeway model for collective learning on multi-relational data. In International Conference on Machine Learning (ICML-11), ICML ’11,
111+
112+
* Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and Bouchard, G. 2016. Complex embeddings for simple link prediction. In International Conference on Machine Learning (ICML).
113+
114+
* Yang, B.; Yih, W.; He, X.; Gao, J.; and Deng, L. 2015. Embedding entities and relations for learning and inference in knowledge bases. International Conference on Learning Representations 2015.

0 commit comments

Comments
 (0)