From 4b712bc049fdbed21c93169f0ef7e69637b00e0b Mon Sep 17 00:00:00 2001 From: husein zolkepli Date: Sat, 18 Jan 2020 08:18:27 +0800 Subject: [PATCH] improve wav2vec --- ...vec-transfer-learning-birnn-lstm-ctc.ipynb | 280 ++-- speech-to-text/wav2vec-pytorch.ipynb | 906 ++++-------- speech-to-text/wav2vec-tf.ipynb | 1255 ++--------------- speech-to-text/wav2vec.ipynb | 753 ++++++++-- 4 files changed, 1167 insertions(+), 2027 deletions(-) diff --git a/speech-to-text/11.wav2vec-transfer-learning-birnn-lstm-ctc.ipynb b/speech-to-text/11.wav2vec-transfer-learning-birnn-lstm-ctc.ipynb index 613c9b3..98702a7 100644 --- a/speech-to-text/11.wav2vec-transfer-learning-birnn-lstm-ctc.ipynb +++ b/speech-to-text/11.wav2vec-transfer-learning-birnn-lstm-ctc.ipynb @@ -202,13 +202,25 @@ "metadata": {}, "outputs": [], "source": [ - "features = [(512, 10, 5), (512, 8, 4), (512, 8, 4), (512, 4, 2), \n", - " (512, 4, 2), (512, 4, 2), (512, 1, 1), (512, 1, 1)]\n", + "# follow hyperparameters from here, https://github.com/pytorch/fairseq/tree/master/examples/wav2vec\n", + "\n", + "features = [(512, 10, 5), (512, 8, 4), (512, 4, 2), (512, 4, 2), (512, 4, 2), (512, 1, 1), (512, 1, 1)]\n", "aggs = [(512, 2, 1), (512, 3, 1), (512, 4, 1), (512, 5, 1), (512, 6, 1), (512, 7, 1), (512, 8, 1), (512, 9, 1), \n", - " (512, 10, 1), (512, 11, 1), (512, 12, 1), (512, 13, 1)]\n", + " (512, 10, 1), (512, 11, 1), (512, 12, 1), (512, 13, 1)]\n", "num_negatives = 10\n", "prediction_steps = 12\n", - "learning_rate = 1e-6" + "learning_rate = 1e-5\n", + "min_learning_rate = 1e-9\n", + "max_learning_rate = 0.005\n", + "learning_scheduler = 'cosine'\n", + "max_update = 400000\n", + "residual_scale = 0.5\n", + "log_compression = True\n", + "warmup_updates = 50\n", + "warmup_init_lr = 1e-07\n", + "batch_size = 32\n", + "epoch = 10\n", + "total_steps = batch_size * epoch" ] }, { @@ -223,13 +235,9 @@ " padding = tf.tile([[0]], tf.stack([tf.shape(x)[0], desired_size - tf.shape(x)[1]], 0))\n", " return tf.concat([x, padding], 1)\n", "\n", - "def layer_norm(inputs, epsilon=1e-8):\n", - " mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)\n", - " normalized = (inputs - mean) / (tf.sqrt(variance + epsilon))\n", - " params_shape = inputs.get_shape()[-1:]\n", - " gamma = tf.get_variable('gamma', params_shape, tf.float32, tf.ones_initializer())\n", - " beta = tf.get_variable('beta', params_shape, tf.float32, tf.zeros_initializer())\n", - " return gamma * normalized + beta\n", + "def layer_norm(input_tensor, name=None):\n", + " return tf.contrib.layers.layer_norm(\n", + " inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name)\n", "\n", "\n", "def cnn_block(x, hidden_dim, kernel_size, strides):\n", @@ -265,6 +273,11 @@ " with tf.variable_scope('feature_%d'%no):\n", " feature = cnn_block(feature, size_layers, kernel_size, strides)\n", " \n", + " if log_compression:\n", + " feature = tf.math.abs(feature)\n", + " feature = feature + 1\n", + " feature = tf.math.log(feature)\n", + " \n", " x = tf.identity(feature)\n", " for no, f in enumerate(aggs):\n", " size_layers = f[0]\n", @@ -300,7 +313,8 @@ " output_keep_prob = dropout,\n", " )\n", "\n", - " features = self.model.logits\n", + " features = self.model.targets\n", + " # features = self.model.logits\n", " seq_lens = tf.fill([tf.shape(features)[0]], tf.shape(features)[1])\n", " \n", " for n in range(num_layers):\n", @@ -354,12 +368,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING:tensorflow:From :20: conv1d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:From :16: conv1d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use `tf.keras.layers.Conv1D` instead.\n", "WARNING:tensorflow:From /home/husein/.local/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Call initializer instance with the dtype argument instead of passing it to the constructor\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", "WARNING:tensorflow:\n", "The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", "For more information, please see:\n", @@ -368,10 +384,58 @@ " * https://github.com/tensorflow/io (for I/O related ops)\n", "If you depend on functionality not listed there, please file an issue.\n", "\n", - "WARNING:tensorflow:From :78: LSTMCell.__init__ (from tensorflow.python.ops.rnn_cell_impl) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:From :79: LSTMCell.__init__ (from tensorflow.python.ops.rnn_cell_impl) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "This class is equivalent as tf.keras.layers.LSTMCell, and will be replaced by that in Tensorflow 2.0.\n", - "WARNING:tensorflow:From :97: bidirectional_dynamic_rnn (from tensorflow.python.ops.rnn) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:From :99: bidirectional_dynamic_rnn (from tensorflow.python.ops.rnn) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Please use `keras.layers.Bidirectional(keras.layers.RNN(cell))`, which is equivalent to this API\n", "WARNING:tensorflow:From /home/husein/.local/lib/python3.6/site-packages/tensorflow/python/ops/rnn.py:464: dynamic_rnn (from tensorflow.python.ops.rnn) is deprecated and will be removed in a future version.\n", @@ -380,13 +444,29 @@ "WARNING:tensorflow:From /home/husein/.local/lib/python3.6/site-packages/tensorflow/python/ops/rnn_cell_impl.py:961: calling Zeros.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Call initializer instance with the dtype argument instead of passing it to the constructor\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", "WARNING:tensorflow:From /home/husein/.local/lib/python3.6/site-packages/tensorflow/python/ops/rnn.py:244: add_dispatch_support..wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use tf.where in 2.0, which has the same broadcast rule as np.where\n", - "WARNING:tensorflow:From :101: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:From :103: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use keras.layers.dense instead.\n", - "WARNING:tensorflow:From :104: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:From :106: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use `tf.cast` instead.\n" ] @@ -514,8 +594,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "minibatch loop: 100%|██████████| 256/256 [14:50<00:00, 3.48s/it, accuracy=0.175, cost=25] \n", - "testing minibatch loop: 100%|██████████| 9/9 [00:06<00:00, 1.33it/s, accuracy=0.174, cost=25.2]\n", + "minibatch loop: 100%|██████████| 256/256 [29:21<00:00, 6.88s/it, accuracy=0, cost=52.2] \n", + "testing minibatch loop: 100%|██████████| 9/9 [00:16<00:00, 1.78s/it, accuracy=0, cost=51.5]\n", "minibatch loop: 0%| | 0/256 [00:00)" + "torch.Size([11, 2, 10, 7])" ] }, - "execution_count": 27, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "s" + "y = x[:].unsqueeze(0)\n", + "print(y.shape, negs.shape)\n", + "targets = torch.cat([y, negs], dim=0)\n", + "targets.shape" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": { "scrolled": true }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([2, 10, 5])\n" - ] - }, { "data": { "text/plain": [ - "torch.Size([11, 2, 10, 5, 12])" + "torch.Size([11, 2, 10, 7, 12])" ] }, - "execution_count": 16, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "project_to_steps = nn.ConvTranspose2d(10, 10, (1, 12))\n", - "print(x.shape)\n", "s = project_to_steps(x.unsqueeze(-1).float()).unsqueeze(0).expand(targets.size(0), -1, -1, -1, -1)\n", "s.shape" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle\n", + "with open('convtranspose.pkl', 'wb') as fopen:\n", + " pickle.dump(s.detach().numpy().tolist(), fopen)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -919,16 +458,16 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(torch.Size([66]), torch.Size([66]))" + "(torch.Size([220]), torch.Size([220]))" ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -943,19 +482,19 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(torch.Size([11, 2, 10, 5, 12]),\n", - " torch.Size([11, 2, 10, 5]),\n", - " torch.Size([11, 2, 10, 2]),\n", - " torch.Size([11, 2, 10, 2]))" + "(torch.Size([11, 2, 10, 7, 12]),\n", + " torch.Size([11, 2, 10, 7]),\n", + " torch.Size([11, 2, 10, 4]),\n", + " torch.Size([11, 2, 10, 4]))" ] }, - "execution_count": 19, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -966,47 +505,44 @@ }, { "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "torch.Size([2, 10, 5, 12])" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "s[0].shape" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, + "execution_count": 22, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0 4 44 3 torch.Size([11, 2, 10, 2]) torch.Size([11, 2, 10, 2])\n", - "44 2 66 4 torch.Size([11, 2, 10, 1]) torch.Size([11, 2, 10, 1])\n" + "0 8 88 3 torch.Size([11, 2, 10, 4]) torch.Size([11, 2, 10, 4])\n", + "tensor([0., 0., 0., 0., 0., 0., 0., 0.])\n", + "88 6 154 4 torch.Size([11, 2, 10, 3]) torch.Size([11, 2, 10, 3])\n", + "tensor([0., 0., 0., 0., 0., 0.])\n", + "154 2 176 6 torch.Size([11, 2, 10, 1]) torch.Size([11, 2, 10, 1])\n", + "tensor([0., 0.])\n", + "176 -4 132 9 torch.Size([11, 2, 10, 0]) torch.Size([11, 2, 10, 0])\n", + "tensor([])\n" ] }, { "data": { "text/plain": [ - "tensor([1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + "tensor([1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.,\n", - " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.,\n", + " 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0.])" ] }, - "execution_count": 20, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1019,6 +555,7 @@ " pos_num = (end - start) // copies\n", " print(start, pos_num, end, offset, s[..., :-offset, i].shape, targets[..., offset:].shape)\n", " predictions[start:end] = (s[..., :-offset, i].float() * targets[..., offset:].float()).sum(dim=2).flatten()\n", + " print(labels[start:start + pos_num])\n", " labels[start:start + pos_num] = 1.\n", " start = end\n", " \n", @@ -1027,60 +564,127 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "tensor([ 5.9004e-01, -6.5989e-01, 5.3224e-01, -1.0226e-01, -3.7656e-01,\n", - " -6.5989e-01, 4.2338e-01, -1.6779e-02, 5.9004e-01, -6.5989e-01,\n", - " 5.3224e-01, 2.2175e-01, 5.9004e-01, 1.8709e-01, 5.3224e-01,\n", - " -1.0226e-01, 9.0795e-01, -6.5989e-01, -3.8466e-01, -1.0226e-01,\n", - " 9.0795e-01, -6.4663e-01, -2.4600e-01, -1.0226e-01, 5.9004e-01,\n", - " 1.8709e-01, 5.3224e-01, 2.2175e-01, 5.9585e-01, -6.5989e-01,\n", - " -2.4600e-01, 2.5392e-01, 5.9004e-01, -6.4663e-01, -2.4600e-01,\n", - " 1.0426e-01, 3.2566e-01, -6.4663e-01, 6.6557e-01, 2.2175e-01,\n", - " 9.0795e-01, -1.2358e+00, 6.6557e-01, 1.0426e-01, 7.8751e-01,\n", - " -3.6611e-02, 7.8751e-01, 2.7267e-01, 7.8751e-01, 4.0492e-01,\n", - " 7.5874e-01, -3.6611e-02, 7.8751e-01, -3.6611e-02, 7.2576e-01,\n", - " -3.6611e-02, 7.5874e-01, 4.0492e-01, 7.8751e-01, 5.3117e-04,\n", - " 7.2576e-01, -2.7355e-01, 7.2576e-01, 4.0492e-01, 1.6555e-01,\n", - " -2.7355e-01], grad_fn=)" + "array([ 3.66452038e-01, 3.81497800e-01, 1.17975384e-01, 3.86789769e-01,\n", + " -5.22472978e-01, 2.96876747e-02, 1.16604976e-02, -2.87122130e-01,\n", + " -5.71662426e-01, 3.81497800e-01, 1.39530897e-01, 4.34068859e-01,\n", + " -6.46445900e-04, 5.10506220e-02, 1.72045007e-01, -1.56508684e-02,\n", + " 3.22836012e-01, 3.81497800e-01, 1.98190331e-01, 6.12615168e-01,\n", + " -5.22472978e-01, 7.26154149e-02, 1.16604976e-02, -2.87122130e-01,\n", + " 1.93178654e-04, 3.81497800e-01, 3.89128476e-01, 3.86789769e-01,\n", + " -6.46445900e-04, -1.97719205e-02, 1.16604976e-02, 1.03846192e-01,\n", + " -3.02614093e-01, -7.46433139e-01, 4.23885345e-01, 6.11973643e-01,\n", + " 4.69868928e-01, -1.97719205e-02, 1.72045007e-01, 1.03846192e-01,\n", + " 1.93178654e-04, 3.81497800e-01, 4.23885345e-01, 6.12615168e-01,\n", + " 4.69868928e-01, -1.97719205e-02, 1.72045007e-01, -1.56631157e-01,\n", + " 3.22836012e-01, 1.09955943e+00, 1.98190331e-01, 3.86789769e-01,\n", + " 2.98553944e-01, 5.10506220e-02, 1.72045007e-01, -3.18063974e-01,\n", + " -3.02614093e-01, 4.66346890e-02, 4.23885345e-01, -5.15238345e-01,\n", + " 4.69868928e-01, 2.96876747e-02, 1.16604976e-02, 1.03846192e-01,\n", + " -3.02614093e-01, 3.81497800e-01, 1.98190331e-01, 6.11973643e-01,\n", + " -5.22472978e-01, 7.26154149e-02, 1.33439168e-01, -3.18063974e-01,\n", + " 3.25847238e-01, 1.02858454e-01, 1.39530897e-01, 6.11973643e-01,\n", + " -1.59006226e+00, 5.10506220e-02, 1.72045007e-01, 4.09733653e-01,\n", + " 3.02693009e-01, 4.66346890e-02, 1.06446333e-02, 6.11973643e-01,\n", + " 4.69868928e-01, -3.68873119e-01, 2.99941838e-01, -1.95966244e-01,\n", + " -4.13644135e-01, -1.29237294e-01, 1.60333395e-01, -3.52846593e-01,\n", + " -1.56483725e-01, 3.66783708e-01, -4.13644135e-01, -2.71202117e-01,\n", + " -1.61071479e-01, -3.36294562e-01, -2.24780828e-01, 2.57270455e-01,\n", + " -4.13644135e-01, -1.69466317e-01, -4.43083167e-01, 5.34787297e-01,\n", + " -1.56483725e-01, 3.66783708e-01, -4.13644135e-01, -1.87030524e-01,\n", + " 1.60333395e-01, -4.03155461e-02, -1.56483725e-01, -3.08349550e-01,\n", + " -6.05947077e-01, 2.67160714e-01, 7.26729155e-01, -4.03155461e-02,\n", + " -2.24780828e-01, -3.08349550e-01, -4.13644135e-01, 2.67160714e-01,\n", + " -4.43083167e-01, -4.03155461e-02, -2.24780828e-01, 2.38947958e-01,\n", + " 6.00431621e-01, -1.69466317e-01, 1.60333395e-01, -3.36294562e-01,\n", + " -2.24780828e-01, -3.04946840e-01, 1.82850763e-01, 2.67160714e-01,\n", + " -1.42082041e-02, -3.52846593e-01, -1.56483725e-01, -3.08349550e-01,\n", + " -4.13644135e-01, -1.69466317e-01, 7.26729155e-01, 5.34787297e-01,\n", + " 4.26046550e-02, -3.04946840e-01, 7.43078351e-01, -2.71202117e-01,\n", + " 7.26729155e-01, -3.36294562e-01, -2.24780828e-01, -4.00821835e-01,\n", + " 1.82850763e-01, 4.71313477e-01, 7.26729155e-01, 1.44188344e-01,\n", + " -3.04346308e-02, -3.80576074e-01, 3.49486321e-01, 1.49221234e-02,\n", + " -1.40055329e-01, -1.21881872e-01, 8.19714814e-02, 1.49221234e-02,\n", + " 3.49486321e-01, -1.40668884e-01, 2.77836770e-01, -1.40668884e-01,\n", + " 8.19714814e-02, 1.61352471e-01, 3.49486321e-01, 1.23742744e-02,\n", + " 4.80696619e-01, -1.40668884e-01, 2.77836770e-01, 1.23742744e-02,\n", + " 2.77836770e-01, -3.08042616e-02, 2.77836770e-01, -2.98715889e-01],\n", + " dtype=float32)" ] }, - "execution_count": 21, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "predictions" + "predictions.detach().numpy()[:-4 * 11]" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# torch.nn.functional.binary_cross_entropy(predictions, labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/husein/.local/lib/python3.6/site-packages/torch/nn/functional.py:1351: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.\n", + " warnings.warn(\"nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.\")\n" + ] + }, { "data": { "text/plain": [ - "tensor([ 1., -1., 1., -1., -1., -1., 1., -1., 1., -1., 1., 1., 1., 1.,\n", - " 1., -1., 1., -1., -1., -1., 1., -1., -1., -1., 1., 1., 1., 1.,\n", - " 1., -1., -1., 1., 1., -1., -1., 1., 1., -1., 1., 1., 1., -1.,\n", - " 1., 1., 1., -1., 1., 1., 1., 1., 1., -1., 1., -1., 1., -1.,\n", - " 1., 1., 1., 1., 1., -1., 1., 1., 1., -1.],\n", - " grad_fn=)" + "tensor([0.5906, 0.5942, 0.5295, 0.5955, 0.3723, 0.5074, 0.5029, 0.4287, 0.3609,\n", + " 0.5942, 0.5348, 0.6068, 0.4998, 0.5128, 0.5429, 0.4961, 0.5800, 0.5942,\n", + " 0.5494, 0.6485, 0.3723, 0.5181, 0.5029, 0.4287, 0.5000, 0.5942, 0.5961,\n", + " 0.5955, 0.4998, 0.4951, 0.5029, 0.5259, 0.4249, 0.3216, 0.6044, 0.6484,\n", + " 0.6154, 0.4951, 0.5429, 0.5259, 0.5000, 0.5942, 0.6044, 0.6485, 0.6154,\n", + " 0.4951, 0.5429, 0.4609, 0.5800, 0.7502, 0.5494, 0.5955, 0.5741, 0.5128,\n", + " 0.5429, 0.4211, 0.4249, 0.5117, 0.6044, 0.3740, 0.6154, 0.5074, 0.5029,\n", + " 0.5259, 0.4249, 0.5942, 0.5494, 0.6484, 0.3723, 0.5181, 0.5333, 0.4211,\n", + " 0.5807, 0.5257, 0.5348, 0.6484, 0.1694, 0.5128, 0.5429, 0.6010, 0.5751,\n", + " 0.5117, 0.5027, 0.6484, 0.6154, 0.4088, 0.5744, 0.4512, 0.3980, 0.4677,\n", + " 0.5400, 0.4127, 0.4610, 0.5907, 0.3980, 0.4326, 0.4598, 0.4167, 0.4440,\n", + " 0.5640, 0.3980, 0.4577, 0.3910, 0.6306, 0.4610, 0.5907, 0.3980, 0.4534,\n", + " 0.5400, 0.4899, 0.4610, 0.4235, 0.3530, 0.5664, 0.6741, 0.4899, 0.4440,\n", + " 0.4235, 0.3980, 0.5664, 0.3910, 0.4899, 0.4440, 0.5595, 0.6458, 0.4577,\n", + " 0.5400, 0.4167, 0.4440, 0.4243, 0.5456, 0.5664, 0.4964, 0.4127, 0.4610,\n", + " 0.4235, 0.3980, 0.4577, 0.6741, 0.6306, 0.5106, 0.4243, 0.6777, 0.4326,\n", + " 0.6741, 0.4167, 0.4440, 0.4011, 0.5456, 0.6157, 0.6741, 0.5360, 0.4924,\n", + " 0.4060, 0.5865, 0.5037, 0.4650, 0.4696, 0.5205, 0.5037, 0.5865, 0.4649,\n", + " 0.5690, 0.4649, 0.5205, 0.5403, 0.5865, 0.5031, 0.6179, 0.4649, 0.5690,\n", + " 0.5031, 0.5690, 0.4923, 0.5690, 0.4259, 0.5061, 0.5000, 0.5000, 0.0000,\n", + " 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 1.0000,\n", + " 0.0000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.9986, 1.0000,\n", + " 0.5000, 0.5000, 0.0000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000,\n", + " 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.3149, 0.5000, 1.0000, 1.0000,\n", + " 0.5000, 0.0000, 0.5000, 0.5000], grad_fn=)" ] }, - "execution_count": 22, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "torch.sign(predictions)" + "torch.nn.functional.sigmoid(predictions)" ] }, { diff --git a/speech-to-text/wav2vec-tf.ipynb b/speech-to-text/wav2vec-tf.ipynb index 08a1c61..acb0ccb 100644 --- a/speech-to-text/wav2vec-tf.ipynb +++ b/speech-to-text/wav2vec-tf.ipynb @@ -99,7 +99,7 @@ { "data": { "text/plain": [ - "(2, 5, 10)" + "(2, 7, 10)" ] }, "execution_count": 5, @@ -109,7 +109,9 @@ ], "source": [ "np.random.seed(1)\n", - "x = np.transpose(np.random.normal(size = (2, 10, 5)), (0, 2, 1))\n", + "\n", + "# 2 batch, 10 dimension, 7 t\n", + "x = np.transpose(np.random.normal(size = (2, 10, 7)), (0, 2, 1))\n", "x.shape" ] }, @@ -123,7 +125,7 @@ { "data": { "text/plain": [ - "TensorShape([Dimension(10), Dimension(2), Dimension(5), Dimension(10)])" + "TensorShape([Dimension(10), Dimension(2), Dimension(10), Dimension(7)])" ] }, "execution_count": 6, @@ -134,30 +136,35 @@ "source": [ "def negative_sample(y):\n", " bsz = tf.shape(y)[0]\n", - " tsz = tf.shape(y)[1]\n", - " fsz = tf.shape(y)[2]\n", - " y = tf.transpose(y, [2, 0, 1])\n", + " fsz = tf.shape(y)[1]\n", + " tsz = tf.shape(y)[2]\n", + " \n", + " # b, d, t -> d, b, t\n", + " y = tf.transpose(y, [1, 0, 2])\n", " y = tf.reshape(y, (fsz, -1))\n", " # neg_idxs = tf.random_uniform((bsz, num_negatives * tsz), minval=0, maxval=tsz, dtype=tf.int32)\n", " \n", - " neg_idxs = np.array([[2, 3, 2, 1, 4, 4, 4, 2, 3, 4, 2, 3, 1, 3, 3, 1, 2, 0, 2, 4, 2, 2, 2, 2,\n", - " 2, 4, 0, 0, 3, 3, 4, 0, 4, 4, 4, 2, 4, 4, 3, 2, 2, 4, 0, 0, 2, 4, 4, 4,\n", - " 2, 0],\n", - " [1, 2, 4, 2, 2, 0, 0, 0, 3, 3, 0, 3, 1, 3, 4, 4, 3, 1, 4, 4, 0, 1, 3, 0,\n", - " 4, 0, 0, 0, 3, 3, 2, 4, 1, 0, 1, 2, 0, 2, 0, 0, 2, 2, 3, 1, 3, 4, 3, 4,\n", - " 1, 0]])\n", + " neg_idxs = np.array([[\n", + " 1, 2, 3, 1, 4, 0, 5, 6, 1, 2, 0, 4, 2, 1, 0, 5, 4, 5, 4, 6, 6, 4, 1, 6,\n", + " 6, 3, 4, 4, 5, 0, 1, 5, 4, 4, 1, 1, 0, 2, 0, 6, 2, 6, 3, 4, 5, 6, 2, 4,\n", + " 0, 2, 1, 2, 6, 4, 2, 4, 0, 2, 4, 2, 1, 0, 4, 6, 6, 4, 4, 2, 3, 4],\n", + " [4, 0, 3, 4, 2, 4, 4, 1, 0, 6, 3, 1, 5, 6, 4, 3, 6, 4, 0, 5, 1, 0, 4, 2,\n", + " 2, 0, 4, 1, 4, 3, 2, 2, 0, 4, 2, 3, 4, 6, 6, 2, 4, 0, 3, 1, 6, 2, 4, 5,\n", + " 1, 3, 1, 3, 3, 1, 3, 0, 3, 6, 0, 5, 2, 4, 5, 6, 0, 1, 2, 3, 6, 3]])\n", " \n", " ranged = tf.expand_dims(tf.range(1, bsz), axis = 1)\n", - " \n", " a = tf.add(neg_idxs[1:bsz], tf.tile(ranged, [1, num_negatives * tsz]) * tsz)\n", + " \n", " neg_idxs = tf.concat([neg_idxs[:1], a, neg_idxs[bsz:]], axis = 0)\n", " neg_idxs = tf.reshape(neg_idxs, [-1])\n", " negs = tf.gather(y, neg_idxs, axis=1)\n", " negs = tf.reshape(negs, (fsz, bsz, num_negatives, tsz))\n", - " negs = tf.transpose(negs, [2, 1, 3, 0])\n", + " negs = tf.transpose(negs, [2, 1, 0, 3])\n", " return negs\n", "\n", - "neg = negative_sample(x.copy())\n", + "# b, t, d -> b, d, t\n", + "y = tf.transpose(x.copy(), (0, 2, 1))\n", + "neg = negative_sample(y)\n", "neg.shape" ] }, @@ -169,48 +176,7 @@ { "data": { "text/plain": [ - "" + "TensorShape([Dimension(11), Dimension(2), Dimension(10), Dimension(7)])" ] }, "execution_count": 7, @@ -219,33 +185,13 @@ } ], "source": [ - "tf.transpose(neg, (0, 1, 3, 2))[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "TensorShape([Dimension(11), Dimension(2), Dimension(5), Dimension(10)])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "targets = tf.concat([tf.expand_dims(x, axis = 0), neg], axis = 0)\n", + "targets = tf.concat([tf.expand_dims(y, axis = 0), neg], axis = 0)\n", "targets.shape" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": { "scrolled": true }, @@ -254,8 +200,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "(2, 5, 10)\n", - "WARNING:tensorflow:From :5: conv2d_transpose (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.\n", + "(2, 7, 10)\n", + "WARNING:tensorflow:From :5: conv2d_transpose (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use `tf.keras.layers.Conv2DTranspose` instead.\n" ] @@ -263,10 +209,10 @@ { "data": { "text/plain": [ - "TensorShape([Dimension(11), Dimension(2), Dimension(5), Dimension(10), Dimension(12)])" + "TensorShape([Dimension(11), Dimension(2), Dimension(7), Dimension(10), Dimension(12)])" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -284,881 +230,27 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "(11, 2, 10, 7, 12)" ] }, - "execution_count": 19, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "x_" + "import pickle\n", + "\n", + "with open('convtranspose.pkl', 'rb') as fopen:\n", + " x_ = np.array(pickle.load(fopen))\n", + " \n", + "x_.shape" ] }, { @@ -1204,7 +296,7 @@ { "data": { "text/plain": [ - "(TensorShape([Dimension(66)]), TensorShape([Dimension(66)]))" + "(TensorShape([Dimension(220)]), TensorShape([Dimension(220)]))" ] }, "execution_count": 11, @@ -1215,8 +307,8 @@ "source": [ "copies = tf.shape(x_)[0]\n", "bsz = tf.shape(x_)[1]\n", - "tsz = tf.shape(x_)[2]\n", - "dim = tf.shape(x_)[3]\n", + "dim = tf.shape(x_)[2]\n", + "tsz = tf.shape(x_)[3]\n", "steps = tf.shape(x_)[4]\n", "\n", "steps = tf.math.minimum(steps, tsz - offset)\n", @@ -1238,273 +330,160 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "TensorShape([Dimension(11), Dimension(2), Dimension(10), Dimension(7), Dimension(12)])" ] }, - "execution_count": 17, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "x_[0]" + "x_.shape" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 tf.Tensor(8, shape=(), dtype=int32) tf.Tensor(88, shape=(), dtype=int32) 3 (11, 2, 10, 4) (11, 2, 10, 4)\n", + "tf.Tensor(88, shape=(), dtype=int32) tf.Tensor(6, shape=(), dtype=int32) tf.Tensor(154, shape=(), dtype=int32) 4 (11, 2, 10, 3) (11, 2, 10, 3)\n", + "tf.Tensor(154, shape=(), dtype=int32) tf.Tensor(2, shape=(), dtype=int32) tf.Tensor(176, shape=(), dtype=int32) 6 (11, 2, 10, 1) (11, 2, 10, 1)\n", + "tf.Tensor(176, shape=(), dtype=int32) tf.Tensor(-4, shape=(), dtype=int32) tf.Tensor(132, shape=(), dtype=int32) 9 (11, 2, 10, 0) (11, 2, 10, 0)\n" + ] + } + ], "source": [ - "def body(i, start, end, predictions, labels):\n", - " offset_ = i + offset\n", - " end = start + (tsz - offset_) * bsz * copies\n", + "def body(i, start, end, predictions, labels, offset):\n", + " offset = i + offset\n", + " end = start + (tsz - offset) * bsz * copies\n", " pos_num = (end - start) // copies\n", - " s = tf.reduce_sum((x_[:, :, :-offset_, :, i] * targets[:, :, offset_:, :]), axis = 3)\n", + " print(start, pos_num, end, offset, x_[:, :, :, :-offset, i].shape, targets[:, :, :, offset:].shape)\n", + " s = tf.reduce_sum((x_[:, :, :, :-offset, i] * targets[:, :, :, offset:]), axis = 2)\n", " s = tf.reshape(s, [-1])\n", " s = tf.pad(s, [[start, tf.shape(predictions)[0] - (start + tf.shape(s)[0])]])\n", " predictions = tf.add(predictions, s)\n", + " pos_num = pos_num if pos_num > 0 else 0\n", " l = tf.ones((pos_num))\n", " l = tf.pad(l, [[start, tf.shape(labels)[0] - (start + pos_num)]])\n", " labels = tf.add(labels, l)\n", - " return i + 1, end, end, predictions, labels\n", + " return i + 1, end, end, predictions, labels, offset\n", "\n", - "def condition(i, start, end, predictions, labels):\n", + "def condition(i, start, end, predictions, labels, offset):\n", " return i < steps\n", "\n", "ranged = tf.Variable(tf.constant(0))\n", - "_, _, _, predictions, labels = tf.while_loop(condition, body, [0, 0, 0, predictions, labels])" + "_, _, _, predictions, labels, _ = tf.while_loop(condition, body, [0, 0, 0, predictions, labels, offset])" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", + " dtype=float32)" ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "labels" + "np.array(labels)" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "label_weights = tf.abs(tf.sign(predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 15, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "tf.sign(predictions)" + "log_probs = tf.math.log_sigmoid(predictions)\n", + "per_example_loss = -1 * (log_probs * labels)\n", + "numerator = tf.reduce_sum(label_weights * per_example_loss)\n", + "denominator = tf.reduce_sum(label_weights) + 1e-5\n", + "numerator / denominator" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From /home/husein/.local/lib/python3.6/site-packages/tensorflow/python/ops/nn_impl.py:180: add_dispatch_support..wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.where in 2.0, which has the same broadcast rule as np.where\n" + ] + }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "predictions" + "numerator = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels,\n", + " logits=predictions) * label_weights\n", + "numerator = tf.reduce_sum(numerator)\n", + "denominator = tf.reduce_sum(label_weights) + 1e-5\n", + "numerator / denominator" ] }, { diff --git a/speech-to-text/wav2vec.ipynb b/speech-to-text/wav2vec.ipynb index 3d5ee74..8c0ae97 100644 --- a/speech-to-text/wav2vec.ipynb +++ b/speech-to-text/wav2vec.ipynb @@ -52,7 +52,8 @@ "import librosa\n", "import tensorflow as tf\n", "import glob\n", - "import numpy as np" + "import numpy as np\n", + "import matplotlib.pyplot as plt" ] }, { @@ -91,8 +92,8 @@ "residual_scale = 0.5\n", "log_compression = True\n", "warmup_updates = 50\n", - "warmup_init_lr = 1e-07\n", - "batch_size = 32\n", + "warmup_init_lr = 1e-7\n", + "batch_size = 24\n", "epoch = 10\n", "total_steps = batch_size * epoch" ] @@ -108,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -118,11 +119,7 @@ "def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps):\n", " \"\"\"Creates an optimizer training op.\"\"\"\n", " global_step = tf.train.get_or_create_global_step()\n", - "\n", " learning_rate = tf.constant(value = init_lr, shape = [], dtype = tf.float32)\n", - " \n", - " # tf.train.cosine_decay\n", - "\n", " learning_rate = tf.train.polynomial_decay(\n", " learning_rate,\n", " global_step,\n", @@ -147,19 +144,17 @@ " 1.0 - is_warmup\n", " ) * learning_rate + is_warmup * warmup_learning_rate\n", " \n", - " optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)\n", - "\n", - "# optimizer = AdamWeightDecayOptimizer(\n", - "# learning_rate = learning_rate,\n", - "# weight_decay_rate = 0.01,\n", - "# beta_1 = 0.9,\n", - "# beta_2 = 0.999,\n", - "# epsilon = 1e-6,\n", - "# exclude_from_weight_decay = ['LayerNorm', 'layer_norm', 'bias'],\n", - "# )\n", + "# optimizer = tf.train.RMSPropOptimizer(learning_rate)\n", + "# optimizer = tf.train.AdamOptimizer(learning_rate)\n", "\n", - "# if use_tpu:\n", - "# optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)\n", + " optimizer = AdamWeightDecayOptimizer(\n", + " learning_rate = learning_rate,\n", + " weight_decay_rate = 0.01,\n", + " beta_1 = 0.9,\n", + " beta_2 = 0.999,\n", + " epsilon = 1e-6,\n", + " exclude_from_weight_decay = ['LayerNorm', 'layer_norm', 'bias'],\n", + " )\n", "\n", " tvars = tf.trainable_variables()\n", " grads = tf.gradients(loss, tvars)\n", @@ -259,14 +254,14 @@ " param_name = m.group(1)\n", " return param_name\n", "\n", + "def gelu(x):\n", + " cdf = 0.5 * (1.0 + tf.tanh(\n", + " (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))\n", + " return x * cdf\n", "\n", - "def layer_norm(inputs, epsilon=1e-8):\n", - " mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)\n", - " normalized = (inputs - mean) / (tf.sqrt(variance + epsilon))\n", - " params_shape = inputs.get_shape()[-1:]\n", - " gamma = tf.get_variable('gamma', params_shape, tf.float32, tf.ones_initializer())\n", - " beta = tf.get_variable('beta', params_shape, tf.float32, tf.zeros_initializer())\n", - " return gamma * normalized + beta\n", + "def layer_norm(input_tensor, name=None):\n", + " return tf.contrib.layers.layer_norm(\n", + " inputs=input_tensor, begin_norm_axis=1, begin_params_axis=-1, scope=name)\n", "\n", "\n", "def cnn_block(x, hidden_dim, kernel_size, strides):\n", @@ -274,8 +269,10 @@ " filters = hidden_dim,\n", " kernel_size = kernel_size,\n", " strides = strides)\n", + " \n", " x = layer_norm(x)\n", - " x = tf.nn.relu(x)\n", + " # x = gelu(x)\n", + " x = tf.nn.relu6(x)\n", " return x\n", "\n", "def cnn_aggregator(x, hidden_dim, kernel_size, strides):\n", @@ -286,33 +283,35 @@ " filters = hidden_dim,\n", " kernel_size = kernel_size,\n", " strides = strides)\n", + " \n", " x = layer_norm(x)\n", - " x = tf.nn.relu(x)\n", + " # x = gelu(x)\n", + " x = tf.nn.relu6(x)\n", " return x\n", "\n", "def negative_sample(y):\n", " bsz = tf.shape(y)[0]\n", - " tsz = tf.shape(y)[1]\n", - " fsz = tf.shape(y)[2]\n", - " y = tf.transpose(y, [2, 0, 1])\n", + " fsz = tf.shape(y)[1]\n", + " tsz = tf.shape(y)[2]\n", + " \n", + " # b, d, t -> d, b, t\n", + " y = tf.transpose(y, [1, 0, 2])\n", " y = tf.reshape(y, (fsz, -1))\n", " neg_idxs = tf.random_uniform((bsz, num_negatives * tsz), minval=0, maxval=tsz, dtype=tf.int32)\n", " \n", " ranged = tf.expand_dims(tf.range(1, bsz), axis = 1)\n", - " \n", " a = tf.add(neg_idxs[1:bsz], tf.tile(ranged, [1, num_negatives * tsz]) * tsz)\n", + " \n", " neg_idxs = tf.concat([neg_idxs[:1], a, neg_idxs[bsz:]], axis = 0)\n", " neg_idxs = tf.reshape(neg_idxs, [-1])\n", " negs = tf.gather(y, neg_idxs, axis=1)\n", " negs = tf.reshape(negs, (fsz, bsz, num_negatives, tsz))\n", - " negs = tf.transpose(negs, [2, 1, 3, 0])\n", + " negs = tf.transpose(negs, [2, 1, 0, 3])\n", " return negs\n", - " \n", "\n", "class Model:\n", " def __init__(self):\n", " self.X = tf.placeholder(tf.float32, (None, None))\n", - " # self.X = X[0:1]\n", " feature = tf.expand_dims(self.X, axis = 2)\n", " \n", " for no, f in enumerate(features):\n", @@ -328,6 +327,7 @@ " feature = tf.math.log(feature)\n", " \n", " x = tf.identity(feature)\n", + " self.targets = tf.identity(feature)\n", " for no, f in enumerate(aggs):\n", " size_layers = f[0]\n", " kernel_size = f[1]\n", @@ -349,123 +349,146 @@ "\n", " offset = int(offset)\n", " \n", - " self.logits = x # X\n", - " self.targets = feature # Y\n", - " self.negatives = negative_sample(self.targets)\n", + " self.logits = x\n", + " transpose_targets = tf.transpose(self.targets, (0, 2, 1))\n", + " self.negatives = negative_sample(transpose_targets)\n", " \n", - " y = tf.expand_dims(self.targets, axis = 0)\n", + " y = tf.expand_dims(transpose_targets, axis = 0)\n", " targets = tf.concat([y, self.negatives], axis = 0)\n", " b = tf.shape(targets)[0]\n", - " x = tf.expand_dims(self.logits, axis = -1)\n", - " \n", + "\n", + " x = tf.expand_dims(tf.transpose(self.logits, (0, 2, 1)), axis = -1)\n", " x = tf.layers.conv2d_transpose(x, prediction_steps, (1, 1))\n", " x = tf.expand_dims(x, axis = 0) \n", " x = tf.tile(x, [b, 1, 1, 1, 1])\n", " \n", " copies = tf.shape(x)[0]\n", " bsz = tf.shape(x)[1]\n", - " tsz = tf.shape(x)[2]\n", - " dim = tf.shape(x)[3]\n", + " dim = tf.shape(x)[2]\n", + " tsz = tf.shape(x)[3]\n", " steps = tf.shape(x)[4]\n", - " self.o = x\n", - " self.p = targets\n", " \n", " steps = tf.math.minimum(steps, tsz - offset)\n", " predictions = tf.zeros(bsz * copies * (tsz - offset + 1) * \\\n", " steps - ((steps + 1) * steps // 2) * copies * bsz)\n", " labels = tf.zeros_like(predictions)\n", " \n", - " def body(i, start, end, predictions, labels):\n", - " offset_ = i + offset\n", - " end = start + (tsz - offset_) * bsz * copies\n", + " def body(i, start, end, predictions, labels, offset):\n", + " offset = i + offset\n", + " end = start + (tsz - offset) * bsz * copies\n", " pos_num = (end - start) // copies\n", - " s = tf.reduce_sum((x[:, :, :-offset_, :, i] * targets[:, :, offset_:, :]), axis = 3)\n", + " s = tf.reduce_sum((x[:, :, :, :-offset, i] * targets[:, :, :, offset:]), axis = 2)\n", " s = tf.reshape(s, [-1])\n", " s = tf.pad(s, [[start, tf.shape(predictions)[0] - (start + tf.shape(s)[0])]])\n", " predictions = tf.add(predictions, s)\n", + " pos_num = tf.cond(pos_num > 0, lambda: pos_num, lambda: 0)\n", " l = tf.ones((pos_num))\n", " l = tf.pad(l, [[start, tf.shape(labels)[0] - (start + pos_num)]])\n", " labels = tf.add(labels, l)\n", - " return i + 1, end, end, predictions, labels\n", + " return i + 1, end, end, predictions, labels, offset\n", "\n", - " def condition(i, start, end, predictions, labels):\n", + " def condition(i, start, end, predictions, labels, offset):\n", " return i < steps\n", "\n", " ranged = tf.Variable(tf.constant(0))\n", - " _, _, _, predictions, labels = tf.while_loop(condition, body, [0, 0, 0, predictions, labels])\n", + " _, _, _, predictions, labels, _ = tf.while_loop(condition, body, [0, 0, 0, predictions, labels, offset])\n", " self.predictions = predictions\n", " self.labels = labels\n", " \n", - " self.cost = tf.nn.sigmoid_cross_entropy_with_logits(\n", + " label_weights = tf.abs(tf.sign(self.predictions))\n", + " \n", + " numerator = tf.nn.sigmoid_cross_entropy_with_logits(\n", " labels=self.labels,\n", - " logits=self.predictions,\n", - " )\n", - " self.cost = tf.reduce_mean(self.cost)\n", - "\n", + " logits=self.predictions) * label_weights\n", + " numerator = tf.reduce_sum(numerator)\n", + " denominator = tf.reduce_sum(label_weights) + 1e-5\n", + " self.cost = numerator / denominator\n", + " print(self.cost)\n", " self.optimizer = create_optimizer(self.cost, learning_rate, total_steps, warmup_updates)" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "WARNING:tensorflow:From :162: conv1d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use `tf.keras.layers.Conv1D` instead.\n", - "WARNING:tensorflow:From /home/husein/.local/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Call initializer instance with the dtype argument instead of passing it to the constructor\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", - "WARNING:tensorflow:From :247: conv2d_transpose (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/husein/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py:1735: UserWarning: An interactive session is already active. This can cause out-of-memory errors in some cases. You must explicitly call `InteractiveSession.close()` to release resources held by the other session(s).\n", + " warnings.warn('An interactive session is already active. This can '\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AssertionError: Bad argument number for Name: 3, expecting 4\n", + "WARNING:tensorflow:From :246: conv2d_transpose (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use `tf.keras.layers.Conv2DTranspose` instead.\n", - "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", - "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", + "WARNING:tensorflow:Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", + "WARNING: Entity > could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting >: AttributeError: module 'gast' has no attribute 'Num'\n", "WARNING:tensorflow:From /home/husein/.local/lib/python3.6/site-packages/tensorflow/python/ops/nn_impl.py:180: add_dispatch_support..wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use tf.where in 2.0, which has the same broadcast rule as np.where\n", + "Tensor(\"truediv:0\", shape=(), dtype=float32)\n", "WARNING:tensorflow:From /home/husein/.local/lib/python3.6/site-packages/tensorflow/python/keras/optimizer_v2/learning_rate_schedule.py:409: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Deprecated in favor of operator or tf.math.divide.\n" @@ -481,72 +504,485 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "((2, 168, 512), (2, 168, 512))" + "((1, 161, 512), (1, 161, 512))" ] }, - "execution_count": 8, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "batch_x = X[:2]\n", - "batch_x = tf.keras.preprocessing.sequence.pad_sequences(\n", - " batch_x, dtype = 'float32', padding = 'post'\n", - ")\n", + "batch_x = X[:1]\n", "logits, targets, neg = sess.run([model.logits, model.targets, model.negatives], feed_dict = {model.X: batch_x})\n", "logits.shape, targets.shape" ] }, { "cell_type": "code", - "execution_count": 9, - "metadata": {}, + "execution_count": 11, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { "text/plain": [ - "(array([9.9999988e-01, 9.9999940e-01, 9.9999964e-01, ..., 2.6822090e-07,\n", - " 9.3168133e-08, 1.5860121e-07], dtype=float32),\n", - " array([1., 1., 1., ..., 0., 0., 0.], dtype=float32))" + "[]" ] }, - "execution_count": 9, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAEyCAYAAABwPtZnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9d5hcx3mn+1adczrH6Z48gwnIgQRJBAJQehStZNOWkySnXa8tW/eurLvXXlu21/Z1uLvSrsPaXlu2bMtBu7ZWwbIkk7qSmCRRAEgAJHIGBjODyblz9wl1/zg9PTMIIikiDMl6nwdPn1Cnqk43ps75qr7v9wmlFBqNRqPRaDQajUZzO5B3uwMajUaj0Wg0Go3mlYs2ODQajUaj0Wg0Gs1tQxscGo1Go9FoNBqN5rahDQ6NRqPRaDQajUZz29AGh0aj0Wg0Go1Go7ltaINDo9FoNBqNRqPR3DZui8EhhHi7EOKcEOKiEOIjt6MNjUaj+W7Q45NGo9FoNHcWcavzcAghDOA88FbgKnAIeJ9S6vQtbUij0WheJHp80mg0Go3mznM7Vjh2AxeVUpeVUjXg08BDt6EdjUajebHo8Umj0Wg0mjuMeRvq7ASGl+1fBR68tpAQ4gPABwAMjB0REiAABcKyULZdL1g/FgqC61JpD2LlQTgKkS8t1oVSChEKoipVhJQoz1vZnmmiHGfpQDwC+RLCNMEyUeXKiuMqHkGWqyjHBcBLRQCBUaqhaja19ijBGRsMuXQtIAIBVK3mbxsGGAYohXJsWFxMEgJe4MqSMAzsdAhrvgKKxn15yQhyvgiAikcQ+RLCNBr9BcgzN62Uan5BDWk0rw6ed3y64dh0q3kRYwBcMyZ+p3KG4Y9n1dpN6xdSghD+WFIvc7P6hWWibOe640sFWBrXXgR6bNIAZLNZ1dvbe7e7odFobiFHjhy54fh+OwyOF4RS6hPAJwASokk9KN7snxCAAzIawSuVlo5V6xcOg/vGBzCeeJa5f7uX9N8dWFlm8QEo/MPGxnWIXAFnbBwEGFs3glK4p8/7ZVzw9t6HfOoowgqgCjVkLIpsaUZNz0JrFvfCZViAqZ/fS9tjE7gXLmOG1lB8ayvBRw412pIRv89GcwZ3egZjbb9ftrsLZ/gqCJChEF6l0rhGWAGUXfMNItf16ygWG99T9e27/DaA6rt2EX7ytH9+wb9Hed8Wapkw5mNHwAUjmYC2ZtTYJF/L/e3grf7dNJpXOjcdm14KiwaGNMCrTwqIF3G98wLLeyyNlTcrr1g2+fE89b+Qdl/gfSyOdQjBo95n9dikobe3l8OHD9/tbmg0mluIEOKG4/vtMDhGgO5l+131Y8+LME1kJIKbyy0ZG3WMjeuYvy9L+ulReOJZALL/chr3RhUtwz13ceX+qXMgDcy2VgiHcAYGkU8dBfAfhoBXLOJdLmKk076xUaf5Lw402nOuDLHwri5altW92Gd3esb/vDjglx2+2iizImZGGg1jAyFBOXjFIkYiQXXXeszHjjSMDYDgw4cQqeSS0QJ4R0+v+BHdXA5yuef5VjSaVy3f9fj0klj+d3/N6oaRzVC5rxfr0SM3vFRu2wQSvONn/fKJBO6mHnjmBN7r7icwNE1xSxuRwQW8aNAvMzmPNzWD6OtGCUGtJUpoYBo3FUOWqpT600QGF6BmN8Ypcf9W1HOnGtuYEnXoBMbGdTA9izszi5FpQhVL/viz5148U2LNlvDCFsZ0DlUsIaIRVCiIk42hTIE1nkdZJk4qhDW+gAoF4cTt+JI1Go1Gs1q5HQbHIWC9EKIP/0H+XuD93+kCYRqYa3qgZoPnIdZ344YtqtkAsqoILNRY6AojHcXpj7QhIlmymTzW3zUxdb+k60mbgR8SRC9bJC97LPRLuh7NcemH4qTPQPOjg6hkjPzGNKGpKoHReUrrs8xuDiDcTpQJTghiI4rouE0tYWBHJInBCnPrNjG/ReEmXPo+qxCOYvT1QZywov/zec7/7Q5SR4LM32PT/YhgYpfB2n+axUmEkI5HJRsienKM6roWAiMLoBSiXEVVa4hICLWQQ0SjqHwBEjHfPaslw8BPQM9HeshVghSOZ3DWVEjuDyE8yPeAlReUuh2ajhnMbndpe0oSv1LGvDAK1SoEgzB5G35djeblzYsen24p3vVTJO70DOGTJouOS2ZnB87IKEamCXtLD8bYPKJqIzJNzLxzI8nLZabuixBatwfpwEJ/F+FZF5TCmM5BuYJKJ5CJOJ4hkPkygWlwBgYxuzpxro4QPAeidw3O0AhIAxmwcKIW5n1bcKMB5HPnce9bD/u2w1wJe/MaSh0biA8UmdwZo+0bM7BQprSpCSdmERorYHc2YQ15qFgE98xFrFI73uwcbrGIDIWQlQre4iqHRqPRaF5V3HKVKgAhxDuB/w4YwCeVUv/vdyqfEE3qQeNtN3wYL6v05j7JwSCqWr3u+OKD+8VipNO4c3NL9fT14AwMYjQ3405NXV8+kfBXFpYfSyVx5xdWHss04c7M+m4VcNP7XXwpWMFyV4zl1L8XI5vx3b9OnWucelR97ohSaud3uleN5tXGixmfbplLlWYFemzSAOzcuVNplyqN5pWFEOKG4/ttieFQSj0CPPJCywtD+rEHAcufnQcQkuoD/YQGZlD5Im5fG+X2MNaHxrl8sY3USZPiawvEvhEluKCQtmJij6DtgCLfaRCe8VBCYFbXkDw5i5MKY5RslCnBVdQyIaSjKHQGcAMCLwAoaP32LIX1ScLjFTzLwI6bFMOS4js7yR4vM/5T61EGdH5sP6UfeJC5DQZmCRDgBkDa0PHELF7AxCi14oUt8MBJBTGvzOBtXkPg0ngjsBxpQLWKcl1EIAABC1UsMfjb+xAKfuw9j/Ote0Oc/4sHQMGmjxcZ35ci36cITwpqCYV0fSfq5qMOUWsLolhBFErw4m0tjeYVz4sdn245yydP6hMJ14pamO1tftwZILdvRgyM4OZyGK0t5F7bR3DOITg8x+TrW2k+PI+SEuF5iHINLxnBDRpYEzlqnSkCxwbw1nYir4whYlFUMAAzcw3XT6O1BXdiErVvO9bILG5LCnXohO962t1B/r52YmdnqXYlQYE1V0G4LhP70rQeXEAUK7gXLmNs2UC1LY4blkSu5KBad1FNRZEDo4hwGAIWzsDgdxVortFoNJqXL3ctaHwF0kCkkyjLxG6O4cQsKk0G4Umb+Z1tCFdhVjyGv8/jofQoP/z6Ixy6r4/Tc62M3x/EWDBxox5btwxxKtmJGamSmw9A0CMwahGajhOcKJDfmGLyAYnwQNYEwVko9PpPPrMk8AxF7V0ZUhdcZrdEsWOC2IjL1H2S73nHIY7OdFEYsDAKktxX1jI1V0UMhdn07gs8+9xattw7xOnBduzjEZQUzOxLYOUVbgjsmKDNa8KcKVNb1441No+wHV9VKxpBBAOofAEhBKSTpHZN8rN9T3Gp0sJvXn6Wf/epfbghxeUfTCIdiKyfp9QZpLt5jpHDHbhdFThq4cSDyJCJcZd/Uo3mVcc1geEyHsfL55HxOMKQSyueQgIeRjzuq+uZZmNF1exdg3NlqGFsAHjHzgBgrOtDxcJIVxGcKKBGxmn9Wo3q2hY8UxAaySFyBWprUgRmKqiRcYwLl/FME1m2oTWLnQojSzaGHcdIJRCVGpgGxub1MFfCGRyGwWFkPI5MxFGlCmbZw4uHMMoO5mQOFQqS25yk/aujoBSTb+qkeWoGRicwT58nEImgDAPZlKKyrgWzaONs7MacK4GU/sRK5dovT6PRaDSvZG6LS9WLRbst3B6024JG89J43rFJXCPRJCQyYPly2K6Lcr26JHZdftY0fUOkUEQm47jTM4hgEKMpvcLIeKWyuJqixyYNaJcqjeaVyB11qXqxCMNAWEFkKom9vgOzUEMUytS60gSODaC6W5FT88y8uZfUTw9z8bluvIyNORogOCtIDrhM32sQnAP39Qt0/z8ul96fxigLuh4rEbg6C65HfkcHxVYDs+y3mzkwweTrWyl2CXoeyVNt8hVegpNlhOdR7ooxu8micE8VMWdBcxXrUthvJwQocMOQvOBRbpbkNjn0f8YlMFmk3BPHLLoIpRC2hzldoLS2iei5KbzRcZTjIFNJVLnif+YLACjHQXS1c+7/aEYJ2L3zPE+fWEfylIm0FZWMQDpQbvPwkg7hRIXI/xcnNuLgRCRWwcXK2ZjTeT+fskajuSMIw/AV56T0xSGiEaRloUpllFLIaAS3qxk7bOFEDJQpcELriF/KM7cpQb67n+K2CswHEE1VDMvFND0q41E++rZPE5VVQsLmRKWbJ6c3slALMTiW4d6eEU6NtKOUwDBd1EAUO+FiFA2CcwIUlHocMD0QEDsXQEmwYwo76SFSNYShSMZLNEeLJAIV4maV92QP8x8O/Sg/ufVpFpwwpxba+f62o1wotzJdi7EmPMvB6T7OX2xHRh1iR8J4JggPQtMKJcGJCkIzfrvBBT8GrdCxFj7xubv8a2k0Go3mTrIqDA4EyP41iLkcwlWUumMIJ8rcBou2J+eoPbiO0vY00zsUuxOT2NsNZosRsn/t4vzWHBNPdqKkori7DOUAl94XInkePFNRSwdQVhZZ8zALLuVtJtFRhXDhyo+2EZyH6FXFuZ8Lgi1pes7AyppEx2wW+iwqzYpQrEpZQX/bDMWmAADlmkXTx6Ns+N1TfP3QveB4RK+YXPk+ybpPB/zEhI5Hrj9MJSOITISJjNu4TTEMO4sqFBGW5fs1O44/IyoFwjJBCKyOIrWxKH/U/SWGO4L8WO4XUFL592UJ9u47wX3xIf77v76bzPuGydWCRH4/hR03sAoCFQ7c5R9Vo3kVsGyFWDnOyuSi10h7e/k8jE8ggcW/ziB+6oz4UUhl/fw9DZWqZSIVf9/5GlSpDG1Z3LMXMTbECV0dY31xkDKwfksSJqZRNdt344pEEAELTNPPCZTNIILBlSIaNxCiUPgpfhaAP7Xupc8+xlNWoq4sNco/B7vrAh15Jtu6YHKMzekSIhYFx8UZGW2IeAgrAMpb+Z3U71mj0Wg0ry60S9UrGO22oNG8NF7q2LSU6HMpUHx5sk+jvQ0MiSpXcCen/JWRegC52dWJqtZQnc2IqxPU7ukheH4cVbNxp6aWDJOtG2F6DpUv+LmAbmBIGOk07vw8CInZ0YY3PbPCQFpu3JjtbTjjExjZLN78AsquNZTzjLpRBL46oNjUj3fszHVB7w2EwFjXB9NziHQS5/IVQI9NGh/tUqXRvPJY1S5VGo1G87Jm0aC41rBYfAlXqh67UUDZNYx02jc08nloyaJiEcyAv+7hpWMIoJYMI586Sum1/VgtEUIjeXIPdlOLSqxyP9JRqN3dhMcrkGjHnClAKoIyJOZsEScTxTx9BZFO4SUiiLWdyFwZ5/wl2H0PsmQjDIGczeOOjSN2bqPSEkYt2JjRMG42Ti3Vi7VQg4kFam/fhZWrsfDODYSnHeyYQerwONW37ADADRtEz0zB5Ay0ZlEj4/73kSug1rQhFoq+4tbQOMzejR9Jo9GsNmqOx5HBOfauzdztrmhuM6vS4FhUagEwu7tWZOq+UX6L52Nx9u1G+TK+G8oP7Sb8xWdeUh2Ls5wyFALAq1YRhnH9LKEQyO2b8Y6eBkDet6WxrdFoVgmLK8XLXayuSXDn5fON7eV5fphfwGhtwZmY9F/Qh/06ZP105AtP+9cA8ckb5wICYMsGOHwa4bm4gKhfw7LxsrHu8cwJvMV+LR47fJIgIONx3HweLkK4njvIAQL11YnUfr94EHAAq37cWl7/8nG2WISJyaV2NBrNqx6lFP/87AiPn53k4RNjPPwLr2VrR/Jud0tzG1kVBocIWBjRJJgmIh7Dm56l9vZdRM6M+9lrAWyb6bf2k+8VpM95jH9fldDpME5U0f6UQ/T0OCoY4NwHm+n+mosTlUzslHQ9YRN66ozvCtDdgjx9mckfv5fmZ3LM3JcgczSHLFZwz1+i/NBuYufnsFtiVDIBIqNlqk1BBh+CDT93iEv/bS9djzss9JpUf2IvxU5B50f3c/4vdxG9bFFu99j00QHczizi/BAylcRLxvBiAcyRWdxsElm1cc9eQiZiiHAYb24emUrC3DwiHoNqFREKcf7/7scNe6z/0NOc/8UgiYP7aPmz/ShDsPBjeyh2SuyYIjYERhXCMw6RQ1caLyMyHoeXbltpNJrn4zskJX2huBOT/ka9nmuTj8p4HBGwKD/QQ+RsCBWLIEoVsJ1GklD39HmM1hYoV/Cq1ZXJUBcThDY3Q3MaNTzmx3pEo3jF4ooyXj5P+ft3E/6XZ3BnZjHbWv1YkOYUxtg0zvgEMhRC9HWjro7jbF+LUXEQNQfv+Nkl9y2lEFYAYUi8SmVlWxqNZlXgefUJDimep+St5XNHrvIfP3e8sT9fsu9o+5o7z8smhsNY14d7ceCWt33tisniysO1FH/wQaKff/oF1dnw277Z+UgEr1Squ1zYz/uyYmzduCKD+AtF+0lrNC8NHV92e9BjkwZ0DMdq4N1/+i1OjuS48tF33dF2//Dr5/mTxy409v/XzzzIa9Zl72gfNLeHVR3DIaQEYWAkYiCkr3DS24V7+jzy3k3IfBmnbmw4b96B+diRxrY1X2FuS4LUpw5g9vdSXdPEQl+QxFCN0OVpP6utNJDRyAqXBiObwettxz18cqkfVgDZlALAnZppBF5e/the+n/lQKNc+aHdRC/lYHCEyms2UYtLEhfyS65OUrIcI5vBnZnFiMfxqlW8UgkjlUS5HtQEMhzCK5Z9VRnXBcPg8q/dS2wIsn95APfUOfI/uodazJ+BSF+soIRgZluI9senYWYeZ10H1tg8zsAgMhxG2Q5cbzdpNJpbRT0HR0MO1zD8pHYBy/80JMo0fAU6wEuEwfOoZsPYMf9YOSvxDEE1DcoA6YAXgNA0KAHlNkXmuC8xW00J0udryKqLdWEUqtXndS81Ozt8qe1QELsrQy1hASBtj3KzhVlR1OKSpqNzXPn+JrInXQptBsJTNJ2rUmoNkP7WEF46gcwXcUfGkL3deFeGbxwkfu1XVHdnFTu3UUsFyfUFyPcAv65lcTWau43jepwc0a4QmjvDy2aFQ/Pi0bOIGs1LQ49Ntwc9NmlAr3Dcbb50bJRf+KfnAPjHn3mQfXdwheHaFY43b2rhb/7NrjvWvub2cbMVDnmjwqsds6vzu7rOSCT86/t6bmV3/Lq3bPDr7ux4/sLSWLl/bbbiF8HtuBeNRvMikYtJ/wwQAmGaflbxUMhfOY3HAV9KVsbjGIkERiqJ2dmBsXFdoxrnTTsQO7ZitLZQfecu5L2bfEWrZRjNzYhd98Due/Bed3+jvQZCIO7f2si9sTheLo5/jWLWslw9e+7FWNeH2d/rx4Esv7W6sIW8bwv2W3b449WyMWyxHrOvB2PrRmQodF0di22vaFOj0dxVas6SlMNffevyXewJPHZ2kvGFm7uia17+rAqXquu4JghTxuMNdyijtaURJNkofo0G/KJm/LUsKlS5w9efe6m4p/203isSa92MazTyX0rAqTMw+F1fq9FobhGei1omw7Q4HjU+63FhwjQRhkTVbEQwiJfLw8ysb5zEovD4EdzX3Y8olQlNlpGzeVRzE879/Uw+EGTN/7zE4E+tJTypqDQLAvMKsWEP2WdzDPxwgvgViEx5GBWP0vYNpC6UoWIj2tKUMyHCR4fwuluopYIoQ2DlbGTNQQHC9ShsbUW4CrPchXAVbthgdmMA4UJ0wmXk3Q7mW/YQHRXYUUgMepSzkszJKvlmCyckaAqYVJvDmPl2hFLIQg1RKEEuh9HVjptNwDPapWo1IoR4O/DHgAH8tVLqo9ec/yPgjfXdCNCilErVz7nAifq5IaXU992ZXmteKSjuvseN5vaxagyOxgxYxp/Nc1MxZKWGFwshp3PIRBy3Lc25H4+z6WMCZ3wCgPOf2EXf5xS5HoumkyXmNkeITLoEepsJjMz58rpKIaNRWLcGMeKrwVS391JqtagmBMkrDnZUEr+UZ25bgsRABWtoGm9mFhGwsO/px4maOBGJUfYodJm0fn0E58oQI7+yDzcIVhGCswqzqkg/M4EancArlbDfsgPr0SMNeV+zqxOVy6PqajCLWXnBn/1UtoMRi3L1Z7dRTSvav+1Q+dAcyXdeXPF9uW98gKGfc+h773Fm/t1eKllBx1MljOOX/HqtgI7h0GjuNtfk51ih0nRNJvLFeAz5red8CdnDJ1mcRjHPQ8fjvgxt58cmrmtGAX3PrTwWXHYO/OzmLsDEpK/8d815BwhdM4EhgdavLe1v+Pz1t7i4bhJfVt/y+j2WpHedgUHE8Kp57GiWIYQwgD8D3gpcBQ4JIb6klGrosCul/sOy8h8C7l9WRVkpdd+d6q/m1vLEuZvIbd8mHj7+AiZnNa8oVs3I38iPsUy/fXEdoLF2MTLKuiPL9oENHzgEwGLKmKal2O4V5bxiEY6daeybj82w3MEggP9QTB695tqS/wIQqJeBJf15gM6P7b/+XpZtW4/WA9zruUSuXXlZLl25uO3m87T/wVK9wa9c1wTGE8/S94S/nfmbpZtefLDfSGlLo9HcQhaDxk3/9VoYEiwLPA8RDvnB4p5CxCKoSAgv4A+3wvOotkaRNf+vtdgRwKgpim2+m1L2aIm5zWFcSxCa88j1STq+WeLSjwRJnjUotStanvVwA4JA3iXXY1Jqh+7HKuS7gkgH7IggPOdSi0rMisINClD+8VK7wA0rwuN+//N9Ht2Puf75mIFwFdJVhKZqFLpCBBdc8p0mdlyQGHIpZyTVlMANwJpHFpi7J0Fo1kXaHqGRAsJ1qXYkCA7Po8IBatkI1bSJkoJimySQU/C3n77Tv5bm+dkNXFRKXQYQQnwaeAi4WeKn9wG/dYf6pnmFcWnqeonsTx0Y5Jffvuku9EZzJ1gVBoewLMw1vQAUNzUTGcyB5zH52izJyzWqKROjqhjfY7Bm71W2psY4ONHL/OFmnKjC6CoRDNq4rsQ0PAKmiyE9pk9naTuoiF/M4wUMqpkQCPAsQanZoNwsKK2tERiziIwJEFDJQPvBGvP9FrExF7PoIj4yxeXLrbxnxxEe+/s9tH9znrP/ZxQZcmA6iLQFXnuFlmwO+59byBwrNNoqtJs0nS1TaQ5g5V2CVxfwIkGMsWkIBlCV+uqGlP52wEIt5Ki+fhsf+NPP8+sP/yhr7hkjbNqcudyBKBpk+ueYnYsSiVWpnUrihhTCFTQ/q4gPFJFVBzk5B3oCQaO5fdRdIReNe+UIqNm+y2SptJRxfD6ADIeQlgmui0inCJgSWaiigibJhSqyVCX5VB4Vi+C0JklequFEDOyoJHnJwzo5wDqvF3O6gBoawatUMNtaccYnaEskUI6D2rqWzJMT2D3NGIUqwnYR+RLe3DzCMqGzDTGfR0VCkCsgQkGcwWHa6zk+aMlQ2OCvMMuawrMkqaPTMD2LUe0leGUGtylG4tk8Kl9AhMOgFJmvTuGsbUfsP4ZIJcEwCAwMQzKBLAcIzeQIFkuIRIxkJISo6MmQVUonMLxs/yrw4I0KCiF6gD7g8WWHQ0KIw/jzcR9VSv3LTa79APABgDVr1tyCbmteKfz5k5e0wfEKZlUYHMq2cS5fQYZCBC9faawQZM74CgaLnez9V//zDFD+cAs9f3z96sJykvhuSB5+4GOwUmnkwAg/T5+al+88ChsY4kymidaZ/XjAhp+F2vfsJPDVg9dceQlYcmdY/Fxs77pVm2tYdLGyvnaYv93Uyzp1sHHd5s1R3DMXMNvbaBo7f9O+L3dh0Gg0dwilQLlL24uH7Rru8hXH+QUYWLkSunxbXPTHPBMILTtvnhxAZJsY++kHCOQVlYwgPtyL8EBJ8ExBaqFEsSuMHYkQnnGJDBiQiuMFDWSujErFYWIaEfSNDbFzG+LKGKSTICXRr59EuS6qWsXYsoHpvc1Ex1JYOZvRd3bS+nSO/H1tWHmX0OVpRt/ZiVlWOBFBeM0ejJrCyjkEp0p4UlJaEyU8UcGctPCmZlDjtZUJCTUvV94LfE4ptfy/bo9SakQI0Q88LoQ4oZS6dO2FSqlPAJ8AX6XqznRXcyPubKo/zaud1aFSVXdN8J7nQWS2tWJsXg9A2zXGhtnfe3353qXZk8VEfN41ftM3bau97bpj7szs0s7uewh89TBGNtM4JO/b0tgWweBK5ZhrkJFIvaBYKm8FGg9j5807VgaT77mX8Tf4knUqEfvO9UkDEQxeV0aj0dwhlivRCbHi79Fsa8XsXYORSiIjkcbYZSQSGNkMRiKB2dON99r7MNb14bx5B/n37mH6PVsp92fIHi8hHUXHk/MA2FGBkhDIuTiZGMFZm+ZvjhEeK1FeE8eNBxG2S6UnjZMMoTqaUY6D97r7MWYLuP0dMJ+n1JOg+NZteDs3U/qBB6m2xfFM381KBSTRcReZKxOcs5GOR62ridioSzDn0fp0ntQTlwnO2QTmqyhTgimJjJaRFQc3GUVm0kvjlGY1MgJ0L9vvqh+7Ee8F/mn5AaXUSP3zMvAkK+M7NKsQbe1p7iSrYoVDCIEMhsCy8PJ5jEQCkUljt6cw58vYTRHckIEtBYUOC+djEts1qJ5J0vPVCtP3hDGqiuKPd5C66DGzTSAdiIxCeLaD5BOXQAqElHiZFIX1SQCMmsfsRovkgEstLkmdLzK5M0br03lqQQM2tFNpChAZK3PhgyahCyESVzzft3rBQ3U/iHQV09s2kj3hkO82Kbx3L/2/9gyyuwMVC+OkQgSuzlFemyE4WcaYnEPVA0eNQBJVs8EwULW6io0VQCbjzPQGKP36Pswy5Nc7bP7Vc7QW2im/axcomP6Bfaz50jSX3peh74t5ODOAjEQQvV3+C06uCEN36xfVaF5lSAM8tyH8AL663uKkg4iE/b91KfBam/CCJjIZxW4KY81VkNs340QCVFqCxPYPoCwTa6oAQDVt4pkwtwWq6SDpczbBBZdiT4zE2XmK/UmKrQbjewWZYxGi4zYze9swK4rE6VmwHRYeaKUWFQRzJm4gTDQTYX5dkEBnG6FZh+ruXoSjkApKbUGsgkupzSKY85MOVjIBAnmXcm1LBzIAACAASURBVF+auY0BpK0IzisCBY/pTSauFSUhWrFm6hM6UlJLBlCmoNhqERupgSEQqRj2jn74ulapWoUcAtYLIfrwDY33Au+/tpAQYhOQBg4sO5YGSkqpqhAiC7wG+K93pNcajeZlwaowOJTn4VUqCKV8v+Q1LZgjM4j9x2DrRgIjcxQ3tRCcq5L+2mFGs/vo+P39lN7zIPP9IVr+x37Mrk5m3tBN4h8PNoLBjeZm3Kkp3x2hswNnbALZkiZxbILixmak7dH+h/5KifGOXRizRVr+x3FkNkN571pCX36G0BvuJ9cXYfNvjeJcGUKYJjM/sYvZjQY9f3WOqz+5ESsP8eMThL84SNv2zRAOQb4IV8cItrfiDAwSKVdRxSLO/AIyFMKr2RixKKpW86Uz6y8sRioJrVliYw6ZvznEpT/Yw4YPPuO7XMwvYDY/gPHEs0Qze3FSYdqecbn0I3HW/UM3slDCOX1zVyuNRnObqEtdL3cXWpTyBmBubml7wlfK8/C1RxfdHwW+66ULMLWkGBO9OABA8gbNukDolO96lVl2PLDsPECsXsdyMk/c+FYW12JuljGj9asr97u+TCPPyPJ7Xny4pOqfiusVrDSrB6WUI4T498BX8f9rflIpdUoI8TvAYaXUl+pF3wt8Wq3MGrwZ+EshhIfvOfHR5epWGs0rkYlchXjIJBJYFa/Sq55XRabx5Xk87gYr2r8mx8jtQFgBlF3T2Xw1mpeIzjR+e9BjkwZ0pvG7zeeOXOWXPnussX/lo++6I+16nqL/1x654bk71YdbQe9HHuberiRf+vevvdtdWVW8ojKNv1juprFxXft3wMDTkrgajUaj0Wi+E/mKfVfa/dcTY3el3dvB8asLd7sLLxtWxTqQMAxkKAJC4BWLmG2tIAS1de14AYlRcnCiJtJRXP4hi+xhSdOxHJd/JEHfrx5g5mf2YpUUyfMFxJkB7F0bufRjBj1fgOAjhzD7eqBcgUgYb2oG9961CNul0Bsl9pmDzP/kXlL/cACxcxvq8EmMjesQxTLze7uIf+EI5bc/gBMWxC8WGH9tEqGg7VtzuJEA1sA4zvgERiqJu5BrJBkUnW2okXFEJIJqz+Akw1iTeUSu0JDCVbUaSIkIhfDqSb+E5f8kXqnE8H/aR++brzD8cC/dD/suFipoMbUjSeZvDjD3U3vJPnwed3oGwHfH6mhFLBR8N63xu/BjajSa7xp57ya842cxNq7DPXfxuvNmXw9OPTmf2dmBM3Jj7WsjkVjKbXQbMNvbcMa+wwBzB1ZyNRrNS+O3v3x3vN7KtZvpdGpeyawKg0O57gr1qMUs4nJsvLEEs+j3u/7J+jUsZdbN/PWBxjEFGE8+y4Ynl+p3rsmeK77tZ/eLPePvp/6hfv3hkwCNB33ssyMoIPSvzzTqb6236eH7XC/+2SxmCYZ6ksHzdTXAYhGmppCslL5cwbIVkOWrE92/tx/396CD0RXXZurJCdN/f2CltOb8gi+5qdFoVhfLXsAXpa9vWGxoDCPT1BiDZDyOVyz58V1bNjB3TxPpcsVPMOg41N6+i+Cjz/k5MXo6YXAEYUi8vi7kuQHY0AsXBhE9najBEURnGxjST8x3dQHv0hWU4yBDIWRzluK2diIHLyKScXA9VD6PqlRxH9iIcewiMtuENzuPMzZO+aHdxA5eQUQjuCNjyLU9MDaFSMZR5QrCslC2jVuPWdFoNJrno1xzCQeM5y+oedmxKgyOVxpmd1cjs/i13PBlox4wft2nRqN5eSEEwrQQhkS5HkgBnkK5LsIQyGQCL1dARiLIthZQCjWfQ6QSeNEwVKqU1mfJ9WwkNKeIDZWZuj9KYsjBjknCkzZeNo2TCaOkQNY85n90J9ExG6PsINetAc9DFsqIZALXEIj1PVAoU9uzCTtmUGoxCOQUnpnC3fwARkVhVFycsEHo8eNM/NQDBBcUtbggcaXGzNYgRlVhrb2XWkLQ/qkFjC0bCM7UsNd3EBidx2hK4yRCkOhGVhxEwMLOxjDPDWNsXAezC7hTU8hIBLWxD57VKlUazWrj1OgCWztuJE9x5/jBj+/nkQ+/7q72QXN7WBUGhxACI5tBJOJ4o+PIdApnbJzKu3cTOzmOCliU+5sIH7nCmd/tY9MvnuLKL20nOAsIqKag/x+uMvaOTgJ5xcQ+j94vethxg8TpObwLVxCb+/GOn8V+206srx3G7OnG7mgi1x8mfSrH+GtTdHzhCgt7uokOlzAGxnGnpmD3PYy+Pk6xx0WkanR9xiI4W6PQHSKw4DKx26LzGxWMbx6j9NBOCh0GLX+235e5TIQwyjZyYBR3ZhbvDfcjv/Gc7/pkGCAEqlpDVap+pl/DQFWrKMdh/P/aR+enznL2NzdgFQTJuvhU8lIZa67M0LszBBb8hFuFtS5Nz0oyp4rwzClkwELEojD1Hb92jUZzqxAChEQYBihfqEcE/HVZ5ThguyjPz+UjTBMMA+fyFYzWFlS1irtsFTZ4cWBF4tGWA2C0tjRWChZlgBZZ/nqwuMrbYGy8sW9eHMCEmyY9NerXZj9xYMXxtkdXlnMBTucafWg4R9RdrBZVt+RlE9dxYGZ2ScWqVILnTt2kBxqN5m7yy587zsO/cHdf9k+P3T5X0FvJbFHHyr5YVoXBoZTy4xBmZkEpvLFx5PbNhP71mcbDLHD+Ei6w4een8IDkRY/k/1rK8l343t00f9x/UCb/Jxjr+wlcuNxwORIDfv4i62u+IoYzOIwcGSN1CDzHoeWo/+CMft73iXapr1Q8c4KW2A7M3z8C+AkGnctXiNfrXfMVYPc94LlEvvA0EQBp4B074z+QzfpDF5Df8P2xlrtfLa1qBBv5OWQoRHBOceFXNrL+w/49GVs2wNQc3vwCrl2j85pn9nKfb6/iQj3RoUajuc3UjQ3w3UMBVKXiJ+CUwjc4VpSXePm8P9tfKMK6NchLw3jFIsaWDXiRAMbYrB/X1deNd/LsbXdLqnzvbmJHR2+6MvvdsPy+77Zwh0aj0dxKfvWfj9/tLrzsWBUGBwKMTJMfPN2cwjt6GpkvIzavB0+BFKighTIEgx+RtKVyVL4kmfj4buIXTNoOFim2GtTet4dih6Tjm3nGHowT2NOKVfaIfu5pRCSM9DxERyuVnjShoXmcbAxrZBZncBjvDfdjHDyNun8jRq6Ce/o8bjZJ/jVdzK+TGDv3UYsr1v6DH1+i9m5nblOElidGGNsRI9a+GzsiSfzTQVCen6k8HEIt5HBnZrHftpPQoUu4c3MY6TReqYQIBMC2EYEoWCbKMFC2g1KKqb0ukUET5007GH8wSNd/2Q977mX0desRHkTGPYqdkuCMovXxUfKbmwif82dCqVZxc4XvEDSi0WhuGUoBnv+5zPgQUvifpomMRVG2gwiHUKUySIFsbQbHxRsYwdvajzFXpNoep9xs4WyLIzwotQh4xz6azjjMbDVpPmZjVF3m1gfxTIF0FWYZIhO2n4xveI7ipizSVgjHY/zBIPEhRWjOT25qlT1CUzWE6+FE/RUYa6FKZCjP9Bu7gW6SF0qMviGKlQNlQPKKQ2DeZuhtIaIjUG0SxK4qrJJH/GKeQl+c8GSVYmcIJyRQAiLTDqHxEkiJMZ3DG5tAdHegwgHKXXF4WLtUaTSvVv73oeG73YWXTLGqX7BeLK+KPByvVrTWvUbz0nhBY5M0EJaJEHUDIxAAKRDRKHh1B6NgwA+kDgVxmxJ4IRM7GcAsO9gRk0KHifD8F/xSq6C8xiZx2gIBuY0OZt6g41su09tM7LjC6aoSPRlCSZA1KKx1iQ4aBGcVqYtVKhmLSpMkOuYbGoUuiVkEq6SQtsKsKKa3S1LnFcKFXK9ESag1eaTOCmb21Ug/EyAy5TG5U9J2wGX6XhNnS5Hot6JYRYVngvAgeaVKsS1AIO8hlCI8UsROhyhnLcLTNp4hsOMmqh4HWo1Lnv3kL+qxSaPzcNxlej/y8Ir9rR2JO+JSdW2717Lac3HsvzTN+//q6cb+au/vneZmeThWxQqHMA2MdAYRDl+3pG9sXId3eQi5oQ/31DmcN+1g7DX1XLgKOr9VJnB+jNyeHqJXS6hDJ5j64F6aP34AuX0z3rEzDXeja2UkjUwTlR39BL5xgtI7thM/4rsUFH74QWKffRq1dzviwDHM/l68RATv6GmGf2Mf3b+7f0Uf539iL7WEoOXP9lN95y4iF2dhahZ3bg6zrweVLyDCYV/xpWb7Ptz11Q+kRMRj4LpQs/3M467H+Ad3UuxU9D5SYfCDLl2fDDTcwUQwiNHZTq0zTbk1QPRzTzP3b/bS/I3R6xS5NBrNbcZzUTWPxckb4Ti+O1GusFIEYlGpatBXuAtIAxkKYvV2EfzK+YagRGtXJ87VEYz1/aiRcdpKpca1XV9+YV2K1v+Bn4U8FY3ilSu+2lU6japWSR7J4lwZAiCB7y5KzQbHIfNX/kqu2ddD/CvTiDUdxJ/J31AK12htIXDcQXW24B0/28igHqv32QCCoRAym0EVS7jLs65rNJpVQ33O5K5z/Oo893al7nY3bspyY+N2M5mvkI0GkXKV/DgvgVVhcKDwJRgLRYzmZlRHFnXqAuV3PED0/Cze7i3IqTzGuj4826Pc7pB51mD+jRVGvTDdxSyRkRITD8ZpOQTS8WM4Rl+fJrJ5D/H//TTi/q2omoORWE+tNY41X6HQGyM4ZzP94w/QdLrE2Lu6yZ7IEsi5lH7gQSJfeBojm8HNxJl4MM7Cv91D96MOo7+8D+FAqdMjOCMRHiSueIid25i+x2LNM/NUdvRjJ0xCUzWsCRNlGnhtaeRCCVGuohZy/kuJkJAvNHy/RSCAquTp/MIQE2/v5uJPGVAyGPhBwZZz3czu62zMVtZSUG53CW7Zh3AhsqWFSL7gK98US1C+uz+rRvOqQalGzIYw/WFVRiIopRDBALgeXqmEkc347pOz875wRHMTjE7AnntRnsKJBzDPjWO2teINjzL/nvtY6JOkLnkEci5m2cV44llmf3ovyctV8t1BwtMOY681aT3kErlawhifQ1UqqK5WKm1RqimD+JUSM1ujBIqK6NUK5nyFWiaMkYnjBUyk48HwJCM/sharoHDCa4lMuoSnbUq725GuIjQdp/jGXpygwLAVnilofmwYL5NA2C6iVPUnd9IRPMvAKNX8umuOH7g+Pkf1gX6MkgP7tUuVRrPaEKyOl9o/f+ISf/ETO+52N14wv/Pl0/zm92655fWOL1TY818e40NvWscvvm3jLa//TrMqDA7l+fKRqlhChILIXAnHcYg8fgq3WMQ0NuDW81pc/KXdbP5Pl/zZQKOHlk8d9eMhdmyl44tDOEDTyRIELNr/7gSiNQvxOO5zpyCdJvemDSQeP487N0e4ns+iZXojyjJoOltFfPso4UwT7swsRirpt3PoBOa2vaz/8EEmPrSP9HkHaSu6PzOKc3Vk6T6AbOsuyKQJHb5IqCWLe/4SoruL/I4Ooo+dgVAIZ2YWPBcZjforG54HrovyVMMtwxm+SuvXBOVsN10fPQBK4QCJwWESy767od/cx5rf2Y/Z040XjyLCYbyZWd+tQxscGs2dw/OVqJTjIEzTT7wnBOSX3FZXJOqTBizO9h/0AxBNlqk+AYl/PLji791obcEFmj55ACOdJvWkv4q69lABEfRXft3pGT+p6PQMASAUjeIVi2QOLslyLypdKfzVFlVvt/VPJpa6F4/j5fMNgQwZjZKoC1s07kcaMHzVzx0yM7vUT9NEBINY6RTe7BzCNHFyOYKlsl7h0GhWKSdGbn8er7uV3fyl8olvXuItm1vpb45dd+6T3x64LQbHZN4X/3ny3JQ2OG4VAvByBT/pXaXSSF7n1R9u7unzjbIbfv6ZRix09i9H8agrRx051XhQq4DEPXXO36mro5htrTjjE0Q///RSLHXd1WGx7GKqGVWzkaHQikR6TX/rq0W1/qn/cu8MDnOjXJmeJZYyBNevdYavEh6+6stF1vsjIxHfyHB9H2/l+S8lynEaD/ryxlY/WBww1vXhXhzAe8P9mE+fwaurUPV+cY7yO3bBVw757T//163RaG4n0kDUX7iFYfgGSMAC0/RXNKWAbBplCOTUPF5zCuF4KFOClOTXxYmMVZEVG2NkGmdNC+bQJHZ/G5wZ8gUoBucR1Roin8cdHcdoa8FtTqKOnAKlMLs6wTRQ5Qr2hk6QYM5XEI6HKJYpbWolOFGi0B8jNlSi1BkmfnAQZ3IaY2M/XjToJ1GdL+KlojixAKrmIjwFB49jbF6Pe+YCxsZ+VMBkbmuSpm8M4U7PIINB3FwOozkLjuPnHmlOYYz6yQqFFQCtKKnRvCr5j599fnUnxd2PLV5Oserwnx85y39+5Cznf+8dd6TNZwZm+ZG/PPD8BV9GrAqDY/l/LWGavnuRUhjNzX4ujOXnd25DHT7J6C/vo+O/+i/jzuUrAJidHVz8+R56f2Plj2R2dYLrYmxchyiUcEZGGy/w5e/fTaHdIHu8jPj2UWrfs5PAVw8jQ6EV2vfG1o0U1icxCy6q6CAGh6m+YxdICD7sv+xf+OM9rP/wwYZBYqSSeH1dCNtFnb0I2zdiTC7gXB3BK5f9lw/lIYx60Klh+FnX60bJzJYA4ZY9ND09iXvhMgCBoVnoaEOYBu75SzjxIKGvP4dR9/uW0SgiErnue9NoNHcIz/WlqZdTuqbMspwaXBMXEa2vvC6uOjA+gQOI8QlcfGnvFbU7Ds7gMAwuKb8sX3mVy9uqE7gyhAKiz/nthA8tray4Zy40yi22c23e38Uyi5+JY8uuryc2XRHvcYPYD41G8+rj6vy1g+HqZ/k76h9+/fwNy+QrNvGQdcvafPLckhS67b4yppJXhcEhTAMZDSPCTbhT0xhNaVRXK56UOPeswcpVMcbn/Bfqi8Oo7ZtpPlpj9Jf2UdhSo+VJi9m3l8l+OUTvbxzA7Oth6Ac7cYPQ8/A87snzGK0tlNamCY8GmHtrD8GcR7glQSlrIGtQbg3ivH8PSkJ44zrU1THciUmMdX2oaIjL70ljJzyiwyapSwbh3fcwvd3CykH+v+0lsCBY/+H9OG/egZwoYqTTvutAsAeZL1F6xwNEz83gpWOYsgs1twDBIF4uh5FOoWzbV7ERAtnawsT3r6XzoSvw8xGm/shEfmYvdgRans4x9vok+R0VNnR1Mv6VCN0no5z/0Br6/iWLvDqDqlR9eVz9jNdoVj1GNuOvDESj/upqOOS7Y1HPv+O4DZdSs70NZ2wcs7uLwvYOAnkb6+wI3uw8YnM/olTFaUkwtzFC89MzeEELTpxbkRPDrE9OmF2dfjzJfA53fh5jw1rccxeRkQgiGGy4PgnTRGaacCen/ImgdBoRjeC2pZEDo3i5Au6erUjbxTg3DC0ZVMgCpRBjM5CKIyo1vKlp7D1bMJ589s5/yRqNZlVwcuT5E/t99dTE85a5k7z5D55sbP/FNy7dsMyfPHaBkfkyzw3Nc+BXb63qqrcK1GRvBavC4MBxcecXkJUqMh73M46bElmoErw6CckYztURqu/cRXC2yuQO34eu4/f3M/vTewnPOASPRzBsFxEM4iWjBPKK7FNFRLGCbG1BpeIEHzmE7F1D+u9OU/qBB5ncGaX52RJmvop37AxmXw84Lk5nE9LqJr8thbQV1aSk+9EyTtSk0OHHWMhTl0l1b6PQYdD8bD2/rzQwHzviq7QkEr6a1Pg8yjIJf+VZ3J1bMCcWUJWqv5IxM4uMRvCKJVS57AeMux6iWqXUJnDfOMrrjlf49vvvY+h7BUYNKu0RohMelaEgU0+tofvzZ1l422b6f+WAH5AaiyKCAZT98vST1GhergjTbLhGClnPPG6ZDYUpYZq+y2SmCbct7Sf3a4rD6JRvBHQ0waGTqN5+jLEg7tQU7unzGNmMP55k0qiAhcxFUfEI0afOIeJx3K5mDCGopcOYQmAcvUDzTIdvPESjlL/nfkKTFYzhSYiEcYeuYmQz2N1ZSp0hEscMZGcrolRpGDRSCOT2zeAqGByBVAIjEcMbGvFzCQGiEsfZ0I2dsIhcmPZXmjNNiFIFUfJdPlU6AZ6H1xRHlEoY3zyG3LYJTty930mj0WheKEopJnLV5y33V98auO7YRK5COGCQeJErH1XH5c+fvLFh83JmVRgcSikQ+HEJlYofSDmwLG9d3T0o+IjvutSylGCcpk/67lOddVlnBaijp8nW3RIaddQ9DBZlIBtZwVlyNWhIytbjLeIn/d1FeckA0LTsmujnn26cu5bFGcrF9gA4ePy6uI/lGXgXZyHd+Rprftt3F/vWvSHgLF0nl64JQiOQ0wVin/G/EHd6BqZnbtIjjUZzO1Ge8uVvAVUfVJTr+kbH4nYggDc1jQwFIGChAiZ0tuAeO4ORjGG/Zjuz68MUupswS+txolBLegRyEjeg6Nw1ytDEBoyhEHY6RXjUJDgHbjBJYF4RGzXJ7d2OUYXI+iY8S+CEBYX2GOW3xAnkoRbvILAA0UmX2GCJ4YfaqKUUqfMwudfFzPWROaGYeL2LqEiC001UOm3MeRNltmCUBckLkBiqIv9/9t47TI7rvNd8z6mqznFCTw7IIEAEEgQIwJSVgxWcJFmSbVmSZft6LUteX69l667DWvajq72y17uyLXslWbLsK1OylSOVGEQRIAEiZwwwGEzOM909navOuX9UT88MCBAEiDAg630ePF1TfarqdDe6qr/6vu/3Kysy3RbpFS0EZpvxzzqYORttCoTSVMImwf4scnYOfD6MxnoY9co9PTxuN0cHZ2/3FJ6V8xNzrLpMg/at4h8eOcd9XUn6pnJXH3wF7v/Ij0hF/ez7P191Tds9dHxpecpyUQ97viyLgEOYJkY07v5hmqh0Frmy01VvMg3KzVGsqTy5FTEG3qCReQNtaRr2SWbXwaq/OsL4O7cw1w4NRxWxnixiaILsAyuRtiZycBD8PnAc0ve1EpiuIMuKfIuf4GgJO2wytsOHmYeWv9mD/qmtWL2j6ESU3OokWkK2zaT5Mwc587EtNO0RzLVLUgdL9L3JYtV/FOj5dYvk0xaxfpvARBE5Lwk5V5WKskyciB+hNPL8ELpcRsaibmYjGETN5Vw34kIBkYgz+po2pu91SB42CE0o0qsMUgdKzK72IRT4sprJzQInpGl7VOGfLOO7OAngennM5WDuNn2gHh4vQoQUIM2lmQ0pEUKgHQdZl3S/3+EQFMvogA9jeg4d8FF5zX3kogbaEIRHbWIX3Ygl32QRHi3jPz3M3LZOgp+zWF+ZQQd8lJqj+AcmwTJRfgsnbIEh8GUNCg2SUp1J4rxNcNIhOlfBOHgGtXUthaYAsqIJjBdwghaxfoX/cAU7YtD2I4Hj0/hnHTb85Yh73qqLYExlKaxpRJYVZrpEvjNMrtlH/GyW1BNFKg0h/KeHqKxqAaWxpgowOIrc0I0YnUDXJ0nvaMUoa0oxA/71Nn9YHh4vcp7uW95qcX/1rZN89j07btvxP/Y9V0zoXbu6rnnbH5wcY3t3EoDxbInpXJlvHhnm13Z11ZRIn43f+8Lhaz7mncCyCDjQGlUoVpWbFEZzikp9GHM8A9NpjFM9iDUriR4ZRb6lHnPCJN4jcAIQHhaofJ7gpCK9RjC9wSB+uMjI29bQ+uVe7JFRbEBu3QBaE5wsk2v2E+vNETs6SXprI4n9I0RTrdR//zzpX9pJaKTkNjyOjGK0bcPKlMk1RxArOjDykmKdoPVje5Cb17PmcwYzm2J0fcVmcpMgfHS4qskv0QODiPkG8jUrMXqnwFE4MzPVeu0yumKDckuqVKWCKhYxIxE2vucETz28kS3vPs5MKUT4pW5NY135Hny9Y8y8pJPgmCCzqULwa0/Djk2u/0bQD4WCOwcPD49bhlbaFYHwGa7HBkClgpbSlaytuo7rujjaMmr9FnbIIt9ousHGcJlci4/ArEOhzsCXU6RX+MnvXEnLk0V00MfkzkYS5wr4JnNM7WzCKigqQUnyeIaxXXH8aUW8zybbZpJrMgiPwuj2MKn4JjLdJsFJhVHSXHx9jNRBm1yzZHybj8hFQTEFLT8p4QQNht/USTkBdaccgn6TbJuFWdKoDj/+rENorIIKWJRTIQLjeezOFLJYoZwMoH1hdNNqREUhVrSiTIk2BMoEK//CaID08PC4eTxy5s7NhP7mvz7NysaF+pe3/OMeeidz3NedZGNr/Jr3d2Yse/VBdwDLI+AwDGRnG6JcQft9FDsSSFuRvieFP+0gnA6Urcj+UZb/tuK7NO+a5a8vvJbR2Rjlkslc5y62/9RpRi50U4xY9PxFjFTdKIOvSlI4uYK2H9v4x/Kk74oxca/APy2ohCNkVkWwMoKJe1qRFZhdtwozL8ingpirdxFIK+ZaDTI7FcYA+H5eEfsqlONw/q930rhxgrGzCYzGAutax5iZTXByXQtdXxYU6k0q4Q5CEwr7gTasvMYs1GOUHKypJkShjLDdEgu0xqhLQKnsauPn8rwieZpff/tPOFzs5PuFDUx/ay3TZ+vwzUoqv92EnoDGteO0BfOc/rv7kfUlGr7TgT+tMApJfDNFePp2f7AeHi8i5supymV06ZKa33x+wXOjWvYo/H7oKWECiy9BCdzm8MDIKMI0Cdv2klLO5OGF5cQihUkNpA5VJbeVIliVzgbo+Lr72Fj9W5gmnQ+5JZyBy7wU6zLr6564/Mv2s6DioqvbLmbe6yO231zSvO7h4XH7uJLaksdSys713bztnVgoxeqddJcvTuWvK+B4obA8Ag6tYGIK6pKgFL59Z3E2raQUlyT2j+AkoxTawlS+3kj2AwE+uu/tOFN+gsMG0TnIt2qePLgWbWmiZ01iFwVjb44ROBiiqdfBnKsgs3mCEwFCI36CE5roYAll+lEmxPo0hUZJYFqRPDJNoSOGsBVGSZFrCqCKBvGN09QH85x8oETXvxuMhiz8f1fH+gtT8y5enQAAIABJREFUTN3XwPmVKxAKrJDGN5PHzDkYebdxO7syTOR8GqRETmXcTESx6F58DQMRCqHGJxHRCJQr6EKBr43dw45kH49NrCHqK1L8cQOxHDgBcC4G0AbMHGpk1oFV3y8wuTVEaLSEb7aELFQQOc/1z8PjtrAouzjfKD6/LEOhWi8HDUnXK+PCADIRB9Ok0tGANTKDDvoRbQ0oy6Bc5yPT6WYmEgfGyGxtQpmC+GO9qM4mnJBJKWEhHBBK4wQkkYeOYXZ34iSjyFKFQkfMLfECKmFJcKyEmS1RbA67fiC2JnhyhNld7W5Jar7E9PZGfDmFLGnssERWNJWQJNpXPbdIgTmdo9QSwwlIAiN5tN9AOBpjYByVySLaW8B0sz0iX3S9QvZ7HeMeHrebuZIX/F+JH55cUMl6cF//s4y8Nn7n8wfp++gbrmvbvskc3Q1X6hq+M1gWAYeu2EtM9oy1qxB7jlC/p6rt3geBQ6B+8X6+uzFB49sCBCcrmD96yi0l2rdwATM2rMU5eZaVX17YvwwEcIpFrHMX6DjVWnP7bXgEEAKzu5PYwBDattGBAL4TxZp0ZOPjC3cFnVCIu+Iae2SUrkdcx14HSJzqIQHk3nI/4S895c5j0euLn4rWmsMV1FRralQdekXFds0PgfLPB3lsJojeVU8+XaD15J5nbreI1E+q7yVAMom69A6rh4fHrUEarreOIYGqGETVDNDJZl1jvNnZhYwHQEYiutqQFQdKZfIbmvDNlF0FqCfOYs2txBpOk9nShC9t4/ilax64/xjm1g1Y43OonguuCtbWDSAETmMc2TuEmssRyjRgDw5hrF0FK+uQPzmMAgI9IURbM05PL5VdW4j/8KxrUKgV8c+fx2hKuZK7G1YhJ9PoYhG1ohUcjRwYRTc34j/WjwgH0dOzOJkMIhzGzuUwGhthfNItl42EUcUSuu/GXbw9PDxe2OTLNiHfrf+Z+oX9y+88dWok4wUcNwojEceZTWPU14FlYjQ2IqJhdDaHCAXAUYQH8vR+ZBdtP7YpNFjM/NluOj/sqjmZXR1gO+S64vhPulrzem7ODWSkrGnd20PDGBvX4Zw447p2HzyHfeEiuTffT/RMGjE2BcUiOuMGCPqntjK5OUhqXwZ14ATq7lUMvWslXV8YxO7rR5gmpVduxf/oMbdeescmjAuj7o+NYACUck25dmzCHJtFz6TRto0qFJChUM1NXQYCqKLbx6LyeZyZGUZ/bzfGK6cwvlZPg1yPGBlHhELYA4NM//ouUt/vp/e9XXT+xZ5aoGU0NoJWqPydZ67j4fGCQDkgBapYXrJOlZTbr7ao1AlcHw6dL1BJRbCOX6SwbSWhc9NUUlF833ua8d/cRWTIZuxNzTQdKKClINNlonxxJt68G+XXNBzRRMN+Sk1BylEDseZuSjGJb+VajLKmmJCkHjHQwFyrSfj12/HNltH7TqB6ein9zHaMsqL402sIX8ig/RbZV60hPFJiZs0q6k7mQSQYfFUC5YPOb88w9ua1VMKC6EAcs6ApR1sJj5aZbfcTGSpTCkiCg1mkrdyelVwRU2n3pknvrf1IPDw87jzOj+fY1P7iKkH60oHB2z2Fm8ayCDiEZSLqkpiRCPmNLQhHEwCGX15Pw7ECuRY/uRZJOQqbX3KWT73zG3w6vYnvj23g/L9vxZn1sW79EKNf7ebud5zkwI7dOH6NmRdoA1r2lvFNFJj6+bWUkgJZBvmy3SAg/dYN7iQU+O+uIzSSJPVUA/0/k8SaAzOvmd2gKL5ScG9rgsniNPl+H6f+ooFoPEzFNijMCFZ/MMXG4EmO+jfQIgVznSHKYUHsYpmZ17cTHlXQHiLSG0WbEnNoEm07GMEAwu9HF4uYVQNAubabzk9e4C5jH/+18VEeWrOW/ZkV/OjpuzFyEmtlgkq5QMe7y2y3jvOTVfei8yb1+3cRmnSwsg6+yUY4cjs/VQ+PFxlCuJkN00SV3XJKYfnQdsXt02poQM3MLOljkKGQK2cNyMcO4QD+J0qIuiS+8zl0Mkn9p/Zi3LUGsxDFeOIYwjRpPhpi7oHVrPzcAHObWgg+dBC1YyO+mTKhpwYR0Qj2hYtUXrUN32PHiDWnsAcGMZJJUt8vgm2DZaFME7miE/93XclxfzIJhkR3NBP76iGEz0f9Y1lyb7mf+IFZ6k+GCT52Emfzahr/eT9iw2qcaABzJo+vMUwlbJL8wgFkIo6aTSPrXaUWEfBDsQQB/1KpcA8PjxcNU3PXVnmhuT3iN7dTc+f/+M8X7g+3qwYcQojPAG8ExrXWd1fX1QFfBLqBPuCXtNYzwtX7+v+A1wN54N1a66vbymrAcdCZLKHTEkplVC5P63dK2A1Rkk9MEFzbhLIkPdm13Lv2f8eMl0l+P4i/RVCJadSfNFB8LYx9aAX6FVB3UuNPOwS+tR+0RtbXkYj7MR49iHpgK74L46R3dqCFQXBKISsas2ATHHUzA+1/ewB173qsC6M0PhHl4ptTnP7uXaTXQecjNsV6g1IiQLCiSfXbyO8OMHnf3URWK8yBSWL5GOp4D3LTWlq+NoTdlXJN/2YzCEOi8gWEz0I7ypWwNQx0Lu+a/x0/S98O90fJz37gg9zzy8cYe1cTLZshMFVmZm2U0nrNkdFVNB6EcLMkOqCIf+f4QsNqKPQsb7iHxwuDW3J+uvokEIYBQoIUYFkYAT+YJsI03UxnsYQOB6EzRSkVQvkEQlHrqM50mtghKN6TR40HUCEHc9qEzgJ6eB1mZw6n14/zns3osgQlkMEK7aqFmbUmwZF1TG9wv/OVHetIHSgw9bpWmvammXznNkpJgRadmEVwfNC0L48TMsm8toPMarCjjciCQAU02q8QBYmo24AQYJgOulcy/PJm2r+v6f/AFoLjGmfbDuwgRAYVVqOPuWYDf1oT2LoOZSukFJTXtGKH3L4OaWvyzT5m39kOH/7S837bPTw87iz+7Osnrmn8yeEMm9sTN2k2Hrea55Lh+Bfg71mqnP7HwI+01h8VQvxx9e8/An4GWFP9dz/wj9XHZ2e+7AigaphnNNS7zrW9bh+HOeCmmZofgubqZnrXFpL/shANdu2pPj4G5ddtJzCcdS3hhcCZmsZ41O2VsM4MoeMRwl9+img4XCtrApDzpV2xGHrvEbeHZHSMju/6GXlZnJUfdA/iB+Ql2+qnj5MYSGGPjUO1T0QdOYU2TRgZxZYGMhhA2zZCCNRczl32+6FcQVhmzTBwnqaP72H44wBZImfOAdD48EJfiYxGiWezCMuHqpQxmlI44xNeSZXHi4V/4Wafn66GkGilEdXGLZXLI6t39JVTlcKtlN2m8UQc/6FZzM421Oi4K4Pd3kbkhIWennFLQAGkgREJU7lnFUYmC8fOoG0boymFCAaotLm6VUY2Q/jxEXR3G8nTBeyIRXAgg5hOkwi2IzN56o+6vSRyYJzilk6sTBlRcbCm8wSOzJKKhrGb4ognDiO3bkDMFdBjk+RfdhfKEkSPTeD0HEXv3oJ5ZoDQYAvpdVEiIzahPWcRdUl0wEf06Zwryz2bRXU3IwJ+zJkC5sEBZFMjTjJMtGgTHpSced5vuoeHx51Gyb42Sew//sox3r6j8ybN5sosR1OB5Tina+WqAYfW+sdCiO5LVv8c8LLq8ueAR3Ev6D8H/KvWWgNPCiESQogWrfXIsx5DKWRsobHabGleeLLaKD3fxL2YYspP8JJ92a/YhvnwAXwP7a85iMtIBJXNYnZ3Yvf140xMYKTcC7Z931qErRFPuFqTalU7xkWzVuZQm+OhE1j37qr1fwDMveZuQl+tNonHYtDejJjJILZvqimxGOtWoweG3TIK5SAb6rAvDqClgRGLoB0FSiEMAyeTwUgm3YbSak5vvrfjSoy+axOpv9+D2LgaWbZxTnpSdx4vHm7F+emq1NzFnYVVlwn4tW3XziuLy4ouPa/N79PJZJCPHVpyoXHGxgEQ1e1rl+/DaSTgA+ZnYVU9iOb7JRzA+r67vV40jjEQ56qHPXyydqzAN/fVtgMQe464y1PTxA4s7HNe7GMJExMs1sBRvYtu6jxztMcyQQjxOtwsoAF8Wmv90UuefzfwMWD+P+3fa60/XX3uXcCfVNf/ldb6c7dk0h4eNxh9G2qquv/42/zha9fd8uPeSq63h6Np0UV6FGiqLrcBA4vGDVbXPeOCLoT4LeC3AAIijBACs7kJp60Bnc6T2ZLCLHQQmChiRyxKIYOx93bR+dP9jGSj+L6VIPq2YXpesZO2xzSDr9IYBYmsCOJdu5jeorHSEiegWf1gGjOTx4mHGfjV3Vg5aH14BnHf3eRa/JSjgsJP70Y60PpoFmdlK0YyzvjLmtAC5jrAKArEvWn6Wuop/s79ELbRFYV8yU5UzAZH0NQxQ+aJlXR9fRq1awsT94SJ9duwtg5lCYJjJVS2iLmiCzXuuoKrXB6jsR5KJTerUi5j1CU59ZFVJFsypNMhfm3zU3ztky8jOmQzebdJ50MZzn7Ahy4ZJFLT6ANbkP0TZLe3Y7bfhzVbwkgX4PR1froeHnc2z+v8tOTcxHMoTbzUOfYKFysZDqPy1bJJT0XOY5khhDCAfwBejfvd2C+E+IbW+uQlQ7+otf7dS7atA/4cuA83nj1Q3XZ521l7eFyGQwOzt+W48+7mL1Sed9O41loLIa45HNRafxL4JEBM1Gknk3HLqUbHcIDwuQvuONxbLQbQ+W1325b5nXwa1nARgLVfWbr/ukXLioU7gR2HFtYBRK9gjucA9T3urcGGa3hdcc6hcI2uUnuf+fziudSOVb1rWSOXY+1/ccu/GoE9+EjhlnJ1fM19T9b82tJNbCBYLeOan7+Hx4ud6zk/XXpuetbBQoCQCLkQdGjHQfr9YFkInwUV128HKTBTDW7ztN9HuaMe38AUamIKEQmjm+sRQ+OUNndjPnyA6ffsomH/jKucl4gyvSNFcMphep1F/KKNcCAwUWT0/gjhMUWuSVKJgFEB36wmMuwgtKYUM0DA5GZBx8MVAr1TTLykGX9WEbmYxw5blBMmlaDEDgqC0w6hoQKiVGFmc4K6A1Nk76ojMFUm2+4nOOVgFmxkwWZ8RxQtQQtAQnTAQdoaK+tQrDMxyppyVFIJuQIejYdylOM+eMjr4ViG7ADOaa17AYQQX8DNCl4acFyO1wI/0FpPV7f9AfA64MGbNFeP58GpkczVB72Ima16qN0M/p8fnOUTj5zj3Edef9OOsVy53oBjbL4UQQjRAsz/Yh4COhaNa2ch9XpFhJSYTU21v8vrWjFyFZywhZku4QQtVMCgHDNJd5tUXpKhMB0kcdjCqGjyTYJiysHKSNofLtP7KwKZMYlclKQOFDAKFcoJP0hBtt2i7jN7US+9h2Kdj1yzxD+rSZyYRZ+5wPh77iXeZ6MllGMGkYsFet7tI1hfoDgSJjBqYOXADkHdaYfRnZLwoEBLCE4qxrfDus+kKTWG8I/nyKyLow1B4tgMIpNzTf/iERidACHQ+YLbdGqZOOkMMhRC+HxU7u7m3K9YNHVOk84F0acixHtAG4CG6U2aurumSL6hh56P348OKlZ93sE3nIZ01m1En7vOT9fD487mhp6fnhWtQTvoxXcRhHB9cBaXQs576FQ9dwBkXz+OabomgLaNOnIKIxbDf6gXB6j77F7EutVQKeP09FI3m4VKmdbRNsp1QcyHD2BsXEfrZy6gslni0SgiFIREDOfMOcyV3dgXLhKoZlTi/2GiHQdHa+rO92EkEohwCD04RMjyIQL+Wlmrrv6rz3ZhX7hIuMfEaEoRf2wY4fcjfD5kPEbLQ3NkN6eInphCByzk7FytHy+C22MWMSSkGnDOnsdsb4Mnn99b7nHTuFwG8HI9Tm8WQvw0cBb4fa31wBW2bbvcQRZnEDs7b319vgf86NTY1Qd53BQ+/qMeAN71mX28cXMLr9/UQth/9Z/ix4fSvH5Ty1XHLWeuN+D4BvAu4KPVx68vWv+71Tsj9wPp51IfrZXCHl34AsjRMTRura+SBkI5GECw+k9+emmzdj1grF6BUxeBfcdYXd6K/ImbuhB+16DPqo6dz3zIxw4RAmItzdgjo7WsQ+M/uWkJs70Nf7W2em01U6F3bUHsPULlNfcxs9pH9OHThL6ytH45/j/dDIaF+xg56q6fzzgYsRjO4prtS8z8VD4PuRzy8RnuOlmHvb6T+BOHQRqYbS2ueVciQfJzC5nqNR9Y6CO5tOncw+NFyA09Pz1nqoZ/2ql+27X7KExzYd0laNt2+7uqPR+Xfn+dqlAEgDMx4S4cTtdO3PP9ZIAbLGSzUM2Y2r197jGq5VuL5XjRGmdmpmY+qCvlmunoYuwLF2vbzhum6lIJXSrVgpPQuQu189ul2dv5MbLozuGy/SoedxLfBB7UWpeEEP8Ft0fqFdeyg8UZxPvuu++F0At7xyEuLQO9RUznrr2UVCmNlLdnvjeTx85O8NjZCZ66MM3H3rL5quM/8eh5Pvi69bdgZjePq/bvCSEeBPYC64QQg0KI9+JeyF8thOgBXlX9G+A7uC2K54BPAb9z3TOb/0KoZ16oFwcb8zjnLtQcx+VPDtfWX61W2h4ZXTik5VtYf5kLo9jrKmJZ33+a1Cf2LCjKXAPPCAgurfde9LczNV1rZkc52AODCz8UqpjdC3eIvGDD48XGbTs/XQ7luD/albPkvKVt+/YKu98EzOamqw9axLMJX3gsG66aAdRaT2mt5y+qnwa2PddtPTwO9l97b8T/+8MXthDORLbEPz324nBCfS4qVe+4wlOvvMxYDbzvWidRK6kSAh0NI3IFdLkCjUnsZAhjrkSxOYwTlEz/Wo7ceJjUHoOpzRprTmIUwfFD6+MlfJM5hl9ehx0CLaHtxwWs432ouRyyu51yW4LZ1X5Ckw6hiznGd8ZQliB+wUaWFYUGk9CEjfX9p5Gb1yOGxsm8bA0IGH45JI5Jmn84inPuAmMf2I0vrZnY5RDqN2n/yB6G/3A3nf85iJ2KY8zmKXUkkLbCGskgCiV0Ngt+PxSqF2Cf5ZZZ5fJorV3dfik596d38+qXH+LoVCvjB5uI9UJ4zCE4kiezOkKuWZLZWEGUJWve18+Fj+yi7bEKwf40VGxEsbw0we3h8QLkVpyfbhTz2VaoGgI6DrVaLK0xkkkwTUjVuY7kPX2IjatBKZASJ2Qhyw7KbzL00yG6/nOEzJYUseNTzGxrIPmdU9BYT7k9gW9wFicZdsUjDPe+ksgXcYZGkd3t5NfW458oIhyFzJdxogFkvoLMF1GhALlVMXwZG994DjsWwLowSu6eTpRfoExB7NQsor0RLQXZlWEi/QWE0q7fRqZQO54uVs95UiJjUXSxeF03ajxuCfuBNUKIFbjBwtuBX1484BJVt58FTlWXvwd8RAiRrP79GuBDN3/KHi90HuuZ5HdfsYb3fm4/f/S69dzd9sJyHu+dnGOuZF994AuAZeE0vqSkanGBw8QEAjdN76vabbR9beHpy9nBKKD56NJ18/canZ5ejB6of7R6XKDx0NKxvkXL6qgr8xT+sluytOZLS/fX9HG3kTu5SPyv9WN7XDnIPneceXbpNldj/gfJyg/u5TwQppcVLES/GrfRPcqCHwnAiv+295qO4+HhcQORBijHzZJKga7YbnlVpYzw+5HRCM70LAiB2dbq9mzk8shIGB0JYTdEqZgS68h5KFdwqoIV+vBJ7Fdswz84izh8Eg2YTSnanxiviWs4QOzMuZpErdGzcB7QgQBIWZPpNbs6sHt6CRdKqJlZRCiEak8hyw5iZBy72mMS0esotkTQ5y9ihkMQi9bcyKF6bmtvw5mYJLrPPWcZa1bi9PSiw2HXyFVKdMVG2xW3T8Xvg3gUWbG9/rJliNbaFkL8Lm7wYACf0VqfEEJ8GHhaa/0N4ANCiJ/F1SmZBt5d3XZaCPGXuEELwIfnG8g9lh+3qaLq+tCaM6NZHu+ZZCZ/lG+9/yW3e0Y3lIHpAgPThds9jVvCsgg4bgTLvX/BbG8D23YDq+qPk8tySU+Hh4fHHcC8F8eiPoh5Xw5dKuEsKu1cXK453+MgelxlOwdq5qfzmA8fWHIj4Rmqds82rUtKmeYbumtzyOVgYuIZplLOiTNYJ6o9GcXikmb3y70OoBYkXa7kVZdKC+auHssWrfV3cEsPF6/7s0XLH+IKmQut9WeAz9zUCXoAMJIu0BwLXHcvhuDOiTi8X0MvHJZFwCH8foyulQjbwUlEqCQDVGIGlaCkWCeJjDhoCVN3GwTumaYunCfpz5MuB1FaoLTg4nA9pC0e2H6KgyMddNdNc/JEJ9FzBvXHShglxej9QYoNmvrjGiuvyTVJZjcqdNDBGrNQfk1wRBIa08R7C0xvCDK7TqMlbNp2gbMTjRTzPoKnA+RXlsGW+JJFNz7Qgki4SOXxelofn6PQHKASlEhboyxBrkXS+mgaupuQc2VkNgdSuipV0TCk5xCmgc7lobmRl375KI9PrSbhK/DG+iP8yTfejlGEcqODqAhCbXM0RHKErDI9IykM0yH1+SC+tI1wNNZ41vPh8PC4Vcxf+KtlkUsatFlUQlUNQmQo5G7jOC+K/gbh96MrtltC5t1Q8fC4bg71z/ALn9jD/3jzZn5pe8fVN7gMzxanTOfK1IV9Vx5wizk6mOajD526+kCPZc+yCDh0qVS7OwbupExcRarYonHhRdLtWdyO9/mu93k/jjGgjRNUgDWX+A22Pr70uCFcn4srUf+Eq4AFUAA6eO5ScvOKWvPEWIjUn+HFceluMxke3hQGRpgAPksXq7iMqQfuHdGVDF92vYeHxy1Ca/cqLg0Q1Z6JqnwsSiECfnSxhEzE3ZsMuOc9EfBjJuJgmq4CXVMKEQxAsYSORXDOnr8l0zfbWmsqVDcDz+jQw+P5c2I4za//i1u1tq9v+roDjqm5K38f3/f5gzz4Wzuva783iyfOTQFwfGj5VrF4XJ1lEXDMY9TX4UxNYzTUuxfllZ3ImQw4DnZ3E3MdQYKTFeZafdR98ySTv7iRhq+fhkZX7LbUnsB8+AADf7qb8JDGn1FIWxN98iIqk0W0NpG+twnHB2ZRE/6S25sx9d5dRIds18zqsUMYG9a69ccBk2JjEP939zP7zl3U75tg+r4GrLwmvcJAKGh9dBYxNIHwWdhDw8gtdyHHpiHgp9xVDwrMmQJ2Moix9xjC50P4rGdtnDTq6xChEJWOegZ+X9H51mNk3rETf9oh9NR5RCxKqase49GDjL1/N23fGsK+cBGxbSNyroSYy7vvn1dB6+Fx65gPNCwTpEAIgTCk63VRqbgZzWIREYvgpBKIioO2FZX6ILJgozsauPjyMK0/zjOzLohV0ARW1iGUxjdVQNgKMTSOnsuhikVKP7Od8PERVH0MfeIcSAGb1qCfPg64QYQuV3BWNJNdGSZ+fNY1EayLIzJzEAygM1lIxil2Jinu7kCZgvjpLJw8BxtWow+dQGzfhBZgXBxDpzPY963HeOokMhh4RhmrDARQ5cozS0arpaLmym6KK+rhh57xn4fHtaCU5g0f/8kN2denHr9wxefGszcn43p86MaIRTzdN8193XVXH3idaC8De9MQy+HNjYk6fb94hqiMx/Pkh/pLB7TW993ueXh43Kl456abg3du8gDXh+Ppp5++3dO4I/jY907zD48sZDzfsq2dv37rluvaV/cff/uKz61sDPPwH7zsuvb7bHzoK8d4cF//895PxG9y/C9eewNmdHn2nJvklz/91E3b//Oh76NvuN1TeE4IIS57fl8WGQ5hSIQ0kZEwmCZ6LodY2QkTMzgTExhrV7kutSu7mdnRTL5R0vrgGXo+uJbubxbxDc0w+KZWWh+ZZnJbkrrP7iX/i/cT+krVEK8phTM2jnpgK+ZsETE4Aq1NVOpCWKNp7KY48qnjGG0tqHgYdfS0W3NtV5h+905Ckw4DrxYExg0SPYroF58k/as73f6SIYdoT5qx3UmEhob/fy9GQz0kYiAldn0E68IolRXNiL1HMGIxtG0jQkF0qYyam8OIRlGFIsKQtdrv/j/agZWDhqMlzIcPILduQAVMSkk/waEsxdYowV43hTF1f4rQeAX/eAFjJguOQhcKMHHbPlIPDw8PDw+P54lSmvc/eIhvH7txHqW3Cq01//n0IG/Y3MLks5RxXQs3W0I2Xajc1P0/H7TWt8208UawLAIOELVgQ0TCVDZ2Ys4WKdzXTWA8hWMZjPzX3RglaPnhONN/GaS3YR3+1WmmNsaYfVsT0R44894ESEWhaTdaQP63duHLaur2DmNsXIcoVBh9aR3xvihWukKp3sfozhaUBeb2HfhnNcEpBzp3EBzNY05lcQKQ6TJBK8Q9aWZknPADW0mcyXH2V8Pk2iWza+ooNihUUFP+w920f3caUbHRfpNCSwAzHcfIlVA7N8PJPmRzCj05jRACIxoFQIaDtRpvEjH8M1Bogt53gvnaXUT6BUZZg4KJrXUUGxWRgSayW0rUPQ65FgsrU8FwFNg2eu6ZSjEeHh4eHh4edw5zZfuWBhs38ufs3t4pPvjlo/ztD88ykr5xpVp3+g/v6+XLB4d4y7b22z2N62ZZBBzacRZ6GiankH39iEQc/5F0rdG65Un30QG6fmnp9vON381cnsXxcOrAwvKljd1L5lTdrvEf3Wb01OLndm9B7z/Gmv2X23JpQ3jo6NIG7svJXi6RyS0WYXKK1Lkr11gu5tLX/OKwj/HwWGYI4fZwaIXw+dyGcL8fHAcZj6GLJbd/K+BH2w4iHMS+OIAMhdybDICamkbW12EPDWO2t2EPDmG2NKNtx830rluNc+Yc4PZ5VTZ0Yc4UEMUSubsa8c1WkCWbcl2A0KlRyt0N+C5OoU0D59wFjNUryK1vJNwzTSUVxdc3wfQD7SROZRC5Ik59BCdoYjxyEOdl92LOlZFn+xHJOGp6FhEIoPN5RMCPMzWNjEYvOxr4AAAgAElEQVTRhQJGUwqkBEOic4WaEpXqbEEWy6hIADtiISoKo+S4RoZPez0cHh7LkRtZZP8/HjoDcEODDYDZfIXkMlLSulUcGZj1Ao7ni5ASI+EalIpQkPLqJkSmjFStIARydg7t9zH4xhTZNTZm2sDMCQKTIG1NYEYxu9rAysHc/QXW/l4/A+9ZR9ujWWQ6jw5YCEcz/Ip6mv5uD0N/tBuA5n1FBl/uJzQCvqzGl1XkGw1SXz3D5BvXkfy3fRh3rUb3DTLw/i2UExr/tKDupE1w20ZGXhIn1u9QDksm79GQKhF5Okiyp0JwKIfIl5h4IEWsr0y+ySJ5YAIVDiC0Rk6msQeH3CbLYrEWdBj1dYhgkLHXdTK13Wb16lEGphJ0/3fFxPYYyido/vE02TVxwl9+ivN/s5P2hx3Gt1p0/CCLMZtHlMpQKsOdl4H18LgzERIhBWAgfD5kMOAGIIZEmCYiGHSDEtNAh4NoQ6B3baYUsZhZ6yM6aJNv7EJLCE104FiCubYuZAWyqxRmbjVGXhDZLZhJh7GLJmLOwMgHMMqAFkjbxPFr7LAmcE8HpTqNf7odswBmoRmzAIEZhwtvSyErkEy1kU9J5toTaAlCuf9Kr9pFuc6h7UcWztoN5Fok5Xg7pUYHa9bADisSpyTKEpSjYEfdnyjBEYHygXAgOKmRtsYOCPwZRTEhkRWwgxAeU+CV7Xt4PCfe9/mDl13/pQOD/PVbtzA0W6AtcaVbp7eXwwOzt3sKHsuIZRFwaKVwZmbcP2ZmkEPDaJbKyAK0nDlH7C33E/7SMyViI9XHJmD4/btpeSKH3n9sSXah6YT72PZ/78HsaMceGKTrEZB3r0cdd00rgoBoayX5b/tAOTgnzmB2tNP5qdM4i8yvxNYNtD48jTp6mhCQ+LdFB5IGSjmY3Z2kvnsBe2SUGG52Q5gmyrZrr6mmwV/NcMwfo/7TQ9R/2n2qiwGMtlYaPnmi9n6Eq27qq/7ATf10VHvAPDlcD49bjBAIKdBKu0FHpYKTq2BEwgDocgERDtX8J1TEhzmWdrMKwTrivRWsnI1wIJcymGs2CE4pfBlNthtWfrlEpjtA8lSGmf4G6pUmNGFjZouYmSK6fxi9uhOZK1JujWPkK5jD0+hwEJEvov0WhVX1SFsjSw7tj1TQpmByUwArr0kcLTGxOUBwSlEJCRqOlBnb4acc1pglTccXLzL+mk5W/WM/Tnsjjt9wsx+ZPDqTRa1oxRiZRk1OLfUUEQLh82E0p4g7ClUXRYxNu75DHh4eV+UHJ8d4vGfyis//pGeSX/3np/i7d9zDm7a03sKZvXBZzpVa+g63QVwWAce1MC9l+2w0/d2eq46xBwZry/PBRu25S/ToF4+tbXP45JV3Xg0e7L5+jPql8m2XGoI9V26mRr6Hh8fzQOva91qrhe+4M5cD5SD8fiSgy2W0bWPM5VCFAlgWAaVx6qOU6gPIsiIyogn2Zxl+dR2hUUVgUjK2I0h2fQXHHyXbBZXOMtGDAZTfRykRopKIExg1kRW3NMsO+4leiGAVNJWwe/XMdkK0D9JrId4D2W6oO6nINUtmV/nxz2qynRI0GCUf2oBCo6DYACMvb8WY08yuW4ET0Jh5Qex8kJkNMQITrVg5sLIRlNWJ43eP58tofDkFGnxZh0DfDMJW6KY6xE1u+vTweKHwm//67KnAUyNuefb7Hzx0wwKOfGn537bc1zfNazdeqYj+hcue81O3ewrPi2URcCxp/lnczyAN0AoZiaCy2Wdsl3nHTmIPPrlkndnVgX1xYGHflg+kcGuqt21EHzhRe07v3oLYcwQZCqHyeYxkciHT8iwYiTj2xhUMvixE91cmcE71AJB9+06Sj17AHht367XXr8Q5cgqjsRFdLLqKVPHYs3pwzOvVPxvC73cNxJrqEANjqFVtNe19GQpd1efDw8PjJiENoOrFAeiSg67YKKXRlTIAai7nLheL7nmtFxZXIyug2f0614xPW6qP9Vwf9Vd4XGysmrzC8tX2+VxQlg9hmah8/hq28vDwuNWMZm5Mv8XNtFz4/S8e5uSHX3dT9l12lm8WoXfizhYDklcfcguQEiNZvcQpB3NFF2Z7m9vTEI9dNtiY+o1dZDslYvsmZCjkStGC24gZCNTG6Uq55nIrHI3Z0ozZ5bpzij1H3MPHXKWo4vZVALWshBGLYXZ3PuPY42/dgHjiMN2fPucGG9Kg9IbtmEXlGgyaFrpUQh05BYAzMYHobK26ES9yIbZ8bvAQXigxEKZVW578rV3POLYwTYy2Flfm9+hp+t53Vy3YmMcLNjw8bhPKAeWgS6UFd23l1IINYMnyiwVdKXvBhofHDeZG+FrcLD77RN/tnsJ18e9PXbzdU3jBsiwyHAgQ4RCm34fd3YTjaLAV2Qc6iAwUkcUKua4I0+sMCq0OzU8Ipjcrgm1zTE7HyL9mK8oHVg7ymwqEjgSpRME/A/4ZTeOP+ql0NKAcRXFLB8U6A/1AG+k1EivjjglNdOFLV8j/wv1Ez8ww86Z1yEq1GfJTgvKnWhh5Q5nI0QC5NkXuPzcR8FXwfWkV4w/Y4FMELvjJpbbQ9MgYcxsbADAKCv90CaU1zsvuxRiaxQBEwA+GgZ6bQ8RjCJ/PrccwTUjG6X9zMyt/ppdzjbsRCvKdNrHTJsVGXW3wbEEbEByHs/+0g5ZHJdHeHJQdzHQOPZeH8dv4mXp4eHh4eHjcNHonF+5494xlWdMUvY2zWeDIwCwf/tazlJ0vY57snb76II/rYlkEHNp2sAeHAJC5PMKQOLNpoofc542OdkIHThACjMZG12dCrCP2oFseZbxzF4l/W2gkH/293XT9+UIfhw2I6v59QGDLXagjp4g+sBX5k8NL5hLCbbxOLvqu6Atb8O15kjX/cfn5L2kYr24f7Old2L76aLCoqXtx6dh8RqJaTiXncrR9tJfSR6GDUYyGekQweNleElgqjatYKsvr4eHh4eHhcWfxf33jxNUHLeK3/+cBfnQTHMKvh28e8XpOPZ7JsiipElLWyopUNotIJpY8r4N+xPZNAJz7eCs0NxAeKdfKqOqOzCC2baTyqm3IcJjAtGbqN3bVngcw21op/PwOAOTsHHLrBqxT/Yh7NiK2bcTYsBZj7SrM5iaKb9yBME3MDlfvWOw5Qv+f7cZc2c34+3aTfdvO2n4Xl0MB7r4aGzHbljZwFX7OPbbZ3FQNLBRGLIaMRpGBAMJ0Yz8ZCKBtG7l1A/lfuB9j9QpKW7rdYEMaGPV1qJfeg3pgq6t/D7BjE+lf2YkRi+Hh4fHCwVi94pnrFglRGMlk1QNEXFZe5dLz03VR7UuZP78YsVhtDsLvX1jflLrith4eHtfGv+zpu6bx5+/w+v5r4Sa2h3jcRJZHhkMpVG7hy2JfWFpD55w9X1te8Y4jOIBxaiFboI66KlMW7t39+WzHYq0Fe2iYYFXpyb44APOHqMrQLh4b+NaYa/y3KKPQ+eE92EDqH/qWzG3xvAH0gRPoQACnWESGw7Xng1/f5x57dAxwL9TOIgNAYflA2zVZSX34JKHD7rzMeRNA5biGW49dMud9x4jv8yRxPTxuK1XzP+lz+7C0o9B2BRkMostlhGkiGxvAtsHvQxeK4Dg4k67yiLFmpXsllZJiZ4JCyiK5fxxhmmjbRmzbSKE1THA4h+xoBltB/zBojbmiC7spjnlxHAJ+tM8CKRDZPDIRx2mtxxiecm/eKI3d24eRiENLCobGcNZ3gRTIfBk5M8f0S9qJn51DXhyjfHcHxqOHEKEgZDLochkZj7nnTscBn+UGG4kYRqGIk8m4QhzFEjLgR+XzmC3N2COjGLGYq97lnaw8PJYtL1Yn7zsB21GYxrLIFVwzyyLgEKaBEY6BZaLLFVQ2i3HXGpxTPcgtdyHHplHZOYoP3EXo7AQX39ZG+/fSnH13lKanYGqTYMWH9jLwJ7tpPGzT/2aH+id8yArUH0lDjxtdOFtWY07OMfCzTXR88ji6s5XZzQn8sw5W1mau3U/swScxm5sorW/DePQglVdtI7PCRzkmKDRp6o655lXFeoEvC8EJxewayYrP9TP0C520PtgDyRhyZBxWtmPYCjGbRVXLpsS8IVipBMEAumK76i0FN0DRJdeRWN29iumNEQopQeSl4yT+PEhmZRhlucZahUZJy49n6XlnjNQ+sAOC5JkcxrkhV6Yzl4fC7fxUPTxeBFQvysIwwKjezZcS4bNcUQhDgt8HjkI1xHFMiRMwsSbmUA0xnKCFNrvINfsITNv4p0sY47MUGi0CUzZOMszgW3fQ8b00KPBPV5WuDp90hSe6OzA6WqjEAyi/gRENu2aDs1l0IgqOQ+7eDsy8Q+nuVoIXZshsbiDQlmSuxU8+JQlO1pN8agSUotxRj29ilronR1Gj42Rft4nomVkcrSnc3U6gVIbWFIWWCJXtbYS/cYDcrlVUQpLkU8PYcznM7k6c+ihG/zgiGoZYCF0o46y/F5EpUegIw1e/eJs+MA+P5c/TfTevj2ByrnTVMf/8kwv8xktW3rQ5eFw/ttKYd2jieFkEHAiBSLoa8joRQVgGpZgfZ8V2SnGDSCJAJWQy+AoT5xdT4CsxqOOQKDJ+nw+hNcMf3E2h3WYCE3+4wOzLFWrKh28uSlR1oC0DWbAZfWUKa07T/7/dTb5VgaGxZkyCExZGUTP4od340hDrt8m9YyeVsKD+7QOcP9jBy3/6KKf33s3EdkCAM21Q9/PDFHIhLtCJlYULv7OGFV8YR6/uJN8VphKShIfD+Pt95O5qJDiQRQyMQTCAkBKMMkgD6fe7b0XAj87l6f77c5Ctpz08y1gxysifScqPRTHKkG/VpLaO0v/SIPQKJraB3VgmcVagmxsRjoMY1V7A4eFxs6nm9rXSCKHRjiuDKw0Dyjm0UmjH7aoSk1PIcAhRLKGlRBoSIxpFTc9QF41AwI/d148NxPoH3X6ucJiudAuF7gShEyPowaFaT5gulVC9/ehKGQFYW+5ClCvYfVXlmpFRAPzfHkU9sJXQ2VEwDUJf3Yexqpv42RyRMVdZYt4ZQ14cwMbNtoj2FmL7h2qZXutHB1GmhYoF8O89jZXLYbS3ET41gXPuAioUcrOwQ6MwOIz2+9G5HIwJaG/BnKsgzvYTyTTe/M/Fw+MO5quHhq5ru2LFIWA9+6/R7x4fvep+vrh/YFkHHHe6Ad7z4U4uJ1sWAYe2HeyLA65fxdAIMhHH6mrGyggCIxpZtvFNzdKhOxl4pUnqgCbXAsaYn1V/ehBdKmGsXkFhdQNj26D5swEmN1t0/P0RZFMjangUYVmgFPWxtfh6J8CQqFiIyW1JUo8O49RH0U8fd2uiDUllfQeRwxPY7fWMfrOT1U9kOfPERmbXGNz1t0NMPtBK8nga/ef9hN9yP6W7oByHzr/YA00pJDGihzLu69qwFru3D39vX62h22xvQ03PgGEg/AI1O4f0+3HmchiRMD/Ydxev3H6cI5/YTCUiSH1iL2Zzxr1rKQTOf7tIWDluicL6LsyxWbAd13SsVIJqAOPh4XELUA5aOW75k+OA49QeAWQ8hoiEQUpUZwtOzIcdMJAVjbKakbbGCUhGf70NoyDId9jIkps2V0HFxvUDBIwKB3vv5Q+2/4C/efrVRA8FyGwsY6RNrKwk0q8Jj0XIvraNckxQiYB/GvyzmnyzgAe6CY5rJu9rIXrepBzXCHs1RgnMPBQbQEtNYEqQXemgQw7GrIlT18zqrjH69rejAhoVUASHtuD4NMoHaIifb8Yogj/rMNdikDxbZq7Nh29OERgvoS2JsDVWZyuMeyowHh7PxjcOX1/T9fo/fYgL//31z7scarn/pi1WPGmcO5FlEXC4/hTgTE2DVm5N8+SCo6JTVXQKHlCsemiC/C/eT/Pf7qH0+u01rXvn3AVCpQrRVAfho0P4vzvsKjb1Vnssqr0R8rFD6KrBnwyHqTt6GhtQbVuRUDP+s0Zj2INDiIlJmp8soYFIbx3Br01jA9GuekqpID5c9/MwMPHbuzA2rMU5fR7Gxmt+IM7Js4BrGDjvkWEPjy6oVGUBaaAcV8PfyWRY87tP0Q8k2UvmHTvJvON+kgcmayaD8xR2rSV4YWaJ2aGMRlFjniauh8etZt5l/FLPCWdqutYvBq5ah4+lmEDXty+/30r13xom+Qb1rOEgAM1VZTth+Wr+Hpe71ZCEmjJe3Weu/jrmle/MjvZahmMl1XPMYoW9KkZTCqd6zglW1y2V/nDxWjc8PK5OtmRffdAVGEkXaU0ErzzgOdwif76mfTfKPNDjhcXyCDiq0bgM+N1Gw0gIKhVYtwJRcf4Xe+8dJsd13um+p0JXh+kwOc9gBhhEBoAEQQIkRSvYkiXRyrLklRUc5LCy11e61/ba67vO0rXWa2slWcHKkmnLki1KtBLFJJMECBAgARIg0gCYweTY0zlUOPeP6u7pCUgkMBgC9T4Pnp6uqj51qgtdVV/6fcjTZ7FvuQGnaHPy413UPaEg334743cI2pUdFGIKc30KxVqb1scdRt+8hvojLaiPPYPW3oasCYKqgGmRXV+P8f2nAci9YjPGD58m/8Yd+CdzqOvX4gwOI/p6YGwSbU0Xg7/YQcNhE2HD5Dad+qMWvjmLie1+ur5xirHf3EnLwxMMvbmF9sdSFeNCa28Dw4cCWE0RUt1BaoZyaKfGsKdmUAJ+nEwGJRhEFotuUag/CEJBbaij+A0d56+bGLnHh3AE+TYTI1GLs2kHof4kx38jSt/v7MX34/1MfWAndSdOofV0gxDITBZVVeDCTdM9PDwuA2WVOelIlFKPHSeTRega0iw9PCx6SBeG4dZrLdPY9KIpp3RdTDNB59If95eV4l5mHPsCDo5yEfmLmYOHh8fFU7Reuvf/pSpe/cdzYy95Dh7LY7+Mc6pWhcEhNA2ttcMtdgz6yXVGyLToqKYkMG0hu27ENgRjv1jklzbvY09HD2dGGtjcPcbo+ghzAzFEXQ6Z1Jl6Wx5xMkTmbgvtrl3UDEtqRk20tIk2mWTiVh1xyy5iJx3S7QrOzbuw/SDsMGZNDf6pZoy4xEjFCJ9KoWVh8C2S9T3jvLPhNF/Zeyfogg3dgwTeZJPaA4m7ojhJi9O3KGgv7KLzxymKhsbcOj/+OYdcvYKRlBRjPljbihYOIdJZN8XCshChECLoR+YLKAE/Mpcn6svxns9+k0+ffSWGanFizxri613DbOLWWkIdCTI/6mVkoAGMIrOv2kbzfxj44xZa2kRNFjyDw8NjhShHNmBhdEOauA09SzeJsuIUsLAbOa6TwhoZdSOj69cgBkaZevsW6g6nUY8N4vR1Ygd0kr0BtJxDuD9NurcGX8LCF3c9ioWGAEKCfyiBVRdCPXAMNvZiB3S0RA6rNog2kYB4AlETclM+t2zADhvucimRhg/p1xF5k7GfbaLtB6PkeusJnJomvaWZVKdKaMIh26gQGTBJt+sIB4ykgxE3UQo2UhH4zkwiQwHk2CQyl6sYG0ooBOkrfUY8PK5P3vX5p3jqj1597g089alzcnQseeGNrjKfeOgEf/yGzVd7Gi+KVWFwSNPEmZpGSoksFPC94KYblKUUAZQbNtL7npM87ahonGVjn4Z5cowmfYbGKu+eWl/npi8sgy0EXX9+BjUSIf6GzbT+7W73AcCRqH09iGwemc7gpDNIs4gEmg+A9us74deG2Y2P9bjREYmbCdW3uQ45OLJEHldvbqLu8UmUmzYS/M4xlGAQEfBjz8y6aQVCIDQdaZmulGbGwMnlEKqK2t7K+Cfa+My3pzHf0MLgXRo9/31PRbkLQGy/AamEWL9vH1pLM3Z7A0ouU4mweBmOHh4rhBCuShWAKClU+UoJU0pJxSoSRvp94EisuhDFWh9mjYoUMLfOrdVQTcjXd2O3FDBO+bE2+pGjkvirNTS9G5/Pojk8QwxJ2vTREJkllawj6yjMWSrRQJ7xOQXHETh2CGfcD+/YihO2UJIawgngGBKpNSKsJqixIOX2C2ronWXmeCvRdXEsRyE1UcOGvlESR2163pkhlRNEa5K8cLSRxtY4E881YLUViO8CRAHfgIFUFILjfqwAOBqIO9dgzEmkaMIKCtQ8ZLok4dPA51b4HHl4XCdcMJ3pZewhv9KcmHgJ0eYV4vvPjb1kg+PTj/bz2i0trGuquUyzujhWhcGBAKdQcOViqygbGwDO4WPzf9+1FUodwqtTCdR1Pdj9ZyqeQnXLBkQijTRNN+Rf9jLW1xL556fcz5e8jfbx/nNOr/4f57uYL85fLj/gVw5l+w3I/YcrKQblHiFONgslz2fZy1meu9DUildUWhbW4BChwSGyb7md4Hf20lPK666u35D7D89/T+MTMD5RyY8WhuGmeHheRA+PK4+U8xGOUlNPaVmV37liGNij4ygBPyIcRtNUtKkkzMzhrOsg9tgE2Vu7UQsOatYisS5Iqhtav+kjvkFBjAVo3ptl8I01zJ6JUf9cFtkVYNBsdBW2m1Rqxm2MoSzdUqJkCziGTq7dh5a10eN5EpvCRE9mEKZNal2YwESRTLuBf9bCFy9ghiPECnmUrIZZ5ydWI5jo7KZ5xqH/VB/CBnG6kWiPhvZQPc0FByE1/FNFhGmj5LNIQwfLQTkzjOxqrXw94uwYsqMVJZ4EXWP6Fe1X6UR5eKx+fusbB672FF4Sh0cSV3sK1zSjiZdWH/PosUk+/uPj/P1DJzj5V6+/TLO6OFZH9xCJawyUHuTVxnnZRDUWXbK545uXfavurm2XGuRZpQZ/xcYQ1vDIkvxi68xgJef6XCjhcGUezj3bqna+NAe5uqu43H8YsUghavG+Fr+XZrFSYF49ZvA7e0uTWV7mzrl7fl7K1s1ovWvc8QqFijqOh4fHClKuqSgWcTIZV7q29HuUpoXMFxCZHM7gCGga6uQc2Vu6UYoOxmgSqSlEBvIIGxK9GmoO9JRk8tYgalZQiAlOvy1AMSxIrFEZu1Pgn3OY3aAyeneYbEeQkdc2kO0KoWVtMq06Vswg16CQ6QwytylCIaJgBVWKYcHsRh9nfy7MyM/4yDUZTOyMkm7zMbVVQyogJGTbHPJNktE7VfwzDtkmhbE7BUpRkur2k2sNEL8xRqonhNQVilvXIg0dsy6IyJsUt65FyeYx1zSR3dhMwxNefreHx7m4GNna1crJiRRv/OQTV3saL5rrodnhJx9xHdemvfKRrtUR4YAFKivlJnkAIhSC0ns1FoXmRnhk3gNgJ5OIW7cgDxypLEv94h2Ev/kUvuH4AlUUtaG+0tVXBAII06x09i6j3LQR57ljbiFnqZhTfeqFJTJxzj3bUH76rPtGX2RAFAoo4TDCp2PPzCItC3XDukoUZfE+gYpWP7gGycTruqn/Ykkaz7ERhoHa0rRAjUo/PFA5vsyaGgL3vzA/v2X24eHhceWprucAKnUa0rIgk4Epd7k95f5hlH7TNvMeoI7HL22fkaq/q/Vpyu6a5keXfqZ+mXGCpddqhanwvyzcJgo0l/4uu1aq96ni+pBU3GNST7h9PsRpN1X2xevveFxphBCvAz6Be/q+IKX82KL1HwZ+Dfc0TgG/IqUcLK2zgedLm56VUv7Cik38GiFvvrwdhfuuYMPCxSRyJtGAvmL7u1ZQrqJRtToMDjGfGlVteKi1tW5q1KY+RDLjRi6qjBHl5k2IwVHsA0dQtm7GOeg+cIe/+RRa7xpkIo31qlsxnunHnkvgpNIVo8O+oRex5xDg9sSwhkdQ1/XgvNCP1t6GUxtBnB3FTiaRhQIjf7CLrn8bw2yJojxxECugkX/3HdQ+chpr4KyrwpLNYr3qVnxPn3C7pW9Yh0hnUNZ0VowNofsQfgNM002rsiw3BUoIhD+Mk0ohLYum7/UvlJDcvI7JbREa7ptChIIUtvbAw67hVY4Cqet6YGYONA2Zz8Pqr3/y8PC4CJK/dAe1h+IwHcfqbUUxbeyQjm8oTnZ9I1IBJAhHopgSxXTQknmE5cDkLPbUFEo4jBKLLlCeUvt6sU+eRm2oh8Y6RDyJzOaQa9pwnjuG1t1JamsrwR8cpHjPjaAIHE0Q3Hcau7eNQr0fLWejZk2E6aAUTKSiIManEJEwFIo49RGUmWQl8uymnV2d79Hj3AghVODTwM8Cw8DTQojvSSlfqNrsWWC7lDIrhPgt4G+AXyyty0kpt67opK8x7n0ZRwcA+idXLo/7L//jBT7+jpsv65jp/LXvDvEMDgmUvgOlLoZMZxCqih2Po9bWLu098aYdBL67D+fQUXfBjhtx9j0/v/yebcixJOk7ewjcvw/R0Q7JNMq6NTA0htrYiL3nkFvIHQox+4pOIveNUOiuw5iccW+MI/ONd7TuTrrvO4vVWot++Aw24B9L4/vRUbKvvw3jB5OVGgztkQM4gNbSjFWuC1FLfksh3GL0RRKWslAA3YcsumMofn/F+1lGGZ6kpimAk8/j3LYJ7eEDKDdsxDl8DHsuQc1PT7rfV32dq4rj4eGx4ghNc5t5CgGq6qY26jrC7wez6NapScctLg8FKfY0ISwHfXgGuzmGFfahT2UxG4Ou2pOqcOrtBpFTCom31GPV1BE9DlZQ4I87TL2xldY9DqkOFTUvMcOCpmfy2IYCMT/pNoPYEYFaF8VsrCHZE8DROynEBMFJBy0vyfxcC62PzZDpjZJpaqBmzCKxRodX7GJui4WaVQi3b8cOQM2wg1Qg+8b15BoEWhaMhIpq+pAKhMYKqFmL7B1rUSyJniiiJfPYTbUUbmrHN1ck32TA/d+62qfKYyk7gH4p5WkAIcS/AG8CKgaHlLI6VvYU8J4VneE1zskVfGC/3CRyJl9+cmDF9pe9AtGgP/rO8xfe6GXOSkahFrMqDA6hKiihsOvlDwagPgamhQo46zrQhg2ssXGUGzZy7CMhIgc1sr++k+Ib5sidiBEaErRPdjG3TmPuw7soRkExAwQmJcrP32N2AUUAACAASURBVIbaP4O4ZRPp9iCiN0qmRaXhKwmsW9YjbImjCRL/5Q6SPQr1kU3oGRv/mVnw6Qz+Qj2RAYfZGwTrvjDK2Ls3zyuuvGsnTlce57V3EBpSyKyxWXdfHm0qRXZtPcLqwL+/HzviR12/1pX9nUu53cInZ8C0QNew4wmQjqvfLwROLs/4/Ztof+8Ig//1BrLdFjX9Gi1P59yeIf+xj+E/2kVuQx6Z24F/VMOXgvrnCyjjGYTjoOQKXoTDw2MFEZo2LwihqlBOpcrnK+mZ1RFc4nGU4RGglHI0No5qWTi4+Szg+mH6zpNeFbnPfQ0uWl7+fIR5xTrlOMSWcaCGcFOf/EegXEnWtOh1OWrPsVwyPw7MN/srp18FL1A/53HVaAeGqt4PA7efZ/tfBX5Y9d4vhNiP+9/5Y1LK+5f7kBDig8AHAbq6ul7ShK8lJlaoWd7FBhdnM0XqQovbk56bz/701IubkMcl8+zZONu6znUFPjcF6+qm7K2OonEEwu93U5LODOKEDGTQQHa1oQ5PYc/GEbfdiHP4GIF+Ay0nqX8+g72vFj0lyLVIrIGzhM/aWEGwQg41wxIjIQk9NwKKgjqTwpewmN3kFkM6OzYjdQX97BRmEMLDBWInHYw5E1+8QKGrllxnhMC0JNWtINdmyGxuwqwRpHttWh6fJXoCAgcDhM8oNBw28c2oDL4+CD6d4IkpAkdGcNZ1YtboONEgjt+HDIeQZ0dxkmlksQi2jdA1twGgbSNUFa2pgfp/CDHyKzfQ8dHdBIY09IxEFB20rI35c9sp1DlEn/az7htFCuvyGLOSwMlJ7KjfTVkomlf7pHp4XFdI28YpujLXONKNYgQCKH4/QtNQ6+tQQgHU2lq0DlepqbxOCYdRO9pQbti4YEwlFFr4PrjYtHj5oba3Xngjj1WNEOI9wHbg41WLu6WU24FfAv5eCLF2uc9KKT8vpdwupdzeWCUQc73zP+4/fOGNVpBf/9r+S9r+M4+trMFx7Zd3n5tf++qlnZsyJyeubgRtVbiapG0vSCGSTz9fscIryUFPu6Guzr/aXdmu46mF49R8ay+LVYWrM/LUM4O0PVb1vrS+8bNu+lS4vH/mv5jFhZVt35+fV91zC9d1/8h9XWBDjo2jM+9VqF4nTaBU3G2XvKF2oQDJJPr4BC0PuttVH3N5XmsfnB+n74n5YxWDQ7y8y848PF6mSAnSRlYp2VWnTy7oDxR3u3KWxR1kKrVsx/HF/X2qmwq+XKkWvvBYVYwAnVXvO0rLFiCEeA3wx8A9UspK50op5Ujp9bQQ4jFgG+C5vS+Sy9ke49h4ko0tkWXX/c2Pjl/UGEOzL/9rzbXKTKbIJx46yX97Td/VnsolsSoMDqEqKIGQq+bU2ow1cLbS9E/r7kQm05X6hKN/04sa11BMgREXdH5nnJE3tmCGoOfrQ8hQgExvDEcXhJ+fxGqOoo/GcaIh8s1BFEuiPXwAdf1aZm9rJDhhYkxmQAgKzSGELdHn8jh+nXSHH7UoCR+ZZva2RrLNCu0PzjL0hjpip2xmN6oYcxA9bXL29Qp9H9pbUchSbtiIHfUj9jyPcuN60r0RQsNZHE1BOzmMzOURuoY0LZRIGCeZQqgqUkqUaIThd3TTsifN4Iclaz8SZ/itXbR8Yjejv7+L6Cmb0VdB3UGF6OkiZ96sET2mEjlrUfPMMDKTcVWvvJQqD48rjxBuNEMRC3oJSctE+HyVeg5ZNF0J7HB4gXGh+P3XjapcRTTDuzatRp4G+oQQPbiGxrtwoxUVhBDbcNs2vk5KOVm1vBbISikLQogG4E7cgnKPq8B4In9OgyNduPYLo68H/u6hE57B8WKQtuM2zyoUsAbOojY2Yva2oDkO1uAQWmcHxOPIjmYCAz46/2I3Zz62k9Yns1iNYdrv62fiTWs5+85OAlOShvtfgPYW5rY3oxYl4slBnLu2Ejw+6SpK3bARx1AJD+bxnZnEGhlFuXkTWspEPXQSJ5ul+IbbiD0ziRMLMfj2Zro/c5TZPygVab91F3raoXWPhfbwAdLvvANjSmH4v+8ifNZx55vNU2wKYTTWI4+fIWj0IXImeibnHq+iYM8lKj02nFweoaqulO7EFC1/N8Lgn++kOOFw7CMh1n4zg9bS7I6fd2h42j11vqkM67+ios6msc4MepKTHh4riRAl16RbeSHN4nzhuKa7dR265hoiimuMCFVBjUWxk2m01mbsllrUZA67vgb2Po/ziq34+ifAccje1IHxyHMoNSEm3rkRPSPR8pLIgyXBjKZ67P4zCN1H4h23ED2ZIbk2ROzZaczGGvSJJCKdReYLWJu60OZyFFrD2H4F21BIt7qOitDxGYgnoSGGHB5HiYTJ3NyOfyqPKJhM3V5L+KxJYCiJWR/CNzzrHrttk9nSQvBUHDk8hlJX66pglRqkah3tSL+PYmctZkhDy9lIAfzkap0wj3MhpbSEEB8CfoybAPAlKeURIcSfA/ullN/DTaGqAb5V6llQlr/dBHxOCOHgpmp/bJG6lccFWG0RhUsJuCTzK5/CfT30zLgQJydSfOrRfu69qY3XbG4+53apvMmx8RTWVei9UY2Qq6DNfUTUydvVnwPHrsjLLsuiLt/LUS6qvhjOty91U98SdazFaJ0dCyQmyz08gErfDWEYCJ9vYbqEoqKEgsumUJx3fyX53vNRLloFeEh++0App9bDw+NFEBF18nbx6qs9jWsO79rkAbB9+3a5f/+Ly0e/lnjs+CTv//LTl228r/7KDu5Zv3x9zJo//P5FjzPwsTdc1HbPDye491MrK+l7781tfPLd2y684SVwKd/NamPfH7+aprB/2XW//MW9PH5yesnyiz2/l4oQYtnr+yopGqdiSJw3R/kCxgZw0cbGhfZ1IWMDWGBsABVjA6j03ZCFQsWwqHQgd+xLNjaAirGhtZzbkl3cdMzDw+PaQmzb4vYZunOrW3RuGKi1SxVL1HU9C99HlqZYCMOoRFnPRXXhutrchHLTRrfH0LYtIATCMNDa21xhj7u3ufNpWK6toIeHx3JcTmMDYDU4kj1WlqfPxM+57sjo8jmsa/7w+xweSSy77kqwKlKqKIXGhGFUuvKWUUKhJYWTF6Jc/1EZvsrrv2C7csO/SAQ7ufCElKMfYvsNyP1L1SPUdT3YdTWw78K6zRWpzMXHVsrlruRwV0VwnLu2ojxxcNljssYnFkZTlpm/h4fHCiKEW4PlSHBshO6b77fh0xE+X+X3LzTNlf9WVZyZWURPJ06NH/n086h9vQjTothdj5oxkZqCMG2K9QH8IymyayJIRZC/wTUe7E3bSK6F9p9aJLs0Gp9JYUYN9ESBbHOAYCKNCIdwIkGy7SH8o1mKjQEcVRAcTIBlk11bh388ixPQQEK6O0BopECq28DRBL60g+0TJHoUoqcdihFBvk7Q9YmD5N54G8UaBdWUBMYL5Bt9+HdsJh/R8M11oibyiKlZRDCAVBWk30CcHYWVu8d5eFx3xLPFC2/kcd1wPgP0jZ984opFOhazOgwOKd1u44seyGGpSsvFUG1swLm9/uWIwXIP6+Xox3LGBoDdf+ai53Ou/ZejHJWC0aoITrWxAUuPaUE0xTM2PDyuLlIu+J1Xq1NJswiLr2PVv9mqaKp98jQAysDZSg61BHRchTvjBbcw3V+6VojtN1D/Bfca1QAom/rQ9h9G2dRH6MAU1tQUlBQAjYPzY1EaT+vuJLjnBPZcArXkZAnvcddHq/p/qLEokTnXSig7hhzA/8A+AiWHilpfh/KEq8RlKCpCETiWVVXn4uHhsRjbufy/jaHZ3GUf83zIS6r4uDxc7gqOTz/af5lHXFk+9M/P8IabljccLvRfLJU3Cfv18290GVgVBofQNNSGJoSmUexpwgpp+BJFlLyFWetHKTrMrQuQaxR85Ne+zf858UrmBmMQMVEmDaQmMWYVcr0F9Akf4S0zxAdriR5T0TKS2Mkc+uEzZO7agOMTJLtVbB/oGShGwJcAPS0pRgW+pETYEJi1yDZoBKcspn41Sy7lR2gOdY/4yTcItAzMbSuipDScgIMIWvhP+smvLbD+k3nsGh9mSCO+Xicw5RCYtpCqwDdXRB+bg1zetToLBTAM91Uo4NNxOps48Ts+dL/F13d8kV/+p98FAQ2HJOl2hbqjJkPvNbGTPtSwiZwwiPXNYv+kgYbn8uhzeZTpxMIWTh4eHleO6gJGoaD4dKSUyGIRJRh0BSGCAdA0UBWc2TmU+lpk0I9ZH0LYDo5PRSqC+AYfNWM2iilJt2qYNYJiDOTmFP4nwiS2FVBndF79ikM89pMwxV/ZQVvvNONHmxDNeRi9A8cvadpTj1pcw9w6FS0PxqxEsSRqUTJxh0DLCNS8QLEgOC6RCuQaBHYAcp0mgSEdMyTRU4JinYPWmaGY14lGs+QKOvJ4DVaNxImZBE4bWCH32qllBL6Ee22NnnFwVLACgsCsg3AkgdEc7P321TtXHh6riL/6/tHLPuam1uUVqq4Uv/n1Ayu6v8tNwbL5+I8vTi54tXI+n86FUux2fvQRDv/Zay/zjJayKgwOaVnYk1MgJVoyhVosonR3YJ84VemYG6jdQe1X9/GpxNto/Mc9nKtdkLphHbk1MRp+vHfhioZ6Qqfi5LpjtP7DQWShgNx1M2L3IfL37sD/wD5yb9pB4Lv7UG7ehHPoKAag3LyJjrcdxbl7G1oih7Ay2C+cQK2tpfVfNbK3rcH4gZt/qbW3uYpXfb2IYwMomQztT0SgsxX7hRMgJerm9dhDI643dJkieGEYiFSavve5EZbf+uDv0j5g4n/qBHYySejOreiDU6x731TFi6puXo/9wgnM14TRnjyMlI7Xi8PDY6UoGxtSQsmzj6K4TT01vaJAJ0tRDbWxESEEMpND2A768DiiLuaOky/QPBnDOexGMA3c1E8sC2tyGrW3i/Zv5UBVGfxjhzXFpyp3mo3tedBUZDqDzOUrUdpKbyJFRagqakMdNd9yI6bKDRsr+6pO25Q7b0brHwBFIPzGOXtnaJ0dyKAfOTSKLBaXRnOFQGi6KwccDCLCNZC7PiSAPTwuhi89efHZEhdLyDh/XdbFMjqXoylsoKnnL/cdTby8f9PXegD2Qoe3UlLJq8LgACpnXOZyrgFyYmG/oHIxeP0/7jnvMPbxfnzLGKr29AxMz+A7Ov/li92H3LEfcMcOfNd9dQ7NexzKfyuPPzvfhBCwS427jB/MNyy0RtwGguW0CCilOx2ZT5+wXzgxP8jiInghXEOoalHD593jLW8pnjy4RPq2PKb+0IGrENj08LjOqb5bOTbScZuZVi8vNwMUmoY9Pe06H2JRrKkptJ5uyBfIb2rHODuLHfWj3LoFK2LgG0kwcU8TmVZBYLIX/5zEl7KZuE0nNNRFrklQrJXUPyexdYGRdK9SxpyFnijg6Cr62SmyN7ajJ4sI02Fqcw2Rs21IRZBr1AnFtqLmTBxbYm1qxzYUzBoFI9RFMaqRq1eQage5JkHzPpP4Bh21IPHHJY4GigVsbaD2PweYu6ub8EAW21BxDBXfVAYlmQXTcq/rE5No3Z1eDYeHx5XkMj0I7PrYI/zqXT38yRs3X54BVynXusGxWh4MV4/BUUIEAsiyqpPuW5ALDTD24V20fXI/+dfcjPFDN7Lg3LMN5afPorW2IMMhRKHI9Cs60LMOoX+bj3SUx1PXr8XuH6g88C+Wt13MxUrtliMNam0twvBhjU+gNjdhT0yihEKIYHBBR/UllP7XK6EQQtew5xKM37+Jjt9JYQ0NI7ZtQT575JwfV27aiBJPg2m6nsbz7MrDw+MyUh3lqH5dRHUEwC7VRFhnBgHQxsaxAdHv3h9UXEdD/YlTLNZ86lpGvXGxOIbEzXO2AF/JGSKB2ipBnHDVthL3hqDhRlbArfeY16hyafnh4h27NRoWUPOtcSSu/KGiqDiOvcBRA16ncY/rm9390/zL00O8ZVs7r9zYdLWnc0F+emKKP7nak1iGy9mGYzSxsjUvK42zSiyq1WFwCIHW2oKTSCJam9Dqa910g3DIVYI6eAyxcR2z21zpx1N/dSuNz0j827Zw+h0Reu5Pc/Z/7qJ5n8nZd9ls+p/TzNwEvjkV8707qd89jl1Xg5LKM3NbA7lGQXC8kdCYiWI7cHoK5aaNJDbFcHQIjZqk231ET2Wxghqjr1AJd+6k+LNJ9IejtP3bKayuJvrfHaLv95/hxN9tIziswo4EdV/bQfjgONgO5s9tR5nMIrqaEXMZzOYIuiJcxZZ0FuHTcZIpN/Ui4MdJZ1AMA1QV3/0+dtaN8tl9IYY+CeKxXbT8/W7i79+JWpBMbxPYzQV8A36EA8KChiMWNS+Y4PchUpdebO/h4fESEArCp4EjET4dFFehqvxALvx+N9VKVZABA8fvQ42nsOvDKOmCu00yTXZrF77ZPErBYvbmmOs4+bbrOFFjUdA0N2LLvEJd2dgoO0+E7kOJRd39AzKVBp8ORRMnl8fZsRl9bA7r9ADami4QAuvMoNuoLxx0IxJ+AyWerDRGdQ4drRSMq+vXzkehpVxg7FRU9xy7cuxqYyP2zCxqNILsbIZDK396PDyuNsm8yS99wf0tf+/QKP/jDZuuyH7O9Xh5YuLS5fgvRNFa7FJ4+fHqv/3p1Z7CFeUK6BK8KC5ocAghOoGvAc24/48/L6X8hBCiDvgmsAYYAN4ppYwLt/3jJ4DXA1ng/VLKZ867EynnVZiqU6mmpqCUnSQPHyN2GGLVHwN6nnX/7ioFIPp+6Hr01t0XrkQDHMOA/gI2EDt6koZSrUUZC2AIws/Nj13ejw70PlR685mq7ccnWLfPnUPfhxbWi5R9jPrQcMW7ZwPKydJr+YZcTSnf2i4pdeXugUcIsalvdkGKVu1X3BSryD+zLF7thsf1wopcmy4WKUHaSBNXDlc6S9KqypR//0owiOM4yIGzC363gafy2HMJHEWlrt/vPsiXHujLUZEKqpurXX7YL0dqpVmsRFPVdT0IRVkQxa1OzbQGzs4fRj4/38FXiMp1spxaKotFt0v6opTX6shK+domDAOhaTiZTGUudjwO8XPrxXt4XMvc8zePLnj/l1egYPx8/PwnHr/wRovon0yfd/3p6fOvX+3kzWvnqcl2JKqyNPRjv4wiHBbwESnlM0KIMHBACPET4P3Aw1LKjwkh/hD4Q+APgJ8H+kr/bsd9TL/9fDsQqoISCCELBZRwGBpqEfkiMpWiuG0t6mPPoobDzLxpC7Gvz9dwaL1rmLq7FQQ0/ui0m8K0eT12jQG2w/Rv7CQ8ZBF47Ihr8d9xE6JgYxkq5qZWHF0heDrudgS/dQvCcuD4GZyiSfbN2wkfnkbkCjh1YbKdYVKdKo2f2cPkb++i8WCGVHcAX8phaptGx8MZ12N4ZhC1uQmnq5li1If+0AGUmzch8iYimcaennUlJGNRZL6AUzTdIlNK+vw+H9K2mXrXTeSaBGvuG6J5T4Rjn91CzZiJljYpxnzYfoVUh0rdsSLGRIbk+gixAxNYpwfO2XfEw+Ma44pfmy6aUh8OF9X9DToSJeBGLJVIuJIDIAMGmmkh0xnX+9/dgdkUxoxoJLs0ImctBu8V6LMqUoPYMZjZ5tBwQCG+CfxTgky3jX9SJd9o459S3QjnYYu5tRrBSYdMq4JvTuJLS3L1CsUoBKY7iQyaTN/gQy2CmpMEp21SHRq5JhA25LuKhE76MCOSwIQg975miq0mAIHTPoq1jqsI2G4jFUn9MypKEfScRM/YZJo1jISDL2GR7PZRezyHYjloY3EKvY1oyQL5liD8h6dS5XH9Ec+aK7KfD35tP0f+/HVLll8JCd6XO3d89OGrPYXLxicfOcnvvWb9kuWrJQp1QYNDSjkGjJX+TgkhjgLtwJuAnylt9lXgMdyb+puAr0lXh+spIURMCNFaGmf5fdiO229DUZd4wLTHnwNVRXa1Uf/MbMUTqNy8CevQUWpPDzD9GzuxxieY/o2dNHxuDzO/vpO6I1kaPucaJw6lOo2nnquEGnUgf+8OmHH3JQ8cqaxT/H6C/74XG1Ab6kn3tqMWHRo/447X9A+7AYjshvj7dtL5F7tdb6CUqJv6sI+eRMzO4Q8FsKkqPC917JW2jZ1IzhfKSzftQNo2FAoohoEvLan/4h4sYGIn1LLH9SzOJQiuX4sT8gM16A/uxwEip8NYpdoXz9jwuB5YiWvTJUwGaduuGpXlFkgLTasoRZV77gBL1elmZlGOu3UTZfW9DT9e6DSoK70u7ieuNtRDLILdfwZ1XQ/+B86grekiUopaKMEg4WwWJRhEqa8D06T1wYkFYwTKf1ygX4ZaXwdCYE/PoITDKKGg6+SJRLBTKbTmJozJadTaKPbMLHU7b0Y7MYQsmlipFL5EEjuRxFgl3jYPj2uVTPHyeu0HpjOsaVhczXV1uRy2k+NI5lbICFwJTl4gGnW1uaQaDiHEGmAbsBdorrpRj+OmNYB7w6+uChwuLVtwUxdCfBD4IIBfrUHxBxHBAE5PG0q2SLovippzCAzMYdWHKMZ8WEGFTV8KUXBUntwTJXZsJ7kmgTELA3+xE8UWDP2PXehpGNsVoiO9kXxbGGMii3NiAOfubUxuD+CfkdR95zBSgalfWI9ZI9BTbvPByGCRfL2OMWeRadbxZRwyzQpzW0C+ZTsAXd9VmN2gkWtxiB2F/v99B07UQklqtP2nJBi+EWU2jVNbQ7HOoBDTiB5PIoVAKVowMQ1FE3QNmcvPS0UabqmmCAVIvSvJzFtvwhoJ8taf2ctjn7oDgEyboOPRLMM/E8RIgPlf7iDXpBCYdKg7GIeiiTAtZCIFs5dydj08Xr5csWsTwYvZuftS6jSuRiLub7tooqiKK4QRqUEUTWTQj+PXELbErPUjFUGy24eRcNDTNpkWHdsAxYRCraBQJ/HNCTp+NIsdMRCWgzaZwGqKomaKzNxSR2Qgj9IPzMwtnM+tW8i2hdDTFjZQjGj4EhbF27sRNvhSJmZQI1+vImyQKuQaFYQNjgZaVmKGBfUvmKg5B0uAv38StWgy+c4tND/ifm3lxqNOKo2yuQ95ZgitvQ3OjJc6rzuo63ow22OoySJW1IBHvQiHh8dK4ryEJ/Rf/tJeHv/9Vy27Tlz2FnwXxwOHRvnku7dd0mfypo1pO5Umd1dCkviqssp9ORdtcAghaoB/A35PSpkUVRIBUkophLikQ5VSfh74PEBE1Eknm3XrGKZnsIFASYzJxlVaMUr/zpbuU+t46oL7cADfc/MKLMrjz9Ly+Py6wHf3zXv3qijr1pfrOIKwpO9H2wPzfy9WkCnPG8BX+ucsWr6Akhe0whS0vWX+7XNAHW50pezp7Hxyfn30fGN7eFzjXOlr00V8wH0p1Ww42awbnRBuV3CRzqDkC1jxuKtAZ9uuMISqIotF6h7Oo3V3IjNZ/Lm8G+1dhMN8Z10LYMD9vceqROvKUt1l1St54Aj+qn5cgUWvMH9dLRPl/JRjLvVf2LNEntvJZKDU02PJMfSfQTklkFJitDTj4eGxsvT+0Q9e9GcL5rlTcv7vb718FCDe/OknOTaeYuBjbkfula6hudJ8//kxPn21J3EeLsrgEELouDf0f5JS/ntp8UQ5HUEI0QpMlpaPAJ1VH+8oLbsolHAYYfhAVV052WAQHAcRCCCiYeyxCWSpsHrB54JB90a/82ZQBNkWg3xMwZ9wiD45iD09i9rZhjR07KMnAVC3bCDfHsb/1AkwDKx1bVhhHf3B/eUDR+toxxoaRrl5E/mWEIGzifnPNze56lIzcZxUiuJrtyM1gf+h5xB9PYhCsVLwXU6HKkvzltVe5g+glP9dSrVQa93kCTseR92yAXl2tJKWoYRCKI31JG9pJfjvbsF67s07qNkzAPUxRCaHzGQ9WVyPa56VvDZdkLLhUU6FKheSO/PGgJPNLklb0lqal5WKVTesQxSK5NY34R+IM7etkdrdw1hDw256kyPdAvVSZNSemFxWSnyx7PeSa8/i/ZauVeVtlVgUEQqS3tKE/4F9aN2dWINDbr2daS4VwCiljJX3Uy6SV2Mx7Hgca3ximb16eHhcTvYPzLJ9Td2FN7wIJlPnvl48P/LyaapzbHw+tfXwy2je1woXo1IlgC8CR6WU/7tq1feA9wEfK71+t2r5h4QQ/4JbkJm46BxpIdyH6qp0Z2nb7s0xn4dEsvJAroTDlQdwtbYWOx5n7r07iX1tD2pDPaEnZyr68RbujdM6PeBu39zkpjRNx9GPHJ9vqjc1hV49HykrN2rn0FF8h+ajCGokgj0xWb01vh+7horEVdWqxp5LuMbLsPt8U77hVwq8FzUBLD+gjP+3XbR8YjdaS3PleJ1Mhtm33lQpoFdu2kjg/n0Qi8LoBNKRldxxD49rlRW9Nl3chEAoKD4ddN1Ve1IEIhQCn45UFczWGErBQmqKWw/hV8mFVfLRXoQDii0xA4LZmx2k4RAY0vElIX9nM03PWuQ2tTD+/i5qzkqEhGKNIDxqETqToritm+DRcWQoQLovRs0L08iQn2xzELa0ohQdUl0+pALhYZPpG33UHrew/QLbJ0h3KBizrjHkS0nSHQpaxi08Dw8V8E/kyL15B6k2jcBsO5YhaPzxaZyuPrTRWZxYGFE0MZvC6JMp9/uYnnXlcDevx6wLglhDoU6H+72UKg+PK8nbP7uHhz9yD2sbay688XXG//rxcT71aP/VnsaqIpk3CRsa4nI2OFnExUQ47gR+GXheCHGwtOyPcG/m/yqE+FVgEHhnad0PcGUn+3GlJz9w0bNZpphwgSeu6qG8ugiz/HAe+1qpK3dJo/5c4yw2FF4M5bzlS6FsbFRzoQLvlk+4BeqLvYLVal3Oc65xs0Qy08Pj2mblrk0Xg5TzeU+OAwE/WBYyk0H43MijPi5wagII28GM+cm06OhZiT9ho+YleqLI3Pog3d+3UQsOU2fE3wAAIABJREFUvrE4I69rovaYQz6m4tSrNB60UIoOiilRijaOoWJF/JghhUJPI0rBJvz8JNbpAdRNfRgzeaSmkOoOEjuRRclZTN0WITTqgABj1sJ/dISatS34BqeZfE0nWsHB8ivUjEiCE0XS7QZmwI9iQ/OeBNnuENEXkphrW8m0+4meHkWZAzQVxXIQyTROSz2KrqO1t5FvCSMciVQEwsv99LgOGZhe+d5Ys5kiaxfng19G4pnihTdahXjGxlJu+tMHATjz0dez78wsY4k8b97Wfln3cTEqVU/AOauCXr3M9hL4ry9xXh4eHh7nZVVemxwbJ196oq6uYyg5A9T6Ojg7Ao7E396C9ugIal8PlKSx7aMnCdbeRvDEFFJTwafT/pNpzLogas5k+pYIxmwR8eRBtM4OzK4G1KyFNpNGH5ekNzcQGDMpdtbiy+aQpoUyZyEsG3+Njj40gwwHCcw6SEUQHEojTg9jpTNoyRTZuzdT/1wSeeAInfeD+Zpb8Q3PIUUtdkDBFy8idYWakwm3OWA0QPTwrJs+FfTjRIMoz/UjO9uQqoBgAJnJIhyJPpdH6iraI89f0VPg4bEauRJN9y7E0GyW2y5TWlWuaBPwqQuWXY1j8jg/zw8nuLFjvhrvB89fWhD/yf4Z3vNFN1V/xQ2OFUHMd8xFCBTDQEqJUFWcbNatlVAUzN4WxJMHce7ayviuIJYf2p4oIBUIHBlh6N29ZNsdwqcUWn86A0NjyJ52xJkRUFVEpAa7LoJ89ghqYyPmxg58pyfIbG1HT5goTxx085cTSeQdN5HqCaBYYPkF6Q5Bx1/vZuQPdhE+6zC3XkEtgH9G0vTkDMlNtWRaVJo+vRtl62aUiVnsjkbU0RlkwEA40vU4RiI4hQI4roymEvC7nlHHqTQDEwE/yVf2Efr23kpHX+eebeTrfSimJNmtIRVoe3gG+8hxUu+6g/C/uEX02pouMC23g/mlB2E8PDxeDGWpWyEQmpuYKfTS5VUIUBSUUBBZKKJEIgifjj0yjnLjesRcGidWg9Tdm7n/wWexLAu1ob4SrVVwUzXrq4rAraFhRCnlsxw0CJw8jdB9qNLBKkVPy2mb+sBZN71U9xE6dso1jkqf0zo7kKkUvh89jVTmHyr0hw5gA9rJhTeLijz5iaViFRLguOtBtEr79x0F6mNIIdB6uisNXT08rhc0deXVnD78r4f46A+PcWvXYkHtS+dD9z3DF99/24Jlv/j5C4v3XElG5nK0x5aT/lnKtdTg73zc+6knOPGXP49PUwD47X+6tN62ZWMD3P4d5XEuB0KuAk30iKiTOwNvWFp8eBm4UIFkNdXFksuOtW1LpXv5Jc1B0xCGgZPJLGnKt7iIfLn5Tv72rkrvj/OhrenCHh4FoSDNIg/Jbx+QUm6/5Al7eHgA7rXpdrEkWOLxEvGuTR4A27dvl/v377/a01gRHj46wa9+9eV7rLoqOPGXP8/X9gzy9ls7CBkaa/7w+1d7Wjz++6+ks+7C8uWrYa4rxbG/eB3+kgPrpRx3X1MNP/nwPZf8OSHEstf3VRHhEKqC0tyIyBcgGsaOBRESRMHEDvtRM0WEaXPmHfVsefUJfr/jh9w/dys/+tydzG1xWPvtIhP/Vx7lkVqkiuv9fyzBwJsiNBxyCA25BdR2SCfT4qMYFtSM2cxs1vAlJbFTJvE+H81PJZjbvJnQhEm+VsMMCdSCZOIuh8hxDdsPuffeQfS4INsqUIpghSVWjYO/JQPPRgiOS5p2T5NZV4uaswmcnqHYFsOM6PgnsiipPMzOIQtFhKa5qRSmBT4dAn6k7SCLRRqfjPLG+kM8mthIMTFC/7o76HzYZuJWHTsgUQsCe2Ma40ANxYhEarDui+PYO29EagLfSAKOX+UT6+HhcVlQ1/Vg919YM15rab4iKlBlFUAPD4/rE9OW/NkDL/CV3QMcn0jxvp1rrvaUALj7bx7lzEdff95i58GZla+fuZrsOT3DKzc0veRxLncjwVVhcEjbwZmdcwvBJyZBUd2+GXUxtPpahGlhNkfp/eoIqT+d5nff8ztEv/EUxrsloUEVbS5P65tdPeXM22+n5kwaZXCc3n8qkN5UhzY6izU8ggrUrenCGZ9EbllL56CNks5jnR6g6UE3FcC5eSf+Q2fxtTVWohn1j7VhjYySv3cHoc8er0RB8vfuwP/APqxX3Yr/5ByTrwlTfzgNIxP4j55E6+wAVcEOahg/eBq1pFIldB/StlFrQjiprJtaFQxWuq0jJVO/18mX980BObLvbaNzysL44dN0lYxVtbkJZ3YOaRbRWppJ7lqD1RxFP3QKFIG0V0crew+P64ZFDQAXK8+di7LiXiWtdBkuxtiApeISF8uFIsGXw9goy+N6eFyPrIJkkpfMV3YPAHDf3rPct/fs1Z1MFR/4ytN85QM7ll1n2g73fPyxlZ3QVeYDX3660mtkNbEqDA5wVaeE7kOJ1OAkkkjLcvOd8wWswSE0o6/S0Cr6jafQOtqJ/PNTRJhvqgcQ+vZeJKW84ukZAsfB8fsr662B0o/kwBHXwMAt5JT5Ak4mQ92X9iBDIeSz80pWxd5mlJFR/A/sQ1aN5X9gnyux+8gBLKDuy8Pz+xbC1ctvbqr09ahI4pZ08u10xtXRl9I1NoSYf0jZ5xZWzv7KTuq+tMfNsW5sxJ5ym2vIVLoyjjOXqPTjqDziKAuLuzw8PK4w1U8U0kHx+xHhMLL02xZ+A2qjrlqTqiDSWWRNECcaBEVQDOpo6SJmxMA4O0tiWxPRh06QubOP0Kk4M7c1UHcwDicGzvvgXpbfrq4BEboPFLc+TkTCbiF3NEyxux5t/wnyd28meGgIDB92fRgUhVxLAGOmgFQEvpE4MpubV/gTAqSsRD4Wp4pWUzZmnHweYRiITWvh2cv2rXt4XFHe+bk97DszyxN/8EoiAZ2IX7/whzxWlMeOT7G7f5pd6xqWrOv74x9ehRldff70e0d46y2Xt+j7pbIqDA6hKGgtLaBpyKAf1edDxsJYdSHERAJ183pEPMnUb+4k1QtWrUXfl4sM/mYXbY+bpDp0jJTE1mH2BoF/SmAbYPuh9phDeDCHmixghw3m1gcRDvgyDmreIdegEZiyQECqU0M4EJh2CH5nL1rvGuz6MPENfmrCt5Ho0bENaHomj/rYM4jbbsRxHEZ/eR31L5gkenWELWl+PI4T1FEzRdJ9UWy9h+jBKdA1tylfKACTM2A78ylVigBVBUciDB+jn6uFn9RhhqDw4BpOnG2g8XGdxsdDjP9sK1oWZm4CLQdaVuCo0PpUAf9xV4df5AswcLXPrIfH9Uf5wdvJ593+Qbh1XNg25PLY2awrjhEIQDKFEvdDXQxtoog1OIR17w78tkPNt/bCpj7UvA22Q2DKQoxOIZobyd7Yip6xMEMaQkqKYZXQWAEtniPXUoO9tZ3AeJbCjl6sgELkaNzt/WFLSKRx1rQxe3OExoeHoLnR7TnU3YSayKHGM8hEkrk7NxJVQE/ZyJk4qVdvAnpQCw560sTXP4bZ24Lt1zBGEuA4mC1R9LE5RM6NllhjEyiGgXNjn3vM6TzXgKPX4zpi35lZAO76/x4F4PRfvx5FmU/feeDQKDvX1tNQY1SWDc5kSOUtRudyfPDrrtLDP77XK1m6kvzSF/Yu8er/5IXrt8noV3YPVCJSL4XLWTi+KgwOFIHMZJFS4gwNo3W0Yx89iQDsHTeiHDlN7u7NJNdJaMvTdZ+PgV8I4p8SaFkb0LF1iG8W1B2RJLsFoTGJo4OWlyg5CzExw9z2dQCoRUlNfwLHrxN8YpCZN2+h/vvHCfbXYp84hdh+A9Yrb2Gu06D2SBLFBMcniJy1yNeqzNzgJ/PanRgzgrb/tZu6th0UIyq+hKThP4dxasMUaw0KPSEiJ1KgKWTX1RN6ftTV5Z+dQ/j9YJuACrqGk86glGo4hN+g+FQd4lUJbFthLB4BVVKICfI99RSjgppRC1Dp/n/3MPAXO1nzJ3tQt2wATYWJKe+m7uFxlaj29pdFIaRtuw6FYhElFEKpjVUinsKyUKTEKZpoHe1ummZpLPvoSfSjbuTSOHGqErn1lzqTl+OY5UcdB9CfAx03RdQo/VuS3DU8Qu2zVPbjKzVFrd6u5e/nhSpsIPidvVRjAWJ8Aq3qc8rJpfuyk0nYf9idn6a534WHx8uA54eXisi878v7+Mf3budD9z3DcDxX6V79g9+9m81tEYBlU3h+558vTS3I49J56IUJfmZDI5qq8OMj4/zG1w9c+EMe5yVbtNBV/bI0BFwdBoeUiGAAWaqNsBtj2H3N6LM5LJ8KW3oJnJ5lw99mSN7Rzdk32zTsVkn2SGY3+2l+fIaBtzWw5o93k3nb7dSedBh9lUPLfyrYPuHWYsSiRPtz5BuNUkqDSqHBj5FMYvugeNMazBoNvS2KbSgEzsSpPzhL4ZZe6u47wOk/uxUjLmj7+G7OfHQnwoL6oyb9f38HalbQ9WCBkXv8mDUdtPzrcYITPoKGz019am1Cy+vYzTGUVB4hJRQKJelfBSeRQvh0pGkhAn6ssXGk1kvd12to/Ug/s3/SDVKiPuY+AHQ86ce6fRNr/x+3fiQ4Jpj9wE70rCQ0HkStDaOkcxC/mifVw+M6otRlHMc1LISqogSDoLmXWGH4QFXAskFRwLJQ6+twuloRjgNFCyVXgHwBrbUFe2oataXZjTyMjF6xaa90XYW0LLT2NhhesV16eLwopJTc+6knlix//OQ0G//kR0uWv/7/PM7Wzhg7epbve5E3vbrKK82vfe3lqwK2Wnl6IM6vf20/3/7NnWx/iT1dVo0s7oWkJ9XmJrAs7JnZFZrVyx9PetLD46VxWWRxS/UOC1BUFL+xoBhb3bIB+8hxtNYWrM5GePowzl1bAZCqINfkwz9tMnCvjlIQqEWoOyIpRtyIp560yDf43L5EEwXMsI4xkyfVGyJyMoUd0NHm8uS6wwSGUthhP9rzp/n/2XvzMDmu8t7/c+pU9b5MT8++aWY0Gm2Wta8YDLYBG0icsG8BAgRICPALyU1CIFwgl1yyktzkXhKCCUtYwhrC7g0MxrIsy9Y2li2NNCNp9q1nuqf3qjq/P6q7Z0YaWbK1jeT6PI+eruXUqVPdmqp6z/u+37e4cTmWV+I7MYkK+si0hSmENQIjRcyAJBuXCAWFiCDSbzLTqRMcscnUahhphZ5VzLZoeKYV0f4CxbBEz9iYfo3wgRHMU4PI2jiqthoxPIYqFLk7+e/uvWkJIoS4HfhHHOfZ55RSnzpjvxf4ErAZmARep5TqL+37EPAOHCfX+5VSPz3f+ZayLO6Xdvfz0e89cxl8F5friTdub+Ore07xhy/u5n23rrigY5a8LK5e3wCahioUya9roxiW5COSwLiJkSpiWTZ9dwbZdvMR+pPVRLw5xtMhACYGqjCqcmiaorl6hr6hGta0DTP09XaydYKaQxZGysmTOH2bQdWTkG4UFCOK0EnBbJsidFqgZxWFqCAwYlMIC3JxQa7ORligtWTY1DrAnic7MQJFGqqT2EowPB7F6y+SnfTzwvVPsucH62j/7iR2wMPgi8L4xhW5uMCbUEROFvCdmkaYFiiFms04Ho50BiEEqlAAw0ALBoh+u4CuWby65lH+vOdOkiNh9EiByAN+TJ8gua4AUmH4ixRnPciEQeSEk9PhmbUJnsrAnm9d5V/WxcVlUXka2zpL+cnqcXSszeERGB4BQPvlXHZ1qPTZdf+5TzVfjb4cZhV+xAmv0nBCrryHnU+B82aoPfA4GnOhUL4DUJbG0JlbLlNeD83bFp63XH6oGMyFbFmjY44CocuSRQghgf8LvBjHB7VXCPHfSqkn5jV7B5BQSnUJIV4P/BXwOiHEGuD1wFqgCbhXCNGtlLom4+eeGkm5xoaLC1TUyC5FHseSMDhAoHJ5p/BdUz1GqoDv+DTBqhA81YdavRw5PUvdo34OD6/B8kA6CzWHs5g+STRv4hnPc/LOOOlTQbSNMPmTZXhR1BzIYAxNOYnalk1gsA5v0qLuxyeZelE7Rsai8Zt9zLxoOXrGpvb7fahcDq26CrO+iqkbQkx3Q+TeIKmf+Am/1oNnxkAOGIzv8LDsV3ly8RD2WsHoyw2iL7VhIoGor6Z2fwHj7kcp3L4V3y960OLVYNuoTBZ7Nu2EUeFUJFa5fClp3Aavh2N3dZKtEzwcXYt/TOCtgs7/M83wLQEQEOnxUHMgT99v+PFOa3T8zWGnknE4iMjmUdns1f5RXVxcLhGythZiEazefuTyZajBEZASa10nxsgMVnXISco+NYrdUosoWnD8tKN+twhaOIxWU411evCc6lJlynko1os2oacKzmTJvh6Kt23GM1Nw7lmAsBRKCkTRQgyOYSdnQdnn7d9lybAN6FVKnQAQQnwduBOYb3DcCXystPwt4J+FE9x9J/B1pVQe6BNC9Jb6232xgzItm4/812GUAlXKTnSWmbdcWluwXZ3R5uztzDu2aKnndJKxi8vT8cTw4pLtz4QlYnAosCyE14vV2+c84KJhNCnJ3rQW36HT2LNpIg9mGX//cgr1RbxDBkMRP0qDquM2fb/hYdU/DHD6lS10/ccM02vCTK8U5GJB6gsmcjIF+QL1e4OMbwzCrmUYGZvgPT30/eF6Oj97nFO/tZxAfxxlSJIdISJ7TlPl1Yk9aXPsnQaTz2tg9QcOM/r6tXjv20/+DesZT3uZXVlEn9SZeMVKgqMmVkcD2sFe7Oa1ZO/chm8sD93tTj4KoE+k0EpJpOVZThGNoDJZhNSgUGTipiLdb3+U9Ku20/LBYzz+85VklkXJVUPHtybofUucqVVeVLCA97hk4HfXET9cJLC3H0IBVOLCqqu7uLhcJKX8DaEJJ2HcshEew8lN83qxUym0WMxpqkvn734qgdZQB/kCKuBz+piaJrehHX/vOCqbI39DK8JSeEZTZNqrkHkbj28FiRuqCNeGMUZmSNd6yTTWI2ww/YLqCT9mxIvpkwSKTeSWx/AmCuhTaRifgtpqRDZPtqsW70gaa8cNGFMZEuurifamGd8UouEHJ7EaYmDD5MYIoSGT5DKd2n0p0m1BMjUact1OAqMm45tChE+boMBIFck0+Qj1p8lvW46RMTGGkyiPgVCKTFsEI2OiT+dg/1X+zVwWoxk4PW99ANh+rjZKKVMIMQPES9sfPuPYRTU5hRDvAt4F0NbWdkED+9lTjndMIMrlbhBOX/P6nfsUiHnLlfNWlllkezrvGsYuLufil8cmLrqPpWFwKLCzObSqKOp5G5BjSZTXA6OTeEd8YFmYG1egPbif6NHlbHxxD/0dcY7vb8GuKZCd8VG3x2b0xc2kN2U5FYgSPqUInYb6ewawR8agsR4VCZGt9xEasvBNFDAm05x8/3oCI4qxOzoxZhWnfr2axt05fGN50jc2UwxLkss0qvcopjaZDL7jBoohYONq6n9qML7FBtu5eY2/oIj3hxIjKRDtLQT3nya9qRWx+wA2YN66Ge9wCpWYcbwZUkN4PI5iVT6PkJrj6aiNs/Kfshz9xx2osElqvB7LAzOdBnWPmxz97TgyD+kXzKLbGkp6qH0sj28ohdAlajqJMJbGT+vict2jFCjLKalTms0v18ihNKFQrp8zH7ukDDUf497JShiSXgpBsgDvkdIxQOSgs2wC/jP6MAHZdxJZOs5XOq4S11Kqy2H0n8KGSihV5AlnBrhmbykMqpSoXl2K6KrB2R94dPGwrTKhM7bPj6fx9sxdg8tzF6XUZ4HPgpPDcb72utTY82e3XfZxlVn70Z+QLlyTkWAuLpcN7/USUqVs23HZj48jxscXyiqWHtTag86DMvbF3fR/EWCA5YtIncT/beF6+eFt959Cb6gn8N3eyj4LaHni6OJJncxJSpYfovNLyiggshciX1v8msrX4P3hSGWbft++hddWOq8oFJxwspKcpjY0ikqnaVq+neC3zk6oW/790uGlUIczz+ni4nIVqEyxaqUPUTFAytXEtUAAVaq7I6TEzuXR62pQponw+bCnEohgEDuZXLTyt6yKAqAKRewbuxD7nkSs7UKkczA+iWppRBkSOZPGLBkj+rJWzNNDlaKi5cKAYuNa5FgCdIl58jQyEnGkyVOpyvn0znaU18A6cozCS7fguXsfsjqGNTmFdsMqtIkEVmMN6vEeZFUUa3oGLRxG6DrW9LSjrlfaLmMxrEQCuaITjl6uH8HlIhgEWuett5S2LdZmQAihA1Gc5PELOfaaoOcTt/PgsQnefNee8zd2cXmOsLIhfP5G5+GaUam6ltCCwXPGTl9JXJUqF5eL43q7Ny0V3HvT0qNkQBwFbsUxFvYCb1RK9cxr815gnVLqPaWk8VcqpV4rhFgLfBUnb6MJuA9Ycb6k8aWsUpUtWKz+6Nnyty4uz0VetamFv3vt+gtqu6RVquajNzcBoNJprOmZihdAW78abTJZKZY1/Vs7qfrKI8y+eiu5mCB8ysQ7mSPZFSTcn0U8dAAZr0aEgk6cdC4HhmcutGHbOnjkEACyeznFujBK15A/fwy5phsA64mj2DdtwBiZofedDfjGBdVPFEk36lR/fjfFl2wh2WoQv8vJiyu8dAveiSwc6atcT9n4kGu6YWwSe3oG4fE4uRulasNnqtUIXUc21GMODHL0X7cSOGnQ9g/7ydx6AwDB3gTJNdVE9wxw7Pfb6Pr3cYZfXEf9w0m044NYCbcAh4vLVeFMb+m89TM9ki4uS4lSTsbvAz/FkcX9vFKqRwjxCeBRpdR/A3cBXy4lhU/hKFNRavcNnARzE3jvtapQVcbvkTz25y9m01/cs2D7y9Y1cPsNjbz/a48v2H5TVw1v3tFGPOTlNf9y0bnyLi5Linfc1HHRfSwJg0MIAUKgN9SjTBNrdAztxlVIoUFNDOvYCeeh7TEo3L6VdINO7AvOH3ToGw8TAoq3bUbrOUH1cAyKRSeUqqYaK+xDDk8h/H7seBUzL1lO9CsPI48NoAIBREsj4zfVUf353RRu34q3tQX7xCm0xnoAjKcGsZY30npPgamVXrw/3ksgFkO0tpCM6xVjI3/HVvynU9iHn0SriqJ1rcKM+pFHB9GroighEOEQamLSCZ8oVyOW8qzvQzY38sT/rKf64Ta63+30P/QHu2j+/jBWbx8qHCaazTPxojbq99hYT/VS91QvSghY0YkeCaFmkm7hPxeXK82ZHuN5666x4bLUUUr9CPjRGds+Om85B7zmHMd+EvjkZR3gFaY66OHJv7idux7s43v7B8kVbf75DZvQNMGvr2/ioeMTvPHf9vCJO9fylp3tleN++ccv4pG+Kf7wmwcq21pifgYSrnrk5eT4X76MomVzeirDR7/Xw+4Tk1d7SNcNa5oiF93Hkgipinrq1K76Nziz/80NiHQWFfCRWxbDM1NAFC3MsJeTL/OhFQS3vOwxfvaDTRgbE+SyHjr/2mTgz6F4JII+K2j/8knMgUF6P72DwJBGw+4Mmmlj+XUy9R5mOjWCQ4pctaD+kQxWQGdinQfLC8vu6kUE/CS2N1J1KMGJ18YpxCxW3pWk/84Y+XqLqkMaic0m3mEdz4wguzmDbljUfDVALqZR+50nyG3pQijwPTXC1POd0FbPrE3o8CjKY8DYpFNdPZdzDJFsDkwTVSii1VTj/1KafU+1o3kt9FM+pxZIUVAMKSy/jb95lrA/z+hgjLbvCYK/eBJrTTtapuB4TmbS/KTv792wBReXi+AZh1SV8zjOuK9qPh92oYje3IgKB6BowkQCtawRbTIJhs70lgaih6cY3xHHP2kxvlHHOwVaUaGEoBiG2FGLyTUSzYRso03kqEbNoSzTK3z4EjaeGRPPWJpcSxhjpoAV0ClEdPSMRabeIDhSxJYC/9AshXiAqdVeIidNAgOzTGyKYhsgc2B7YHKzReyAxAwIlOZsFzYoDXwJG/+EhZ41ydZ68E0W0ZN5tNk8uWVV+E7PQNFEBbzQewoRDkE2h4hFUT4vP33yU+69yWVJh1RdCnJFq1KVvLMmyImJqx9qfT3T/6mXL1j/7wNDZ3minkvc+8EXcNvf/+KS9HXmd/t0nCukakkYHOd6qMuuDqxeJzxJ72yn0BxbUAjrQpE1caypaWRt3ClABchIBCuZRPP5ED6vk4R5RmjTpUDWxEGpuQrpmqwkb54rWb08tovFjZN2cbk43ByOhWiBwCW5T7r3Jhe4/g0OgPY//SEAH/u1NXzs+0+cp7XLs+Grv7Od8VSeOzecrcT8054R3v3lfVdhVFeXn//RC2mvCfLaf9nNI/1TF93fpTA4lkZIlaaBkMhYFBpqsYIe9PEkamwSvaXZkcXtO0nyeY1MvWInVmOeFW95DAC9tYWpm1qIfO1hTn58F0oqbA9UPQnVX3gEsXEVYshxq1WMjZo4Vlcz+sAkoy9to+6XY2RXVGN5NbJxjfp7h5yaGEJgjjiFgMbfsxNfQmH6BbEv7EbvWIbZd5LJ39lJ3XecCsH9v7uKSL9N/IEB7MkptPpap0jW1DR6Y4NTQVjZyEgEO59HSEeTH8vCzmbRvF6UUljJJMk37iA4VED+/DH6/2IndY/bWB5B+OsPozfUk97chszaCFth7DvG6feuo/mv9yBDQcCRGcaN4HBxeU4iS3U/VDaLnctVtldCOZ8l842Ncl8Vdb3FxDLOMani4vJc4QXdtfz6+iZevbnFNTguA3/3mvXsWl5zzv0vXdtwBUezNHjT9jbaa5x3wbvetoV1H7v7ovr74Iu7L8WwlobBAaAFA06C99QMwl9DflkcrbEKYStsQ6LPJMnVCOIHbXIDPvJ3bKUQlWSrNcwgTPzVTqqeUhgZRaZWY7YFwrdtxJYCH6DNJLEzGSbfuZP453ajZbIkb1+HnlNMba118jpWdmGvr0EZOnZbPVoyi+poYGSX88MN32jR/XuPoLc0c/J1zWTWxOn+Pyn637MK35T0pZLQAAAgAElEQVRC2BA+nQdDRzQ3MLGznurvHsZe24E+WLIwlQJDRwYDTrVxqaGKRbRAwNlnWQhdJ/SOQUZ+2krTz8HsyGEd9jLdpWG8Yhvpekn1k1mydV7SDRq1P09R91gBzed1CgimUmhVURi7aj+ni8tzi3Lxv1L9G+HxlD4NhMeDqnbyuKywF820SbUHQAhyVYJkJwRGBMl1BfQJA9WaxeMxyecMaqtTjE+GWds2jC4sop4ce/9rHfmYwoxaaBmN2BEBNlh+51MWFZkGQbzHIhvTnJAoHZSAXK1CnxXka218oxrFqCJ8AnJxQWZ5Aem3EELh8RbJTAQI1mbQNJvckSoCw4JUh01gSCNXq5BZgZ4FYxYCYzaRp2awIz6UFBhTGUTeRHl1rJAXmSlihr1YfkkxKOE737qav5aLyxXjS2/fdrWHcF3z6xuaztvm0Y/cxpb/de8VGM3S4Ld2Lqssh33Gs+rj82/bwtu/4Hgff+f5nZdkXEvC4FC2jZ1KoXJ5J7FyeIT5qdQaTrGohk8/BDjC3+DUyMi/aydNf7NQEeJMtWCttharNDMX/5zT1s5kCHxnoc629VQvoad6K/UsLJyCfo2l7v2/tRMAc2CQ5k85alkKqKvbivdHeyv9lOcPq46dcIpr7T+KOW+WsRJe9TRot56mqVT0tevNjy+4Ll/pM2h4CJQSUY27H8WGyxIW5uLich7Kxf/yzt1D5fMLZ/eHnXo8AueeESrdLkLM1feZPw8na2sRXg8IQbQ5gHmswOzGDtL37iP2SovIIwNkVzWgWSbpRg+RExlm2wJEjiax9z9BHCcMNXh6CNnSSK6zBu/JKUilHY+ylBXFv3KdDLFxLVbIg3GoD+pqMGsNxK96EFtuQOt9grHXrGHlx4+Qfv5KvA8VwFbITAEz4kNmi9gHjmBURRGhEObAIHpLM2LGRAzbkM9jSImcTWO4yfMuLi6XgN9+XjuGPH9BupqQl3jQw2T6+r/3vOLGRlY1XHyC9y2r6ivLfs/Z4kbPhiVhcAgp0VtbsUfHEWvXoIRAeSVKamh5E7WvB7l6Bf2vrEGtTxHy56n5sOTo26L4RwVH79qCltQJn9CYbVOI5iweb5FCb4TaxxXhE2nUiiam1gawDEHTd44zfnsntg5GRpFq0/BNKIpBQdUJE5m3ydTqmAGB5RFkXjBLW02CxB5IfGonwdOCQgTMoKIYVkSPamQ+uZPQKSiGBM33TDGxJYZ/yiJ8cIzEtgZCp3NoeRPbkBinxrET0whdB0MHW6EKBYSUTmhCQx3LvzHIg0OdrK8bYigd5WhvI/FHdZSATIPADCliaycYH6hypi69FvX3GfgmLTzJInoiAz3n/+5dXFyeJfMK/YmS2pyQGmgawmM4f9emiRYJY6dmEX4fKpN1RB3qa7EjAWyPRJ9IYZ7oRwsGsdZ3oaTGZLePugfHybZX4d/XhzAMjHv3IdeuJPL4CObAIJ7xCVQ+T/nREnp4YRXvcuE/s+8ket9J7M1rUTVh9LEk9qgjD+4U6JtBRiLMLgtiJC1orCOxIU7kaw9j37QB7cH9WEDNv+/FMk2Cj/RXwlPL1crLQVPW9AxMzzjnLRk0wvCgRcNYE65ijIvL1eCLb9/GWz//yNUexiXnPTcvv+C29//RC1n/8YsLLboW+Kc3bLyo429bXVcRN+j5+EuRmrgUwwKWiMGBEKhMDq0qiipaYEhy1V6MlImcTJG9dRMjN3gJDCvymy0yeYOBjynocxRT/H0elISZNSaBUzqZmI416aXhcYU3YcIjh9A2ryVysohWtLFrYgTGTBIrDfIxQdMDaaa7AzTdN8XYrhhaUVL7yBTpDseXMtsfZGh/CKvepnYvTLwsh5WTxPYaZBs0lATvpCC1TNH8iyLCtIkdyWCMTKN8HsJff5j0q7cTGAZ9Ku0oU3m9iGAAOzHtvKCUX1h0HaVLfvqTLXzo1d/mP97zCl79/37K3xxowZewKQY0ilEbfVZjYjxCwwOS0dsLhA74iPbOIidnYXRiUbldFxeXS0glN8FGWYCyUaYTTqWyljOBUChgjo6BUohCEeExUIUiamIKzbbRTMcjYj9/I/zyccRDB9AMDzFtLXbEj56xEMEAKuBDRsNYPU9hvXAT+sAwMlaFikXItDuhp97JnKNSB6iTg079n7UrsT26M4EDFKq8yGQp3MvwIJvqMU+eRimFZ9rEMzSDdfQ4oXgQ7cZVaNM5uHEVHD+NMHSKN3Qg9h5Bdi93JktOD4OUiEgIOxxEDI8hImGKDVUYA5PY0ZBz3fkCUmgIXTq5bC4uLleET71yHTd3114yoyPi0zn4sZcyOJ3leZ+6/xKM8NnjuQDvRpmo/9mFFl1rCHFxBsLfvmY9VQHnGRH0XloTYUkYHMo0KwX5pFLYo2N49zv7TMDoO0lDOfzurrnjZPdyrKPHL+wc+3oo/3ezAe9haJinNh7b7WyvOeysW0Bwog5rdIzOHyzsK/qVpz9XORRrfmpm8Ft7KvsqlAr0CV3HLidfWhYkk7R/5Dhf+0gTksf47ppauni4cljVGeeLfHXhuV1cXK4gpXCqymo+73ye2axYqNTisIoFmKdEp5W8AeV22gOPo3C8B7S2YB05Vtkvf/4YChxBi5FRAoOOqp1i4d+/FnYMlDLC8OApFiptZE0c86QTtmmnUsifPwY1cQCMY0MVL8Z8tAf3O+c58747v9jo5BSi76Rz/zt9VhcuLi5XiPZ4gNdvawNgVcOZweYXR3OVn+0d1ezpu3gFpGeLK0dxbXHh5uFlROg6WjDoJE5nc+gN9egtzegdy9AbS5HNQmC9aNOC45Tfg3reBtKv3g7A1NudHIvU63cAUHzJnCqXjFejbVhTWdfCYWRVFLF1HfbzN6KFwwva660tTozy2pVo4TCj799V2TfzJqd/bcMaCrdvZfiDc/uKt22u9D8f8xZnu1zZ5VyO1+tcczCI8PtBCISuI6SsKMzItSuRa1cu7FuTyPo6TnxqJ4Xbt6K3NDPwZ7vmjolcfOyei4vL0sE8PfC0+88loW2nUgvWzyw8uFiIU3nbYsaGi4vLtUXINzen/Ey8AU/H+29dUVl+yVVWgIoFnpnX4kUray/TSJYGn/zNGy66j4Dn8vkhloTBgbLRwiEnJtpjoGIRrNoq7LAfFYsgV3QidIPp5V6Ofm4LiR+u4OhntmF7dSZu9JOt1hj6o11k6gXTb9mJsGHgQ7vIV+kUbt+KXNHp9H20n/wdWwEoblmBuaadkR1hPH1jJO9Yi3dklsTbdsKOGym2xsltXIbt0bFTKbJ1iqN3OQaJsJ3K4qfuqMI7niEfU2ReuZ2pt+8k1eZBW7/aKeq3az3WCzeh+XyYQYl24yqwbWR9HZrfhzB0hM8LloUMh0HTnFnJmSS9n95BujNK4F8mMX7eiFzZxak7DKyb1zO7sx3vtMCYKWA2VVPVa5Pf2InYug4RCTvhWl7v1fxFXVxcXFxcXK4igrnwmljQc0n6fOc8xaJXbTq77sWV5JmGD33mzZv56CvWnL/hNUpzlX/R7Sf+8mXnPXZFXYif/dEL8eiXzyxYGiFVll2pd0E6DaVZtjPdZfHP7Sb+OWc5VtpWe46QxNC85flhBt4fO/Iw8mdOHY/6h5zQp9A3BrGB2EGnnQCMeWNo/8icElbka054U8uPnf3tpZoygdL+cuKmGB1DltZ9339kQULnOSmpTHX9gXOO1Pfndi3/w14A/MD8P/NQ6TtQLAzjcnFxWWKcUZdC8/kW1Mm4kOOFx1MJ21qszoWMRMDvW+ilmF9w9AwWq5/xbIqPVupyeL1z4yv3F69GtdSjeo5dVB0QFxeXC2d146UNo/qXN29esF6O9b9W8BmSt9/UwSd+8Nyqh6JdQOL3PR+8+bKPY0kYHELT0Lw+lGlWHkaytraS13Em02/ZSdWXdjP4p7tovj8Fjxy6oPNUiu+dgVzRiXXsBOlXb6/kWlT2rV25IA76nH13tldUYRajrPYCzD2QNYnmMVBKIYTALhTRfN6nlbY1b92Mft8+Mr+5ncB396B2rkfsPnDe8bm4uFx+hK47qlUeo6JWJXw+0DSU3wuGTrEmgNIEWsEmXetBz9gUg5JEtyTdYaInJb4JgdIg02jjTWjoaZA5yL8ghdUbwjYU0WOCmRfk8B72o2egGAHvFEROmkyu1Yn2dWJ5INWmET5pozTBzArwjQtkQSHzjqpergaECWxIks8aBA76me0w0cJF5IAPPSNQEmypELbAk3TqeZhBm/BxiXdaIQsKyyMw0jayoPCN5bF9Eq1gI1M5KFpok0mmXrPFmc35iluHw8XlcvOJOxeG2MQCBolM8Vn3d/sN10cRve///k382j8/eLWHcUW5sSXKwYGZqzqGJWFwKNs+a5bvXMYGQNWXHG9D86ceekbnOZc6inXsBMBZxgZwQcYG8LTGBlAxNmAuqRTbws6VdPtL+85XR0O/z3GnBL7rjNU1Nlxclg6V2Xtln3Mmf77DuuwAN5jzkD4t/7RwteZfF2/WPE/oIjpv+5mCE5eTsk7efM9u5GuDizV1cXG5DPiMS6dWWXWOfIn1rVUcOD19yc5zJVjXEj1/o2sQXTt3ONQ/vG4Dt/zdA1dwNGezJAwOoWnIqhgqn8fOZJBruhHZPNnlNRj37qskjo/d3sHki/J4fEVubBpi4hMd+A6c4vRbu6jdX6DvlRpN9wmm1ki8UxActclHBHX/dRS7tQEOH8O86QYsr8T0a3iSJtlag+gPe0i9ZA3eaZNc3CDyxDSTm2NUf3Ufw7+/BVuHwIgidWcK+UgEfRZmtuVp+LFB9PsHKW5bhcwU0UenmdnaRPA7jyJXdJDursY/nAFLIcenmd7ZQvTgJIxNorJZR+4ym3OMDE0ioxFUoYBWX0tiWwOJVRoff+NX+Mh33ghAYFAgbJzZyRxUfXk3E+/eSaodur7shKGJqRlHEte2Yehq/aIuLs9RhEDohlNxXEpUPo8WDDrGh1UKaRIaQmoIn9fxfgiBCgVAKVTQhzaWQKUzWMkkensb5Aug1FzY6TWM3lCPXV8N+8/f1sXF5dlz11u3nLXtYiRT37S9bdHtd65vuuYMDoBjn7yDFR/+8dUexiVl1/L4OffFnib8rf9TL78cwzmLJWFwKGVjZzKofB69YxnMzIIu8T3eB5GI8yDOF6i79zQ3vnua+/evIfW/apnZYeDv0Wn94SSDt8UJH4XQNx8iEg6TvmU1wfuPIIRAxGPIqSRmsYAtBZ6f7MUjBIm37CD2xd2YN28k+G3HYxACCrdupmbvJPaNK2j+0Rjju2rxJSzUD8JUH5pB7euh+qnNTHcJWLEMz6F+MtuWw94BIkE/oq0Z8gWCT06gvB7QNcyBQaL3zDpFtmIx7FwOYdnOS4fhQUgNezaN8HlRM0mGb6uh+52PctfHOujA8ehYL9xEts6DMWsROJl0inH9626nUvGabkTCiblWpgnZZxAX7uLicmlQCmUWUZaF5vMiSmp1QghEVdTJc1AK1VjjfAqBkgItlUMNjiCaG5i+aRm2LtAsyNRpNN49SuqGGsJPVZHujOKdKpCt95Ku15B5mFkBrfcUyNYaVN39FNTEUEEftkdiBQ2KQZ1cTBIaLGB7NPJVkujhaYo1AWxdgCYQlqIYkiRW6NTuz2P5JIFTSZRHZ3xzmNCQRbZaUnUsw+j2IP5xm/iDQwz+Wgt1j2WwPRrGZAYz5qcQMQgenwYhKMb8GJNpMu1VGKkiWZ/Ef2T4Kv9ILi7XPxvbYudv9Az4g9u6L2l/V5sLqVB+rfF0uRqXSjTgYlgSBgdqLszI7Dt59v5y8mIiwcAO6MZJwK45WEqSHoSGeVW17VQK//fmJWnPS3407i1leCtF7IvOi7z2wOMLTqfft6+SaG4B1U85ydo+5kKf9Pv2UXPfXLiA98eOFrX1xNFzXqZVqsBrlTTr5+vyq1JYZXm9+51na1vLnz9WSYY/M/3z6c7r4uJymdHKlcZLnz6vU3VcaKBsRLUjx6i8HpTfg+2RyLTzt57sjmF5whRuqaMYFqRbLaoPOfkWKEXvb9dhG4qiP0a6WSMwLCmGHLU8pUHLz4rInEn0B0+SuHMdVT0zaIkUxY5aLI+GUIrgaBGZt5BZE62oU6gPIrMmsy1+CmHnISVzUAxDMaIzukVDbq6m5qCFMGG6Uyc4ajN5Q4DAqHPXM/tPEX+iFi1vok/kMGtC6IksxuGT0FCLyOYxTAuRzhL41Sjmuk48kzlmN7XA0yv9urhcl7xqUwvffuzy/+fXNUH1Ii+YF1MSTj/HC/q2juqL6NXlucTSMDhcXFxcrmWU7Xg3SquiWATpxU6lUKaJFBpIDRIzoBTS67wM2K0NVP2ij2JHA1rRQg5PkbipDV+iSFWvjZHIYXskidUh0k2CfJWiYU+OwZv81O8rYvo1lCYoVHnwrluOJ2WjTSYpdNTh6TlNbuMy/L86iqiOoTSBCnjRcibp9hCRvkn8YYPgkMIzkSbVHSX2kxxCKbr+cQSrowE5k8XbEMaYzFCsDuAfF5h+iXcy79Q1UmAFDRKrw8QOJxF5k8K6doypDGZ9FH1yFqu+Ci3gQx+dQaSzBDP5c3+PLi7XMVvaY1fE4LjUrKw/t9rVDc3Xbj5E7yfvoOs6C6tayly3BkfuFdvw/eBszVwZr8aavPDKmLImvmiBrEXbrl6xoCLwlSB75zb83zuHNrCLi8vlpxwXLYTjzZDSEcHI5UAItGAQNOHcd5RyQipnUmh+H2r/E9BQj9h9ANncBLZN9Ec9aNVVpNc04MkWEMLreGPfupOWu6cxq3xET9jkqiX5iEDYGrOt4B8z0HMKsa4JJQXpW5c7BsFNK9FMhdJAK9gUIzq+8QLK0An0DDvjlhqBYR+aaaOkwOxsJNPkIzKVphjSmVoZIzhqk63RsCWkGwJ4k4pclSiFfynGt0bwT9oUQhos8+KfcvywuXov3oQHLWsiAavkMXZxea5xMR6GZ3Sec5zo2aZwdF/iKuVLhXN5bZ5LhLxXzgy4bg2OxYwN4BkZG7B4Nd5ztr3CxgbgGhsuLlebM+pgLFCnUsqpcVGucyEEKptFFQtYpfDJsnqeOeioPMhIBJXLEzw4WNkmNq8l9sXd2IAeCBALBhco+dUsMixfeeGMWh1lrRmLhfLj+vRMJexTAMFSG9/R45W+zlTSCnE2wTPW55eiWrwSiIvLc4MrFX4kLrFp0x6/IA09lyXO7zy/g3/7Zd+CbVfKCIalYnCcccXa+tXYB44AZ3sk1PM2IH61n8l37AQgftduii/ZgnH3o3N1NHbciHboOGJZMyKZdvTvJxJYiQSyKorw+ysPeb2xAVUoYE1OoYXDZJ+/Cu+P9i4oyKV3LKvklpxZ1ErW1kJtrJJDkXnldgLfWSivW66VIWtrsZNJVD6PMDyVfA3noiXC0J2+hSD5hu3EfnQEa3qG4m2bK7kn5YJcZ9YUKdcSKavkLOjbxcXl8iIEQspK4TshJVq8GpVKQW280qZYH6Hol1geDT1rkW4wmO7WUFJhBhR20EIUNMKtSaqDGQbGN9BeP0lQn6DWF+TFscP05ev49qlmbmsa5YHRLjI/aCAfc2pwzLYpjJSgELPBFvhHBZYPLJ9CTwtkHrJ1CjNiIWzB8tVDjKVWk077MDwm8XCascfruf3Fj9KfjnPoWAtdHaNMpgMEPEWSOS+zM34Mn4nv4RBaAXJxiPQpsnWC6ieKKCnwj2axPRKUohg28E7myNX6yVVLikEB/+rW4XB57tFZu5iJvvT5wK0rrvYQLhv/702b+L2vPHa1h3HR7Oh8dsbs67e1XuKRnJulYXCwsOKufeBIZeatbGzINd1YR44hfuXoKcbv2u0ovgD+IyOo+rq5Ohq2wtzSjfbA48h4NSRT2JkMms+HNT2DKCk4yfo6zOERZI3zQmCnUnh/tLdiwJQr8M5PZNe8XqySwaG3t2H2n4LSDKEWDKLE2QUG9XFHUao8k6gFAmfV25CRENbMXHJ77ECiMtuY6PZSd2/p0srJ9WfWFBkveWKUco0NF5crjVKOZ0OTjvytlKhUClU0EaMTICUiFsVzbAikxBwcQni9xJsbqToaRk4kMeujyEQGu/803NBFsquR5pSF56BNZlkjezcH6Du0kqlVXuKHsjwU3U54LEd2i6LxVwUsr0bNQRPPYIJMdy0yZ5GPGYQPj2PFguTq/AR395Lb2EGhyrn1G58JUNURpmlgFmVI0q21LO9NcPRb3cy2h2g0BOJUNTGfjm0ImodnUTJPtjmIsIr4B1Nk2iIoHaqO5cBWyJksWBZ2bQR9PIlxqkB+RT2+iRyB4xnSK88t3eji8lyhKepjaObaUJO8nkOP7rhOihleiOrWYrLIb9nZfhlGszhLw+BQIDweyOUqORPW+DiyKlp56bb9xoKwgGP/tJ0V73MMDDWbrig/AfDIIfRgEBsQhoFZMlq0eDXkchUPhUrNIgwP1sQk9s0bMUZSWE/1Ytz9qHPOdBq9uQlzcAi5ohORzYPU6P3YGnzjGsu+NULibTuJfWF3pX3w23soB1SUPSNWbx9aMIh1YxfGqfFKmAQ4lYmVaTrGhlIIw4Pm91UKDh770ia6PpNm5A920fJfgwuMH7mmm4Hba2j56SRWz1PoDfWoTBYrmXTixmcv3U/k4uJyAdiWkz9umnBmDc/59ygcZT7zRD+cKKnt9c0LOdrXQ7gkqGcCYmCQ+l8567U/cz69OKp5tXud9fLN3AQ8pUKkAeb69JWWjXunFoRV+Xrm1PYCe+eWg/vmxlruu7zP9/jcuu/gwsssn0/0zi3LgUEUcyFaLi7PdS5lUb6zOEeczFt3tvN397iKlvMRQtBc5WdwOnu1h3JRvPP5nedts7Ypcta2iyjN8oxZMmarsizQJNbEJGLrOgBEKISMOVrScsypXzH+u04o1Yr37WHoj3dReOkWxl69ipEP7AJA72wHnJd/ALsmht7aAoA1Okbxts2Yt2yueBlUsUD2N7Zh9JwiP6/6pDA8oEnsspTtsROceMcyVDpD90cO0vK/H8I6doLYF3aTftV2ZFcH2vrVgOPpcDpxfkmh64jGOrTHnnSMl6rSeTSJsktGVMmYUsUCdjbH0B871xPZ60PsPkDDpx9i9ob6yvhSr9uB9cRRGv/+IdTxk9jP3+jEhyvlhHk9TcVJFxcXFxcXl+uTc71Dvu8yhUZ96I5Vl6XfK8V9f3jz1R7CRXNzd+1529y5ofkKjOTcLAkPhyi/HCsbuXoFPHUSqqJQqsarBQLkuuuxdUHL6/tI9W1l4EU6nX/yEADTf7uDFV+e5uSHdyFsyHTHafyJgWfWwjeSwTw9gOzqILmhjtB/7YP1KxHBIDO/eSOxniTpOol3VSvJZR6CL9+Kf2AWs8qHEoJslc5Mu05yXYHgMUi8ZAVj2yDWI7B10EyI/9tuLGDs93bRWOxGJNOYW7qx0kVkqhZVHyfdESEQ9CEsBSPjCK9zXSqfx87lEVLOVR+ujtF8f5IT/3snZsii6u52tL+OY8ya6M1NTN3cRi6m4XvJFrI1OiMvsGn4hUZsMoKm69iTU06lcRcXl8vPvCkioRtO0T+P4Xg5pHQmHEJBhN+HPT4JloXweaGpHkwLpIYd9KJli1hhL7auOTkhtgJbUYx6KIQd+duqx8aw4iGGd4Vo/c4A6dX15GOSwGgRX88Ao6/oJNJfwDeUwqzyk497Ce0fAttGhQKImRQE/MxsrCcb14gdzeMZm8WMBdDyJkrXsHUNYyxVGZccGKfY0cDUmgDBUQtPqojx5CDZDW0Uw5JcVKP6ySwyXaAY86HlLWS6gO03kKk8tkdHzqSZXVuHnrbwHjoFY1fx93JxWQpcyWzdi+Btu9rP20Y+TcG5y8W7bz7/jP6Fclm9TS4VloTBoWyn0jhKofpOOw9p6QEpgSIIgXd/H9bkFE89fydys6DjvzNYL9yEsBQrPt7D7G1raL0nhe3XyT3lIfDdPeRevhU5NYsdDmP19hEeHkN0LsPa1wNruonf10exs4Gaz+5m9H27aPpGL2ZXE9rEDLpSWEEv4QOT5CNNNP5LntHtHqLffAylbaIYhNrPON4NtXM9xsAkjd/uZeKO5cS+cBStqRr2PwnRCPbhJ/EF1qHNpDH7T6GFw6iiiZVIOJ4USkUALQm5HFqhiNlWjZ4WxA8KvO/rJ/drdRjffwRTk3hSLUS++jAAox/axZq/GkZJDau3DxmvRgSDUCzAte0hdHG5NpgX6lnOn7JzpWAi03RCOMsqVWVyOSh5T8uUw4/O9E16Sv8qbY5B48NO6JS3/xTe0j4TiH9utNJO4IRRmZxN8ER/RU2q3LZ8FRoL1aRMQIyMEt+9cKyen47hYU6VygbkvOX512QCvlKYl6tU5fJc5v23dPHoyQSG1Dgxnj7/AS6Lol3JWKDrmMXyOi4XS8LgANBCIexUqpI4LgpFVCLh5DjYCtJpBv5sF+0feYjEW3eSbPeRatNo3J1DFQpMd0mKwSCmV1B9JMPgn+xE5kHp9YSOGOiZKLkV9ej370Nvb2NqQzXe6SjeHzkB0PX/9JDz4B0dg45l5BtCZOM61f2jpBsFSoRo/I8ezG1r8KRs8lGdwu1bidxzhLHXriUSNhi/0UPsmPN4twIGctNqrEcOOV6bRBpreNTJs7BstJIHwk6nHU+HZVUUquxMhtkWD7UHTAZv1oh8DbxTBVKv30H46w/jncwz86YdTGwQLP8fDzHwgV3EjhUJzmbAMFBeA6aTi37PLi4ulwEhKlXFnXVnWfP7HY+Ht2QWGDrC50MF/Yh8AWyFHQ1RrAng7R1FBXwI08KsizDdHcQ/bmL5NIoBQfWeUWbX1hLeP4wydNTwGMLnRTXXAWAffHKhBK4mkV3tMDIOrY3OZM6KZShdQ8uZmBEfwrLRh6YwBwbRO5aRXV7j3Ht+MYzSBCJfRPm92NEAcoOk5qsAACAASURBVCLp5L2FQyAEhdYYnqeGMEccI6esoDcfGYlUBDJkWwvpVbUEjifgycv+i7g8A4QQ1cB/Au1AP/BapVTijDYbgM8AERy78ZNKqf8s7fsCcDNQtqLfppTafyXGfq3xwZesBGAmW2T9x+++LOfoqrs21bBcrjz+K+jdWRIGh5AS4XHSGGVVFHs2jRYKYiUKzoPbLoAmaflLJ4Qq9kVnqk17/Q6M6Rz9f7KZtk88VOnPvHUzNQeKCFvh33MMa3oGWV+H92A/+Vs2w/37iPSfwrx1c0WJStbXIQJ+50E+NoHngRGMfB4a6ml4JIfx6DGK65eTafSi5xSxYwWMux9l4IO7CI7YaEWbpr99CPPWzQAYDz+BiEYcdapSfQ69pdnR4C8UEVI6Lx/5vHPtORstFqskv2fjGmNbYcUHHmbqB93UvXOY8K9GSb5hB1VPzCALPrSiYOz3dtHyn8c59ZblBPbaWCPXXhVTF5frBqXQAiXN+pJUrtB17GwOLehHBAKOTPfIOFY2h71lNUIphGmjZmchnWH6tm58UyaxQ0lGd0WJ9+QIDhRRQR/+4SzjL2ohNFAgvbOBqi/vRsaiWL19joFRXYW5shWZLjCzMkLswVMQ8MPkNPmdqxG2wts7hooEUbqGMTqDNT6B2LyWbNzP+I0ewgM2FIqo6jCZFTX4T6cQBRM1mcBc24EZ1LENjcDJGayWWhgZRWxei5hMoYdDTpjoTAoAK5l08vBqqynUhRGWItsRcw2OpcefAvcppT4lhPjT0vqfnNEmA7xFKXVMCNEE7BNC/FQpNV3a/z+UUq7e8QUS9Rvnb/Qs+fI7tl+2vhfj+StqgSNX9Jyuf2OOZyuJ+733Po/qoOf8DS8R5zU4hBA+4Bc4oig68C2l1P8UQnQAXwfiwD7gt5RSBSGEF/gSsBmYBF6nlOp/unMoy6rI39qzaUe1KZFwkqDLEq+244ifX78i/PWHsYG2M+ZR9Pv2VS6s7L63Rp2gYf3+yQXt7DP2n4k5MoocGcUGtAf3n1XoqvHvH1qwrt/nSLtUKg3P72tgcNFzlJW45rdv+MeHKIu1Vb/iaCUsIvI155pDByD0zVK/QNNfj2KXZ1FdXJ4DXIl70wUMovSpVdbnS15rPh92oQi2hZW0YHqmMskBIHYfcNrh3Kv0znbCJ2bhcC+a10vd4z2AE+4kl7VinzxNrFTrM2Z4HOWn3lIhJ9tyRDcmJrGB8P65cCpZW4uRLKD2Hqps0yiFS3m9qH09+Fuaae33YR097rQZFHgPKuZng4ndBxYoXJWvX+3rWTR0C3Du5YkE2tG50DCXJcedwAtLy18Efs4ZBodS6ui85SEhxBhQC0zjsqS4ki+RACuv00rk1wobWmPP6rj1rVWXeCRPz4VIGeWBW5RS64ENwO1CiB3AXwGfVkp1AQngHaX27wASpe2fLrW7YM6s0nvWfrfGxDmZX5DQxeU5wBW9Ny2KUs4/23L+zb9nadKZeChNlpQ/7fn5HFrJnV16cTdP9KP29Tgy4XKhq1tlcugN9U6R0I1rF9wLy14V7cZVCF1Hb29beGw6jdp7qLIu486MmKyvc86FMyFizZesFQsfD2XFwPl9aCFnCkZWRStqgPPRm5sQhgdZE0eu7EK4kyJLlXql1HBpeQSof7rGQohtOPbjfI3jTwohDgohPl0y7s917LuEEI8KIR4dL9WmcnF5prg5HHO8fuuVK953MZzXw6GUUsxVdDBK/xRwC/DG0vYvAh/Die+8s7QM8C3gn4UQotTPoghNQ/MHEOEQqr4aMTQOQkM11yKKFlbYi7AUp14axvIpgoPQ8MAk1hNHmXnzDmLfOUh+12p8/VP0vbmRto85Xge5egWJDXFi+5ybWmZ5NbJgO56NmzZgeyS2IZhY56FxdwbLJxG2QpgKY2SGTHec4MFh7MkpJl6/nurP7ybzm9tJtUqav3GcE+9ejn9MUbtvlpFdYXI1Cv+YoOGXM2iZPPnmKJ6pLCJbcIqBTUxhd7UijjgzksLQUYViJe5aeAznIW9ZHP+TtRgpQb5aoQQICzr/dDfZO7ehpGDgZRZYgup9OslO6PqPBMqQaPkimBYiOQvD5/rGXVyufa7EvemC0SQoG6EboAnnJd62K4pUwu93jBGfF5XOIoJ+rJoIlt9AmDbpVr9zTQJ8k0VycQPTL0i1CQKjinQzFGI2ekrDk1xO9IRN+iZHOjsfh6Zf5NFnC1iGRO9cxviuOvwTDWhFG+9EFooWwpAoQzLTFcDWBaGhIpmQxDNjkqkzsHXBdDdolqBQZdN6j8XIdh3bgMhxiB9OM7l2FelWgWcawgMWuSqNyCmnn/CTCbQbV6GkRMvkUV4dlS0gmxuwaqNg2thbVpNp8MK33MibK40Q4l5gsSpnH56/opRSQohzP6+FaAS+DLxVqXLSEh/CMVQ8wGdxvCOfWOx4pdRnS23YsmXLxf/tXcO8aXsbX9lz6moP42n5tfVNV3sILk/DX/7mOtprgudvuAS4oBwOIYTECU3oAv4vzqzGtFKq7I4YAMoCv83AaQCllCmEmMEJbZg49ygkoqMVCkWK1QHSN6yg6BdYPoEvYaMVFYlVktCOcdqjU3yg6R5u+HCejG3x7r4G9HcFOTZgsazO4mWxh9l/Uxu2EgxOBLAHBHq+hmxMo1AlyNUq7JftQGlAbR7DY1LI2vRtArAwZzyEe3UyjV5kTmC+uIXfvqUXQ9zL+j87xXen/BjCZvV7hujPjZG3dVrfO8UvJ1ewIjTGr0Y7mR2MUwxESC4XhE55yDQIgoMKRAP+CQuf1olM5cC00EwLCkXwGJBzPBRWSy0fftU3WesdYrPXw4SV5v87/XL2fXMduaSNL5Jne9Mgv9d4P1O3hPiPkR10vGSS+/91B94ZhSwo/KNh1+Bwue657PemC6XkvSh7HRZ4GxdRpGIc6J9zMYd2L9xdDlsq+xRqFjnlYmmhAifUKTbPU6GYU6ACiD589nnK5aDOdLAv++HC9fjDzhdWJohTZ8gwzUr4qt7YgCoUHHnuMv1z47s2Ho3XH0qp2861TwgxKoRoVEoNlwyKRWOMhRAR4IfAh5VSlf9J87wjeSHEvwN/dAmH7nIV2bzs2YXrXG5cB8e1xwUZHEopC9gghKgCvgtcdJUXIcS7gHcB+Aig+k5jZzIYI2FijwmsZBK9sQFzeASAqmWtmH9xmhPv3MknH4hiHTvB2Ht30fTt4xSnU3SpI6h8np6Na9FLcc8dzFXlDgiBtm4l9sEnSb9qO8HTGXjkEKnX7cBI2/8/e28eJddZ33l/nufeW/teXb23ulv7bsmStbEEjMEQkhgDJoSEkAy8JJO8M5OclzdhMszkPSfkxDOTyTKTTIYkDCGGsCVsBgwOwTDYkqzFWizJ2rsl9b5Vd9ded3neP25V9SLJ8qKlhe/nnD613O2p6u577+/5/X7fL6UmDSUhNG4TeHzvgjrrvSvXkb2vhR98YT/sWEn/z0U494kKoDj/Z9tY+Vv7gRFObVlPamAUWjREvkjisSsgNVKOjYxGEW3N7n/J2CT29LTbUBoM4uRyrhFhqYTw+RAzs3x+bSfQSd8f7abn8SKyZLHsyPMNJ/Ys8ImHPsr4Vh1ZhZM+6D48izaZA9NCzeZe7a/Iw2PJczvOTUsFrSYqITeuxTlR67qWGjh241ypzROeEH4/QtMW9JQsULF6OcdOp3BmZheUvOq93Vh9l1wlQctChkKuJLffhzMxhQwEEOFQoz/PY0nzTeBDwKO1x28sXkEI4cP9H/v7xc3h84IVAbwLOHHrh3z34900e7yWeFkqVUqpaSHEU8BuICGE0GsziZ1AvSN6EOgCBoQQOhDHbdBcvK9GWjWuNSmh62ixGCIWxR53JxyVZaO1NLvlSFUT+833Mr1W0fLdCiO/5apD4feRfc8WYv1ljMEpqhEflYd2oJUdjJyJrNqIF/qQqSTW8dNMf3A36e+eR+ga04/sJJC1CBy8QOmhtTQ/NYSViSE3r4ULVxD3bSLXG8YKCBwNSu/aQa5Dp/s7biAy8Ht7WP0fjmH91FYm1wdo+84Akw+uIv30IFg22uoVOPEQcroAs3m3CX5o1A0wolGEJnFKZbREHGVaroSmaaEci/LP7ODKOwQrvlBC7D2GXL8akkmKO5YTHGphdnWM+MkspXQKvayI/cN+FLUm0dpNiIfHa4VbdW6KidSSKfmoBxKNYAPAsRGGryFNOz+4UJUKVw3+FVaPXStosPrcCR2nXG5M0EjAHneNTZVlLcxyeCxlHgW+LIT4MHAJeB+AEGI78OtKqY/U3nsjkBZC/Eptu7r87eeFEBncJNZR4Ndv8/jvSla3/OQ0W//b+1fy339w/k4P4zXHhvbYjVe6Bu/c3HaTR3JjXopKVQYwaxf0IPBW3GbLp4D34qrBzJ8Rqc+U7Kst/8FLqZEW6SSUK6hQgOpPbcLRBWZEIzBhUm4y8E9b9D0i+JUd/4eBNyQxyhbjpTB9741THlWM7fEjE2kCwSr28SCZoxYTm8MEJhXxyBqk6WCtacEOQP51veQ6dBCQ79SIxlYztVFhRjpwDGg+WGTiQ/fgn3WYWS4JbJuiIz7Dmf09WAkLVJjp/2sb+rii/++WUylI4sksfW+JY50TpI6GqDaHybf7iAxVmd7cQuxKiuCZUfD70NpWwEwOSmXXdEXTELXeDaHrOGu6ed0f7KfZN8tnO3fhfGwdoS/FmXlPE9WYIn4+Tu7NBUZ+LoRuFNCPRRj9HztZ8+kcolRFGTpicBS8a73HTzC369z0apHRKE4+72YxCwW0TAZVKCzMPAB6VyfWlQFkNIq9aTnac2ew712D2HvsRfc/v3n8TglH1LPB9c/kCVjcXSilJoG3XOP9Q8BHas8/B3zuOtvff0sH+BPKB3d1s6kjzsP/c++NV74DJEO3Trr31eIlh1xertLUm9dkeOrMOO/e2nHjlW8yLyXD0QZ8tlYrLYEvK6W+JYQ4BXxRCPFJ4Ajw6dr6nwYeE0Kcx73lff+NDqAcpzFbxjAYNfG9usxFvVZ59ZOwFx9QAApEuHYdc53gotcGc/XHi5etWNTD2Py0+xivvTaB5fOaIppf5LjO1g1oTz3X2Db9lPtoUbv5qNVXy2jUVbGpVBCa5hocAhx8nsNbJZCgmdNUH9yO73v7mR/HNn3Kfay84z78T7gnq/nylR4erwFu+bnpZTHP/E/6/YiAHxwFPgPNl0QEAsiMewYSAT9qXS920MDxu2pUU90+AtMdFJollaSgKbUZaToENq5ldl2cfIeGVlG0/DhLflUcKyiIXKmgz5QodUUJDuSZuDeBFXR738IjVWTZxugfhYAfsy2BfqIPWpoorUhjzFYpdAbJdUk6//4cxe09hE+NUF3WhO2XSFvhOzXAyLtXkLhgumIa2TJOUCe7JkRk2MI3XcHxa+6ygUmsS1dco1PTguwMqlxB9HQipnNg20y8dTn+nA1f85rGPTyEEGxdlqQnHaJ/snjjDW4zD2+9Wnnuutzu+rCbfLzHPryDD376wE3d51LkM7+6444d+6WoVB0Htl7j/YvAVSNXSpWBR17OIISUSH/AVXbxGYhwqGY8FYeRcUQggDU4RPHhnQz8jE3gsg9rTZGmxwMEsjZjWw30MrT9cIbBB+L4ZhWOLtCLiqYvHQMhkKkk1Z4MxtlBnKlpSg9uIXR5FlGxyK9LET08hIqGcPwGTkCnmvQx02vQ+qMp+h5JUclYBEZ0wsOKQrvAjCgSp0E4EBkyCZ0eZeDhLjq/0o/KFbF3bELrG4FEFKfvMmr7eoStsEI6+qGzqKqJKleQgYD7HYRDqJLrmq41t5Db2U1gvMLKPz/DE0cEoW17CEwoEheq6P9ymMHf3UOh12L1rx/gwn/djVEQxM85xC6WkJaDnCnCmZfzW/DwuLu4HeemlzkgUDXp23k+PHNeHAtTjlqxiJqcajSON9f6MMJ+PzIRd0tJbXcaIT4wTGhjL/Lpo4hYjGilChNZt6ejZxnh56axhkfI9F3t9k1rC1RNxN5jOIYPKSWh06M4kRCJA1liT2Shs5XwC6NQqWKcuoQ2m3czJ8kkmU8dQBg6WqYJa2AQ5033kvrMPvSeZah8AZHLI4TAKpcR2zbApRFUvuB+B4A4406wCL+fxGP75owRPTw8ljQfeUPvnR7CdbnZ4U17YvE09NLnc7fZ4PHVsiScxgGcSgWpachYCvvKEDIchGrI7Uew3Yt4+FtHWP21KtkP7SYbDqI0RejkMGLLMtp+PIt44QLmu+6l7ekik5tCpD6zrzHrL0IhzIiOHB2j+PBOQl8/gLp3vTsz+I2DTP7iTqJXKth+Da1oEX7uMqHzEabvzdC2zyT0wgjZXR0IR6GkpOlYAW0yz6VHWkmeNnGSUYptCmtwCLl5Lfr4LNb4OM76ToxsHLJFnP4r+NpboSmFPTSK0NxbDadcRgu6f+wyGkWVy2RX6bR/4wBPntsCQMcPC2j5SqPpvZxxSBx3f32dP7SY2GiQOjIFoxOIYNBrGvfwuF3UMhtCCoTu/k8qy3KfS+n6YiTiEPCDZaMqVezeVshXqOxYQWC8hCyZ2EGD0s5lzPTqJM5Z5Ds0bL8gdsnCMQSzyzTimZ3EDg1S7kriVwqyWZzJLKqmcGduXYGWryLzFRgeQ4SCYBjYrUm0oJ9KdwrfeAH7zHnMt22nGo0TmGqi0OrDDAlavn0RmtOIjmZmNiaI9pdwfBrSdFDPHMW6fxv+gWlEd5cbVPS0oXSJ1j+KmnRQh08yv3tMBgLIdAon64pkyC3rqTQF4Z/vwO/Jw2OJIpZo9/jLuQnf0hW/8Uo3kZv9ld364tqbzxL9s7kuSyLgUMpBGAZOqYyYmUXrase62I/W0YrQNZASdmzC9mn0vSuAHbNY+fcmQ28I4dvWTseje1HA8L/bQzVpI/Ydw7l3D1pTmsrmHgL9k1gX+wnttyAWI3Z0hNzP3Ufk1AS0hlC7NmMFBL7LU+Q2txA8NQ5B13E34TgUVzUxe2870S/tR1vZS+R8HxMf3U3mM6dRotU9HmD9m+2M/PYeOh4fxh4aQUunsDTpNnoP5hFrl+Ocu4QIh1FmFWXWDLukBprEKRbRfAb2zCztf+yWSQWPhCh02Yi9x8j+0i7izwvKCcnqz0zhBHTMt2zD/51DhJp2YcWD6FYSJQRUPINED4/bQi2zoZyFxqULTEwXZx3Gx7EB/ylXsrZ+kx48NFfuGVh0mLqcrAXog8NYuzZimF3YzQlk3xCkk2jH+7Gz2bmb/vpxrwy4Tubn+xqTMMaTh66SxbUAag3osePue/PtB/UfHEZ0tKOKJabftob4t55HSyYg4EcYuvvT0YrTP+BOqGga1uDQ3A6OnmLpVoV7eNwZ7rL7xmty/9oX9Yr08FgaAQdqrvHRnpyCurKJUg1ZXK1cRhaKrHi63Nis8+maNGPtdeuf7yX9wDYAmv9yL6RTKOm698KcyotUisgLOva5i/jPXURLxEnvm8ECgn2XsP3+RtOjfb4P//k+Kj99H2O/uYfmv9yL3LyWpr/ehwLSp+yGPOTaP83jnDyDXQuVHdwLtM6i/opisTEr6hSLriNxzlWxshfp9bf/17lmsvjnXNnz9Kf3NW4oJn5rD63/okh+dh/C78c2a9+Gp1Ll4XH7qPdv3K7/O8edhLAAMTgM0Sj2mesrxGgtzdijrrWCMHwLGs1fLvbEJKpSIfql/Tgsck4HOHcRwJ1QCXuuGx4eN2QJRhzr2l6Z+tHdy12Y4rjLWBoBx3WwT52de34decVGs3kN4/uHF2xjfP/q7ZxcDnJzJUeLb/KvpbDi/87BRqO4c3xOljL0tWcbAc8Cucrr7Gdu4Vy9N46NqryyG5XWP5sLSDxlGA+PO4RSgDOX434J+XlRm9jQEnG3JMowEO0tVwUO8z2BFrwfCIBh4ORyjcmUBctDoYZqVD3YQIhGsKEv72lMxlxrXOAqZ2HoqOxM4xj1ZYsDFy12df/I4nHPH5OHh4fLikyEi+NX/4/fSd667sWkce48YilGabeZlpj/xistIZZEwCGkRGvKQKUCHS0UexPMduv4pxWaqdBLDoVmndnl8GsPf4+IVuZ/9+1hdCBJa9cUo+eaiC6bJTcdAqlIJvNMDSaQJUl4QNL+o1kq6QCOIRndoRG5BMU2QSXt4MQsoqd8VGOQPOMwvVLiy4FWUlhhQalFIZYVCARM3tH9Al99cjdtW0aQQnFpoIlNKwaYLIUYGkohpMLf52fZEznKLUGsoKTYJElcNJnp0QmNO4SGyugzJRgYcd3FNc1tvDR0VNVE6DqiKUXxU4qgbvKfuh9nb3EV//P4G5GXg1gRh8CoxsoHLmI5ktlKgIqlMzkZofOrOv7JKlrFRhueqnkqe3h43BaUahjr1YMBVa26YhiOgwiFEOEgaibnKljpOlgWaBpk0hRXpQmMlym8ZyfR87PMrolTiQmqcYEZAUdXJE8rJjcL0scVxRZJ67NFim1+ihlJrN9C6QLhKBxD4Ju2cHwS2y+Z6dGJ91sYeYt8u4/QqIk2nGfio7vRyxAZqJLv9OFoIC2YXgNGXhC95DC1QdC2N0N2lUHigsX0Kh0lIN5nM9uj0bovTyXlR0lBcLCAMG2UoSFMG1GpIiwbHAcVCWGfPIP5wDb4Z0+lysOjzp/+/BY2/v737vQwXtPcjT0cK5vvLh+XJRFwKMfBHh8HQJTK+F84R2bROn4gBXzvP8aAGMmNOvETBwGI4aqgtM5bv2n+/gFf7Xn3t9zHNNfmxZKIR4Hl7Gu8Xk0/FVxp3vUd5QW1yvX667ps7/zPsziXIQyfOxNYdwGencX3ViCd4vcn3RKxFRxdsE3lD9zHcO0nNc9BuGEA6OHhcfuol1UJGs3ibsBhoMoVnOkZ1MQEwudD1bIFWiaD8Puwz10knC9CMEB8MocTCZB4dhAchT02DraNsiz0tlbinx/Bef0WUo+7pUvxC0FikRAiX0SVy4hEHOUzKPckcXRB+HyW8AUBtoOYyeG/6INKFWWaNP31GWZ/YRf+gWn8A+CEA2jZHMkvDKFsG5Qi/OZ7MSaLhPaNQjpBcDSCOvg8WjpF5Ikiat0KQmcnXD+hcgVVKKKmZ3BqPSx6zzKcRARRqsKuzfiy5et9gx4er0ki/iVxK7aQJd6R3JG8+1SlbiY+Xd54pSXGkvkrr6faZU8ndq0GWG5Zj5x0U/R2cxxxup/SG9cz8qtlOj7lQz8Beq2B0c5mUXvuYXZ5kPjn9qPXJCavhd7ZwfSeLiJf3k/+kZ0knr5EZW072lPPUXnHfYQuTCEqVaxLboqg8J6d2D5B/CuH3EbQeTf3Ex/dTfpEEdt0YHDoqpIBvbMDZZrYo2PIe9YhRiZRxRJOoYiWjOPk3TRqfUYU00QE/NjTMwx9YC2FLkXPN0vIp4+itTRjrnXNWuSPjqBet4XBN4aIXnEwioroC1PYL5y7Nb8gDw+PF2e+LG6x6PZqAfaiUsf5pY/2+Di4cy1Xna+u5atTX0c+ffTqxvA6tRLRup/RjYo1Y1/Yv2CdxZMV2lPPzY1lXulWo8z1yMkXPYbVf3nB67twItHDw+Ml8Mi2Tr5yeOC2HOtdW9pvy3E8bh5LJuBo1BrXgg0A5+ipuQvdlQEU4H/iIN1PzG03P6sg9h4jXmtpuF6wAWANDBL58iAAka+4PRhabX3/EwevuniG/+lZYN6Fcl7uremv9y1Ytrg+2RoYnPs8x15YsGx+X4qChm5//bHlfyx0H7VHx5D1WmxAPHOUzmfmLcfDw+OOU5uQEH7/3ERKKARSIAIBnOw0MpnAmc0hm1JQKpPb2Y0ZkvjyDkbewjc4g/IZVFrDTG7wE7tsU41IfAWH6PdfwFnRBSfOocwq2pqV2GfOo7e2YNUUpsDNntjj42gtza7RYHYGp1RG9nZhn+9HW7sCLJv8+jShbz2H2LAKMxXEf3oIq7uZSspPYLiINj6Nk46hfHojs2GuW4YxlsM+ewEtmUSVSq7vxos0z2tNaeyJSdcY8NTt/IV4eLx22LU8dVP2s7TzG6BrN3eG/66bCLnrBgx3XU4m+6HdnP3f29G7u9BWr1i4cMcmtFXLr95Iagte6m1zxVdi24arVtfWr4Ydm9B7lgFQfXA7AOYD23De4PqMabG54qv6/vTuLvexc5FlfC01KTevdbdtmWvGEoYPGQigJZPuOOelMQvv2dkYv9pzj7vvjvYF23t4eCwx6qWNlYqbea09OrN5rMEhnGLRfczlsPouYY2MEn1+jOQTLxB4/AC+o32owRFkoYTx/cO0/vd9hL72LMlTs8QOD2FuXQEStPaaDOWomyJZEGysXgGOjZZOYY+OYQ+NuqaiXe3YZy+AcmBgBDUwTOhKAZlMInMlfEOz7mTN/uP4v3MQdeQk1sAgM+viaBOzIAQiGnEzLGcvoCXioOsNkz8tHkOLRa4654KrbiUMn5eF9fC4Bn/9wW13eggLeCUVVeGlWBr2Ermbx363sDS+4fpfthDIYBCZTmFdGUBbvYJyT5LgqWGcdIzcSvcmf8VjDiMPdjK106TtyV2ERqv4Tl5hdGuEaiwKtKIXQasqMo8dQfR2ISomVnMMfdDNKhTes5PQcBlZNMn+8m7CIybGk4dQr9uC8+wJKm/dihnzoXWmyK72Ubh/N1bMZvlXwHr7fRRadJq+dQZ7coqRn+ul6VMjTL6hg1h7CnX6Mtqq5agrQyAl9j2r0CdyYLn5GhHwI8NhVKWCDAZQ1Sp2NoswfAjDVR3IPryZ9L/0Uf7+Mq4c7CDaD83F9ThKMb0hjpLLiQxWsYIa4RfGcOJhRNVCSYksllGFIlw/yePh4XELEYbPvakX0nUNtyyUZaG1ZFzVJ1/NjcK2ERUTqibmpuVU4waBsRKFrhChkQrj7+wgOO7gm3UzBqX1MRJn8syuihJMBNBbEpAtIJe1kV8RJ3pqEmFaBr4qQwAAIABJREFUKF1j8qfXIC1FcNItkiondUJjVcr3thA9PeO6j+sa02ui+NrC+LNVzv2ij9jZPeglRfO+LNVMmFLGIH56lvE3tpPsu4SdjGIt30bg1AAE/FjNcXRdw+xpoRrQ0PMmWqECk9OIUBBl6DixILJkIkoVlKHD6et9cx4er03etqGVFZkwF26xWlXAkJTNaxVsLuRn73n5JUv/74Nr+Lu9/a9gVHeejrvMaXxH783JZN1OlkTAITQNabg9DDIWxUlFEU0bULaNqsUicnIWsTzGxFsqrF55kYF/Xs+qvzUpt0gqKYOJ968idtki3ufgHyuihECc6XNdvAEnFsKMGJS2tRN5YYrwPz1L8eGd6CUfgSkbM6Ix+dt76PjMSURLM6ELU6BrDL6tCa2sWP67+5Bb1mNF/Vx+m4/QsMCenOLif95Nx48sCu/ZiRkSiH3HsAG1bhk67a4MpU9SWp4ieOgiem83anoWEQwgggH3oh+NIpRCRsI4+QJC0xh7W5X450cx7V4yW0cpDLcytTlONSbwZx3G3lbF+j9+ptdAc7SN6Jdcjw5tZa/nMu7hcbtZJIfbkIsVoiGIgRCuJPd1kAODDbGJ8AH3sfmZhevURRCjB+beqxcvhY4vLKtMLCpbqhvuhVnYHxKbt97qecdzcC8Q0drzZE23Qh05ic68Xo9+97kYHkEDRCiEPa+0VEajyBEBUmAtkiD38PCY4z+8cx3/6u8Ovap93EgudnNnggN917YZmM+KTOSG6yzGyxLcPv72Q9vv9BBeNkumpEpEo4hQ0J3xM220kUkqzWF8M1XskVFy2zsotEhwBMe+tp70zhEmN4XwT1TJdWqUWhWhbz9H/0MaU5vinPnXIfJv34TYvhEsGzk6BVIQGK1gnznP+K/vxp81MWaqDNwviZ6ZxvZB9qfXUdzYTnlZgnJ7lNa9OUqtgtz7d9H3expmVGfVY1MoHUb/zR58MwL/dw5SSktKGUH+kZ1oa1YiqzboGrmNTeCAXrCobOl1b0g0CbaDKpZcJZhKxVWuKVcQQiDaW5BjfiYeX83wZJyZH7ZSyiiqUYGRV1TikrZv+QhMOyRfgFJaMvjxPZR/dgdWJoaIRRHRl3+y8PDweIUoNSeLW/sRfr+b4QgEGn0dWlMaGXWlDLWmNEitUYq5AKm9pNJJLZmce950Pe29ayMM34LXem/3NdfRW93SrXpJaGOI0TlJRhkKoXe4M6KL+9hUtYo9O4s9PYOWvvtm5Tw8bhc3w637Yw+uuQkj8VjqBIyry1aXOksj4FAKoUm3sbF20VaOQ7nJwNEl5hvvIfL0BQpd0Nk2RTWuGD6XYWqXyflf8qEk6HnBuT/eTviSxswq8I3p2D7ByO4YZnscAn70nMnojjB6awvJs1WEUhQ7AkT7JRPbU2SOVjGDAiUFesnG8UtGd0UJjiqEAz6fRSWhMfjWNFYIzDfN4Ohw+T/tQauAHVLEzsy4M3kRH5Pbm9AqDrM9AbJrg+i5qhtolMqoUgnhM1yNfgCnNudoGIiKSWbjGOYPm2j+eoBKQqE0mN5solUVWkWRXSXJdWrYfsgvUxizoCRI00bpGlheC7mHxy1lXnBR778SutH4AdBiEUTAj97S7PZ6VU1EZ6vba9acRkvG3QmRUAi9Zxl6VycyGkXLpCEeRVvZi7xn3XWHMN/wz56YbDzX0ik3aInFkBvXLnD81hLxqxzA9a5OqJqNgKgeBCmz2ugNmW94CizI1tT7UrTMYkFz0FJJ9M4OtJW90NJ01XIPD4+bx7bu5I1XugErMuEbr+Th8TJZMvkvezLr9jNYFlIIzJXtJJ++ggr6EeUq1sQk3d8qUr1PsfyPjuMUCgx9bA/+rCIwbRM/Msr09lZCoyUuPuQnfk5QDQta9+eQl0dRgD5lELscwOxtxbf3JNb2tUQu5DHyIVQt9GreP4XSBM7x0/ilhvzoDjL/ax+Vd9xH5+9UmdwlkFXo+fMTjL93A5lvniH71lUgwD8pMdMhfMf78Y1M0NQXgapJKBIitymDdm4AImF3BlApNJ8POzeNFo/hzBZch99qFRyHkcvraRl1GH5nla5/1Ak87tZQiPs2oQ4+z+Sn7iP1pGTwnTad39IIfe0AYst6ZK6IsJ2708XGw+Nuov4/ViunEpoGykEEg67Rn6aBqE2kxCI4IT+yGsdMhZheGUCvKISdYrZHoiSYMYUxKzBjCrG8gFXV8AdNHug5w0Axw4rIBP94eDs/u/UoRyc7yVd8BH0mubKflmiei8c6cIIOWlFiR20yz+jkuwT+KXDekiK3wkbpCiTIonSfxyyMoIlZ1lEFnQ3rr2DaQbIVP7tadDr8Wf7qRw+wYu0QcV+JI5e62Np9hbS/wJPPbUKf1rAjDsnnJdWoQJoQyK4kOGmRb9MJTDsEJkyqCZ1KVMMxINx9H3zHM/7z8Fiq7F7x8rKlHh4vBaGWwI1pTKTUTvGWOz2Mnzi+r/7xsFLq7iv08/BYIryic9M8n54Fb+u66+PzEtF7luHEwzjHXqDwnp3oRYfQ/vMA5N+4CmkpjLyFbUj8IwVE1axtqFFYkcD2CaLnZhBXRhHhEIVN7QQHczjHT6Mlk9jZbEM6d8E4t21AVGwq7ZGGYIeczkOlSmHrMrSqQzmlEz+ZhaoJUjK7qYnAlIlWMBEKtLFpd2e2g8rnsRf1bnjnJg+A7du3q0OHXl3Pwk8aPR//9qvavv/Rd77o8vd9at8Nezh+adcyPvmuTa/o+C9l/zeDG33OV8Kr/e5vJ7fi898shBDXPL8viQyHkBLpDyCTiQX+GWLbBqyYH9/RPop7VjK21cAKKXp/bx+DH99Dx6N7kdEoTi7HxK/tJjjhEH3i+UYNcf0Cr3d2uGVaM7PQ1ox9xr1o660tDL17BYGsg1FyCH79ANb92/APTGOfveCqRmlyTvIxFiP7M+uJ/cP+xhj7/mg3vf9+HzO/tIv459z39d5uMC2sgUFXWte0sAaHaipUekOXX4TDqGLRbbIcH0dGo6hyBZlK0PcXLVSKBvFnAzg+CI06xL6wH7FtA/meCL6cjTFbpZwJEBwqoA6fvF2/Lg8PjxehXk4lfIbrOB4IgFlFJOJgWjjpGDigAjp22KCU8SFssAKCUkYiLHD84Gigl8F8xx4cHapxSaplLaUmgdLBMUAJA70EvhkflZRACYgMKvSywjZg+E0pAlMJKglJaMxBtEUwV7ty24VWjcCUQ3btSiJXIDjpoFUcKjENMySoJgRybTeljEIvJgmOKRwD9BKU04J8RxOhMQdHF0hLUWjzER4GrWBiNyeQxSrK0BClEmL7RmShgh0NUG4OwuNehsPDY6myBOahPX4CWRIBB0KApmFPLIyKtcEJxNki9roe/N8+SLh5N8U2t3xBrynH1euIm/dlEUPj2JtXwv7j7sIta+HQiVqNtcCenW248mqrV4Bp0fxcHi1XQV0ewgG0suUGG1s3oI6cRJluzbM9PYM9O7sg2Ci+eye9/941/qtGa2UV2zbA4ATWyChaLIYydESj5EIiQkG0YABVNV3ZTKWg7l5u26AcnKlplj0yRvZXdpP8O9f8T9y3icLDO5lZrhGYUMR+dB57YpJIzzLym1oJHK59Z7EYqlrFqZqeE6CHxx2grlDVUKqq9zrUZ/nnmZVKXNWoOjGuj9i2AXX4JPUKbRkIuOVbAJpEFUvIdApMEwwDVSpds6/DNz6ODIcJFwrXPKafF0dva4WAH0wLFQtjJYLo0yXKnTH8LwyiUnFEsYyamka0ZhCGgTp0onE6Crzo3j08PO5qvGDF4zosiYBD2TZOoQBCoCWTOMUiqlJxVZzKFTjwPACpz+yjrnEy34V75Lf20PpntdcTk+itLVRXtWOcHsAGrCsDVx3TuTTg+mAMB7DrDt+4buXgSj823ovH0Px+Jt6+guRn9zXeD33VdSAXWzeQ+aua4/jhkw25SHt2Fg2wakGO6O50sytSQ/oM7HzeDThqGRllWgtKLpJ/N3csdfB5QgchVN937dHqv0yg/zJAw3EY3OyOF3B4eNw+hO6eTpVtg1LIQABlO6ActKY0qlhCpBKoqWm3VwuQiTjmijb0bBEzE6ac8hH98XlUa4Zqc5iZXh+FToGRg+C4wujZCQJsn0BaEB4oMbs8SGjExJit4hx4Hm3NSpz+K26zdlcnTjLiNnzbNtbaZVR39GCGJEbBQS/a6Pmqm42QkvzqOOFLeUZ3xklcqOIYktBAnsl74sT7y5TTPnzTFr6JAtlNCRKncwhHwegEwVwRpymJGBlHCYmIx3AGhhsSuTIUcj+3pkH5ul+jh4dHjeWZMBdfhi/HA+tevcqVh8etYkkEHA2UQlkWQtNQuDfsdUrv2kHw6wcWrF59cDu+7x0idnnhnfXkA73EP7cfG9f12xoYBNzZ//o+VaUC0CiXmk89o1EvybIuXQHAl++99rCPXF3OJAwfyqwu+Az1YADHxilfHQ0os+qq3TjXjhTq5WPXw7l4eW5fthdteHjcThqTBbWM5vxzizU65k4uzDsfADgjZfRiCXt2Fok7oWCDO3ECNNd6LV6M+N6Fr+vnmUZ56qArn2hPzyCeOYqfhVkMxTwvjxPu6+bDNHpR5ntw1Cc8HCB+fG4y0waYnIIr1x9nQy73ZfSxeHi81ljfFuPUsHue+IOHNvKLf/vsS972N9684lYN66XzChzKPV4eP7X6ajXAu4ElEXAIXQPbnQGbf0Mtt6zHOXoKLZ0i+PUDCMPH1Ae2MfnWMl2f1xnZrbPizDJCX32W6Q/uJpC1CT99hkKrpPJ/70HYiuZDeXRdQ+ULWGu60Mdz2GcvuMf1+2H9Sqy4H+2Hz1F9+32ETg5jN8XhyAylt9+LsBXh54ewBgbRqoqpX91N6jP7KLxnJ74ZC+P7h1Gv24KWr5DdFCf9zDBqNofw+XDSCZwTp5H3rENOzKDKZbdfY2wcZbqBlQj4ET4DZzbf6O8AV/P+9G+HWfc7lzn35x0EjoZoPlzBf/wyA7+8irb/thctk6F8zzKCZ0ZRfgM1MIzW3gWVqnvzM37Nr9vDw+NmIQQIV+JOGDo4CmHo7rlFCtB1N7Ph96FKZbeno6XJ7SkLB1CGhqpaSNFJsStC5OgQdksCWXAnRBibRG5eS6krijFjoufc96vpEEoXaBUbY2gGqzmGliuDEBS7ouglm8Apt7zJCbnS23K2xMzmNEoK4i9MuzK+A6NUN/dghnUizw+DpqGkwImGmLg3Rry/yvQKH0ZREZiyCfXPoK4Mg+kalpJJwtgkKl9AplOuNO66VViJkJuJCej4JotUMiG0so1+6DSitwtOXfPb9PB4zfPV39jD2v/4XQAMTfKHD2/kP3ztxEva9t5lr14S12PpEwsaN15pCbIkAg5l2SCunpV3jp5ysxKTbm+HMqskP7uP9LH1OEeP0P3EnNtt4jG3/MgG2v94bspPMbeOmJzCntcNpSoVOHKSun2K77sH3XVrJViBb7kZlfr2gccPzDkB/9PcrIN45qg743dsbl2tpRnnhKtb7xx7Yc7Zt/ZZkBrKrM7VebPw8zvHT5Pavxt7fJzlHxhH72jHGhzCBtr+mxtJ2OPjGN8fZ/58oXPpRaYYPTw8bi5KUfftVtVqTQq3NsVn2+AoZDrpeg3FoqAUdjzkNo0bktzyMJHLJQCErTC70lSTPgotUZSA8FiS8N7zlLYkKTTrhEcMpOlg5E0qKT/Gk0cQnR1udtinIy8MEhnLolJxVLmCffIM2spehGWT29JKtL+InCnihAMga8IaQmD7BSpfoLBnJXrRptBmEBmx0EoWLc/kGX5TGl/eAcvGKRTRu9pxRsex1nSg9w8gujtRU26Piv3COaTfj6pU0AGRyRCc9OEkojhbVqMP3noFGw+Pu5WAobGtO8nhS25mc+UrcPx+tbQngrf9mC+Hj75x+Z0ewh3lk+/aeKeH8IpYEgEH4N6A18qcgEY6v16SpK3sBZ+BfeosztG56bH5fQsvRr3E6aWiNaWxJybR1q/GPnX2quWlh3YQ/OZB10/jGmOwR8cWfrxF5VBCClQ9CqmXUS0qpWr6m7kSMmteoynQkLX08PC4wzQcxqXbn2DbqFLJNfEUCpXLAyB8PpTjIHN5dz0gOahj9jSjFaoEDpxE62zHGAL/t2t9WbXyzsTf73OzJrbtehWFQvhr2VBrYBCj9siq5VCqwNgUNCUhm8U+3wdAsP8yChDLe+D5M6BpiKY0/uP9GLk8dqVC4PED6K0t6P8y2vh4NtDaF0KEgtgTk+htrTiJCM6lK8injyK7OlGj427JVi3QEJqGTMSxZ/OuWpcmXcWqik1xQxvMVX96eHgsQt7hsqRfexU39O/b3nVbZHFfq3xodzdxL8PxKhACfVkH9uAIwmdg37MSsfcY2pqVVNti+M+NUFjdhF608Y2mOP37qzBmJIlzkD48xdhv7qEac+UgfXkHreQwcY9B13en3SxJSzMiHMK62I/cuBYuXkbZNqpSwbp/G+Umg3JCEB61kZYidKAfUnGYmHQDnNdvoZr0cflhh/BZH0Yemv/CzaLUS6z0rk6K61uZ3OCj87FziHAQq/8yYvtGxKmLCz6u1tI8p0wlJCqXQ/jCqJrjupMvMP3z2xl9nYMWN0EoVnzgKPlHdqKZCr3owJOHKP/MDgqtGum/3cfF/7Kb5b+739Oz8/C4EygFykZV7DmRlmv0h10LMTjUyIBa/QvvxOf7V8yfkGmUXoZrRqI+ozHxoTWlQdNw+heKZTR60i721w5mXTWRATScxefjFIsNcQtreASZdxtZtWQSFfRDtQq7NiNnSjA1g7mqHWOygDTnHeOS++B7Sd+Kh8drlwc3tHKwP0tHMsjAVPG2H1/X5Cve9r3bOvnYV47dxNF4/KSwNAIOpRoXWmVWG0pR9pnzaGfcMiV/7aJlA6v+7Vw5kw00X8OCouOJWqGDEAuyDfUypzr6Dw4TAeYnLW2AeWZY8umjBIDVj199nNRn3FIu68oAvisDtH2vvn3tox06cZVKnD06drU5WNVckOGIf34/8c+7z7UNa7CByFcWNo8FvjVX4rX8d/bh4eHx2qBeYik629ALJZyhEZxyGRkKQSaF/cI5kBra+tUwNAp+/1VZ15eLDIUQnW3Y5y4iajck5oZufJcmMFe0oc1WKHfEMOJB9/xmWoiAHy0SftXH9ri1CCFSwJeAHqAfeJ9S6qoUuhDCBp6vvbyslPq52vu9wBeBNHAY+KBS6qWXFHgs4MOv7+V993URCxgMZkt3ejgeS4hE6O6dslkSAYeQEq0pgzM7i5ZKoqpVVFcrztFT6B3tqKCfyrIUsz0+UND81CB2U4yL/49G4GAY36yi2CIIDykKHYLQqGJ2BaROKMpJScuzOfThLGZnmlxvEKPgYAUkgUkTaSusgIZRtMh1+glM24TOTlJY04ResnF0QTmtwwfHmd7XgrSg64kZxnbFmN5VYd0nxrjwkWW07TMZ3qNjBWHll/OIqsX0+jjxszkcn0416cOXraJPFRAzOVS5DIYPVSyiqiZaUwon67rzyvZWRt/SRvpv3CCisDzO7Jv3EJhyKKUlelHhzymUhFJaImzF7EpF7zcq+M4Po8JBmJwGL6vp4XH7kJorBGHoKNt2+zk0DUwTmYjPqVdlEghbQaWKqJjYLQmsiA99psLsmijlpMAKCaoxCI6CUXSN/GZ6JcXlJrGTBlpFUUn2ELmiCI2ZmJFOhANCKcyQxHx9E8mzZbK9AYITCcyIxNGXExoxUZpAL9uUMj5KaYkZEVhBaN1fYWq9HyXBN6OYWQ2+GYFwQJoQHHcITNrk39CMUVQEJy3KKR1EhtwyP7F+1wBQmymhlyqYHSl0Q0f5DWRrmlJHhOBAjlJHFL7jGf8tMT4O/ItS6lEhxMdrr3/3GuuVlFJbrvH+fwb+VCn1RSHE/wI+DPzVrRvuTzZCCGKBu7Ns5mahScH77+vi88/evvrLD+7q5rH9l27b8V4Jv/nmlXd6CK+YJRFwKMfBrmUU7KksOApV69Oop+P1830NDw4LoB96f8F9LcNhnEKB6V/eTdcn96J3tJOubZdqacYeHcMJhRBXBohdIxGgAXrPMuI/utyYOQycc8ugZDSKL5eDf4AYF9C7u7AuD5A5osj8FTjhMN2/75YudH8Xsh/ajTr4PAqIHQMRCCDKZfy1Y9iDI24Wx++HUrmhx2+PT7jKUlLDudhPulb2UHcyD9bKIWI7NsGB55n88G7Sn95HtPYZMriZkIYUpvC06Tw8bivKQZn2nPHfvEXOyLzyqvr/aJ0rA2i19aNHaPxPL+Z67wOE2lpRjoMI+Bsy3gDpQ+65MdLWOnduqBFmoekgQMv3556nFi2r92fUJXW1VcsJHJjEns0T/7GN3tkBVs1LKBZFny4hKiaMTSJ8PgKnLuCYVfzHX+SDeNwpHgLeVHv+WeCHXDvguArhOtveD3xg3vb/H17AcVNoT7w2rTIPf+IBAobGOza28YUDl/n288O3/JgB45WXkt0ufPrSH+P1WBIBh5AS4fMjE3HXlTvgx+q/jNy8FpkrYfVdcl11l3WgfAZ9j6QIDykc3Z2ZUxqEhxWJv3ejiYn7u0kfCDG5I0PqSBZGx1wFqB2bEI5Clsw59ZZylSvv66btT/ZSecd9aBem0FtbUKm427+RyyG2bgAJ/Q/FWP7YKJV3bMc3YzK6PUT7j6bp+/k4LQcdQl99lviFUq0npZPyimYC50Zxrgygd3U2bgS0pjRUTbcuWqlGQ3v9gi6jUUqvX0vhN2fQ9wn6v7SZyA/CtH6zDwYnsYDmr59h8Lf2YOQU6U/vY+w39tC6d9qt03YU0meAl4n18Lj1zC+PlBooB4Scy3ZUqw3pXBkMIOIxtyvUslFVE1UuU3rjWkLnszghP05QxxicwmpLog9O4UzPINqaXffuoB9RLC/ovdBWr6DaEsM4PQBy4cVIVU1kNIoqldDSKezJKfSuTtA17IFhlFlF71lGeXkG/5GL2NksWjKJSMSoLkthnB6ESgV7egZVqaAl4ji9nagjJ93SKsPn7nd8HGtgsDH5w8Sk298B2NPT6O1taOkkzmzONUicwWNp0aKUqt/RjQDXc5ALCCEO4c77PaqU+jpuGdW0UqoumDgAdFzvQEKIjwIfBVi2bNnNGPtPNJ3JEIc/8QDbPvn9G6/8E8K6tlijdOj1q5p4/aomfvr4ML/5D8/d4ZHdWe7pStzpIbwqlkSopBzHdaHN5bFGRrGTUfSeZYjLwyhNugpPW1Zjn72Ac+I01soS2fWKUovCjCkiAw6ODkiNoY/tITRmMvpTGRKP7UOddtWjtKY05eYgVtRHflUcbc1KrJY4diaBf1ox+wu7qMY1MHQI+GFgBLlxLVP/ajfqyElk2SJ2ES7+UiuX3qswIzrhEYdCd4TOp0xCX32WkX+3Bzuko6VTWJeuoP/gMCrkzk5k93SiNTWhJdw/GFWtIoJBtFgMoUm0RBxsGxmNgmnif+Ig1X9uotRjwvkwTZ/aR2lTJ85sDrX7HrfkzIBqXGA+sA0rBKJiIpd3u34AHh4et4dasFEPMGQkghYJu8FFKIhMxJGJOFpzEwQDqJlZVL6AqlSwJyYQgQCh81mqbTFk1cLoG4WqidIk1pUBZDjkqjyVStjnLlLc2I4WiwGgt7Vin72Atv+ke9Pfd8kNKGq44wmD348zM+uqAZZKKF1DRsJo61dTXNuCtB3QdVedL5t1J3l+dAQRDoGmUXx4J7CwiV1s24CyTOzxcWTYzZU4hTlXZCeXc5X0lMIacu9lRTCAuXUJmJO9BhFCfF8IceIaPw/NX08ppeCq1sM63Uqp7bjZjD8TQrzsX6ZS6q+VUtuVUtszmbvTwOx2k474b7jOJ9657jaM5KXzzs1tr3jbX9jRdc39/eHDrhxsLPDavMd5ZFvnjVdawiyN35oQ7sxa7SIqbBt7YAgZjSJKFUQ8hrP/OOp1WxDPHGXFLx4BQO/tZvSBdtLPDGE1x8Gxaf/jvVj3b8MOCMy3bcd48hBaLOaWSQ0OUXjvTsL/+Cw2IM6AuGcdzd+5SPZNvQQmTKx4AHHyjDuuE7M0ybXMvH8X0S/uJ3kSkrilBAiB7+wFZj+wCysoMaRG65+7ylUqGkVbs9KdkXRc/Znol1zn84YErtQaKjYyEHAv5FKDUgmtpZnBn++h7U/24nxsD+1/vJeJX9tN67cvY+VyaIUK4vIw/myc5scvYI+O0XV4oUyu8kqqPDxuK8qywFFuSSiAcpBaFCdfQIaDriy2YeDkcmhNaYTfj9ywBidoYAd0/P0TVDtTWF0xgkcuIWzHLb3UNLcJvIbve4cazuD1Mqn5kt/WlTl1KqdYdDOptSyMlky6ct9CQlsGhscJXBlGCOFKkAuxIGNjXexHhsOEvuYKVoj7NqEOuj3D6vCcWsf8QGPB91FDaJorE+z3oRU9p/E7gVLqgestE0KMCiHalFLDQog24Jpd/kqpwdrjRSHED4GtwD8BCSGEXstydAKDN/0DeLwoH3nD0vGm6H/0nQB8+/i3b+p+33/fMkzL4QM7u2/qfusI777plrI0Ag6lXFfamueGc9xVkrKzWUSx6KbyN6zBfubo3DZCYPVdIv03lxo9HXVvCtsvafmLZ9GWL8Nmbr8A4X+sXTi3bkAdOdkw5Yt+0ZWClBvXIru7sC5dcUsFjp8mehzkPetwjr3gjuvcnMxt8sBoQ+ceXL8Q+3wf+kwIa2TUvWGoofd24wyP4pQXem44dflMx0Y5bt9K25+4JROd/5zFAQJZ5ersz/t+0n+7DxtQr9uC/cxRnDdsxXdxFFUsuaZjXtmCh8etp3aRck3/akljKRCaD1UqIQJu0CCTCZTjoKcSKENHSYkoVzCbQji6wM7EkZaDVrGxVraT7wow8a57SZ4Eo9iFFRRMrxbYPvBPC+wA3PfgCY59eSNWEMyYQpjRl4iQAAAgAElEQVSAhPTziny7RC8pqjFB8+EKU+v8OD7QC4rM0QKllgDmPSmqUUHLD8ewtq8iu8aHGRGgIN5vU41IpjYpQkMSYYFWUcy+bzdaGRw/RC4LtLKilBGYcUXkEugl0KoKFJRT7hgcHQJZB81U158797iTfBP4EPBo7fEbi1cQQiSBolKqIoRoAl4H/BellBJCPAW8F1ep6prbe9wdhH3ajVe6Q2hS8Cuv673Tw/B4hSyNgGMeQtddw6iJSWBOe96uZx2ome59Y84UT681RNprumB/lvCRy1iOvSAQWIw6skhLt9aM7Zw4jWhpdtepmq7T+ewsViyAxJWGrGvgA5R7UhjzjpPfkCF4vg9rbGJu/HUTw6ER97Ws/UM7dqNvo06jBrpGPciJfHn/dT+LFdYxAN/54bnGULl0TxoeHj9R1LIBap63DpZTy3KoG/pxaOf7Gk3j4IpYgNskHv3iwnXji7Yd+0Mfrebea+43tujc0rKoBDxY+wFXyls/C5kfLFwnjJvVraN3dpAZmJu8rp+/tJZmqJpuprrWKwIQm/85a5MxHkuSR4EvCyE+jOuY8j4AIcR24NeVUh8B1gGfEkI4uOXYjyql6i68vwt8UQjxSeAI8Onb/QE8bg4ffv3Nu6F/9N2b+PhXn7/xiou4E+7qdwN3+1zN0go4pIayrEawcT3mBxsAyqplC/a78id2RxNcw7xq8c39Ag483wgunNrFcr4zuPyxW8Y1P9hACHw/XuizEfzGgbmyqcYAazck9WPPW7Z4PE6h0DDoeiloTWm0I5ewYaEKzSLXcg8Pj1uIEAhNc8UpYIHHzuLzjpZMuhnI5jRMTKFsp3Gu0dIpVNXEyeXQW1twpmeQTWnKa1oxpsrIgTHGf2YlzU8N4sTDCMshvypO5MQ4xdVNBJ48AkKidbXjjE8il3Xg9A+gtq6BQ6fAsdFWrwDHgeyM20Te2oI1Mkr1we34vneI0kM7iB4ddoUtZnPIphR2cwLHkJQDOlp3hmKrn0h/HpmvgFI40QB2xIcx0YwVD6AVW5HZHPbIGKxfiayYOBeWttzkaxml1CTwlmu8fwj4SO35XmDTdba/COy4lWP0uPt4972dryjg2LOy6RaMxuNOsySaxoFaFsBBBgJuj8Qi9OU9aJkMkx/ZTfXB7dhvurexrLphrsGo+vb7KLeE0Dva0TIZtA1rXLlG3Jt7sW0D4ErILjj89o2N0itlWWiZDMKYM1gZ/9e70TvaKf/sDsT2jVQf3A5KXRUwlB7agZACGY02jgs10yzdje+0dGouA1F7FLre+FGW1Rjn+ce2cu4vdzb2o61ZiTB8jeU0p+eWpVPujY/ha/TDeHh43AaUcicJlLoq2J9/jhCGDzubRdluBtaenkHoOlpLM9qq5diTU8hYFBkOY42MItMpVMCHMe0GG9bKdjLfuYDZlkROzFBuc2cCJ17fSjGjU3r7vVTecg+5Tc3Q24GTCCO7O5BFE235MuTmtdjn+ymszVDd3IPYvtH1BNqxCd/3DgEQHC1jtSSw/n/23jzMreu803zPuQsudqBQVaidxSJZ3ERJpCiJlLzJaxzHseM4tpy9k9jxTGc6y/QkznQn7SSTjtPp6SSTdDrjyeZ2HC9xbCde5ciWLEskRS2kKJEUdxarirWgduy4y5k/LoBCcRFJLWRRuu/z8AHq3oN7DwDi3Pud832/31SO6r2b8dJx5NlJlBSUugwKfRalTokbM5m8rwOnI46wXcxj5/FMHSdmUO6OUlnXiXOPP055EROtqxN9cIDqu+68Tl9KQMBrgz/70PaX72BBHUPAK8TqWeEQ0ldjsW3cE6fR165BhUPgegjboTyUIbejh57/sofcv2yEb7ahrd2NVlOYBY/SL+xGuDC/VbHxz88z8e41xMdcomcWqQ12oOVmqN53K0pAZMswolBC7+7ybxBCJq5S1H7gTkIPHkDr76W4uZN8n07XN0c5/fMDDH5xjtH7Byl1e7QfjDF7i8DYeQ/Zp2wqbRpLgxLPhLX/OAuD/aBp2O0xarf1YEc19JJH5NwS0nZRI+PLNyWtqx2uC0qhd3cxdXuC2Q/fxZ/u+nt+689/FnHnNmpJE7FYQw6vRYzPUL1vB+N3Waz5xxrepj6U46HMNQjbQ04vBTUcAQHXi3oqlZCiuTrZnDxoWbFsFHe3pk02xR7qbtytkretz11Aq1RAk4i9z+AAxvh5DCBSl9Zu+AgBeC2vuxDra/4qsWrs398yC7lv2SjD2ne8OREjc7lmilTDE6RrYh3u8VNgWTiVCkxOcaFdWWOtxwH0rizWAwcu0aOAgIAXS1v0ZXSfVjc2cecDO2+cEtP7dvTyyUdOX7lhwItiVQQcwtDR+3pRi3kQArVjI9WQhqy66KcmQAg8QyJcOPfxe6gtluHeCpFnwhSGHawxA3MJCneUie8Pc+yXemh7FsITRbyIiTk6i1o/iHA8nITO9O4MnfvmOPP+DNn9NuZijUpniGpCw9J1Jt/eQ3TSJXnW5tz9A8TPKI79YpKO/YrQnKCUFYAinFOMv0FHqwkq3TbWeYPzb8nQ++VzqBBoh05hbRokUqiAlChdguMierJo+aKfVuE4vhuxrvsKN3YNNI35WxSZpzT+4q/ex9LPOyTPhnEsSe72EK4Fle4UsiIIT8HR384QORpi4CvT4LqIQglvIYg2AgKuG0oBHsqTTaEIGQr5Mtu2g4iE8RYWUUqhdfpSoCpkQMik2uWvUmhlBy+koRdstPOz2AMdeCGNmW0WiVGHuY06SoJWBaOosKMCz4TkaY/FtRJpQ6VdER0fpJKBxFmFHYX4qEt4vEhpIIp0FKV2nWpKYBQVSoK1oNDLHuaCzdxmi7YjZWppk7nNOuljDmNvE0TPaugViI86FLo1EFDsBWtWYH8wS3zELwaXrqKSknQcLGLHDaopnXDORis7FPssItM17O0D8I3PXe6TDAgICLghbOoKMkNeSVZFwKFsxzf6qxdkiz3PYMTjvo57vU3kRITIvgXGf3ozAz/1wjNkkft3Ef/c3ubMmmdZMGdgTRqonUNkvuTL4mYH7iT0zSeQlkVsaAC5NomIRmj/f5ftyCPZ3aQ+vZf46B3o331qxXn0oUHSa9rQHvLNaPTBAUqbsriT0yi7htbRAc+ewK1UVqhcNRChELiuPwtan6EEEIUifd/txfrqfhQw/OTya5KWtaxqBYx/7B6GP/wsyq75Ur+hkG80doNnKQICXnMoBcpF1TyEpuGVK4ia9H+v+TwyFkMVCk3Z2kYKpHHsFFpHO87EJBqgdWVRSmGMzuCMjdO16Cvq9daFLcAfe5wzI83feQxW1n7VhSpkNIpXKqGUIlwfNsP1cVYbXoc6N45XqaD39eKMjdP+/XqbUIiBQ524k9MMn1uPtlDwzwfE6yIdHY1atVbjQ5YLxU0gnEjgVasIXSe2t4iWSKC11sEFBAS8ZFbr5f7FZGe99/bLeka+5nnDhpu7tmVVBBwNWguyWwu2gaa6SWL0ysXQ8c+tVHTyKpWmUoz5wFxze+ibTyzvP3Kc0BE/vaD1wp36tB98XBhsgK9Rr50+u/z32XOYZ881Ax03l1vuwwXBBqzM7W7V0VeOg/XV/Re1b/a1hd5P7FlRtH7ZoviAgIDrQ6OeA1D28javWELGYv7YJjV/NTIeRwqJl0kh5xeQqSTFHQO4lqSakFTa1hDOKZy7dhOZ9pj/2D0IB8IzitBtWRaHNIyCQri+TLbWnoGajbNtCG2xwtz2NJFpm1pSRy95RE/NIwplRCiElwgjoxH0bAdLO3owh7soZQ30isLIOxT6TEKLPQCE5kNM3N+LuQRd35ujfNcA5YxG+mgJPbdEdaCNcodB7FwZWXPwLAN9eglhO6iz55BhC23LMO6R4zfoSwkIuLlpi5rMFWtXbvhSucE1HEHB+OVZk4ne6C68JFZF0biQ0i+YNi7IQ5Sav0oAfpG4EES+9Dja5g3NJu59y8Xjeq9/cWw67e66tblPSyQQ2/0CRnnrphWnaZwjf/+u+t/t6N1deG/0C7G0LcPL5xgcQN6+pfm8sV/cuSzeoff1+vUh+MXi4HtwAOhr+pGW1ewT+FK4wjD9mxBRLzhf08+ZT+xuHnPyV+4BwH7rHRTffzcyHkfbupHcR3djv33nJT7VgICA64LUfCEHXUeEQr6hXzTq/0Y7Ovx/69eir+nzb/AHB9AHelED3bjtSbyBTpSlU7t3K9PvHGJus0Et5vtXhOYVmW+dpO1wGb3k0vfAIv1fz1FuFxh5h8xzNRIjDvExh6Uf34W7vhd3kz/WuIkQmSdnCM2UiZ8pIm0PpMTtTFK5cx1yoUjljiHsvgyVlMQzBHpVYUcEpayBE4b48QUSBycJjcwy+NkxOg6WqHVGMRcdOr95Bul4qKhFaKpAet84em4JpUmMUxPUelMgJXpXFtGWptYZQx8apPijd1/hAw0ICLiQX33b8GX3qVUqmKoFBegBLayKFQ7leShcUBdIwXoubi7nz9o9/HRz8/Q97WSOnqDwY3cT+8fHm9sbxZLO6JifotRS/OguLaHPLOLgG+fJesqWCIWaKxGNlZGGvKysP7bOynmT05S3Zgkd9Fc0Gvu1rRub6V/e3HxztcYrldBSSZwRP41CVaoo1wPpp1xAXQrXMMFzkZaFl8/j5fOs/dgoE//7PaROOnT9ia+1X2k3SB2Ywc3n4fAxOi6wEwkICLjOeC6qnlokNM0PPCIR32cnHgXPQ9XTjryuDG7YwAtpCFdR6A9RSUtCix6e5tdkFAZdSj0Cr71Gd3YB82clY/NVdFmmVDGpVeIw71He7hGyapi6y+JYEpGsMp2LoAxF+pBkcQNEJqPYcQhPKYo9oFUyVDZWUGWBOdNF5llF7q0GbsRjbpuOF3UxEjWcmobUFYU3WLhuhGSixMKZNLt2HuPp8T4cW8dbWEN6YJ6FU21o2TJqtA03pAhPSrRqHGlDJNtFaMFBSUGxW0dt6K7XwAUEBFwLIe36zA/f3n+h28+LR8rgtx6wzKoIOABkLAaeh1csNpVW9DX9KEPHPXkG73W3M785TOe/nCLz136aU2r/eYrv9Osw3DftQHv4aT+3+fTZ5RQlqSFNA69axRkdo/Luu4g9MYI91IXY84xvWrV+Lcwvomo2+XdsIfrFx6m8+y7C3zq4ItUJ/JSmyMl5VDRK5fVbML/1RFO/vnFume3AOzOC3pX1HdEnp9CznTjTM7hT02ipJMp2EJqGWz9+Q79fOQ5aKsnZf7uVwS/l6P6/94DUmP+Z3cQmbBKnioilAloqiVsvDJ/5xd0r6k4CAgKuIy0KVXjKT6nK50FKf5/rIRIxqNnI2SVELEy1O0Ho1DQJu41YSMOO6lRTGm5I0PM9KGYloadNQrk2CnaKDikodhlkv3wIr1RC7+1BFYvNMaBncABvcnpFymVXb49fqF6tIjeuw42aaKfP487OIW7fQq0jjFZySD82g5tN4Vo6WtnGjZgoDfL9Fm1fOkT5TVvAS9DxzX0sdHSwZvbICnW9SyVAyEgEEY3i5nJIy/LTRLdtRJucZfbNg6/wFxIQEPBiefOm7I3uQsCrlFURcAgpV9RsNFcqRkab2+SjB8k8uizxqKXTOCOjhOpttPoKiNNSUwGA5+JVli+O1lf3+3KSkTCN9ZRW99voFx9H7+5qFmxfitK6NKVdHWQ+fwDnjdub+vWNczeKK50W88HW5+7C4opCS2GYKMdP9laOg7tUoP/39+A2UsI8l/Sn9qJlO3Fzs5DtaN5oAGQfmbmk9GVAQMB1oFEsXtehXTFJ0ahLa0jf1tGP+jKxjI4hgVD9n4xEkOkU0foYqA2vwzszirBCGLUaXrVK/oO7iH9+n5/G+cSzaFuGcY6eQIbDaOm0v3Kr6zjnJ9AybXjFIursGJRKuEr5NWoHDjfla1v7IdszaKEQeB56oR2vWCT09Sd8s8LhdYhiGb2z3Z9ImcohNA2ZSuLNz/uTJWnfl9ydn2++92YQdOAwDpD8TItBaUBAwEti11AbO9e03ehuBARckVURcCBASyYRyQRqfhEMHdWXRS6VqAy1YyxWqaVCKE1w9kckmac0FoYhfkawcGeVwc8Jpnaa2EmFsSQYeCBPsT9CoUej559O43WmkVNzeO1p3EQIfabA0tZ2aq/rJnq+RqnLv/QaRYVrCqxZG7b1UU3pGEWXc++QdK6fpfSdTlCgdCjfVsZavJWxtwjSG3ejJFTTgv5/XULUHPBAuC52JopwFfpsASZziLYUOC6qXPYlgMu+ZK4ghBACVashohGO/YdhVHuN+Mc2U3kuRWRSUMnA0F/plLb1Mnf/EG0/OI75thGe/2gGoTKs/eca5ui8L8WZm4PcFT73gICAVYVXKq0Qz3CPnwJWBjHxz/upn+oJX7GqkfLplUrNm/xG0bo7M+vva/H9aCpZXYJGewAmlgMDd37+oqAJQNXTXle0CwgIeNmJW5e+XfvcR3ZfcntAwGpjVQQcylP+jH2rd8TsHB6gnxlBQXM2bvgBv8g7U7/Idda39z/Qcjwg8gREqM/eTUziAbJYQuTziL5eIl/ZT6S+wtDIWNQHB5p1GQBWPW1p07G1uCfPkOTkRX3f8JUL3gusWBlpZF02VyAaJlrxOF6h4EtXxuOoShWvcVNRqbD+1/Yx85HdtH/yaVrxolGs8wm6vvU8/HG9D7+8rMrl4q/+BBf+gIDrRL12w38uEYbeTJGU8RiqWvPrOqIR3I4UTjKErLogoNRjUYtKQkseRt7BtTSUBlN3asiaoNJrY8zrOF01rBMhpAPSASUhfdxhfqOOlVNIB8IzDtL28ExJ5OyiP7FhGlR7YljjeWodUaZ2WngGCA8SZz3siKCWEpgLCq2mKLdLkGDHwJpReIYgnPMoZSXlLt+HKDbqYUcFbUfLuJZG6PwSStOQiwXQJCoaxklaKE2iL5Zx0mFqCQNZ84gcGsMezMKeL97ALywg4ObjB27p4r+8/1a+fXiKB4/6GRO/+tbLF5Jfjo5Y6OXuWsA18rYtWf71yNSVG77KWBUBB0rBNdQWtc6oXQuNtC1nbPyS+1uDDaCZttSactWKNryuOQP5Yvty4fNW2j95cV2GVyzCoedf8NhBsBEQcB1pkcEVhomq1VCeQpoGqlxBhC1wHFSxBFM5zGi4ObbE654YAHp3F05/B8L16F8KYZ5fwouFEEfPrFj10Do6oFqFzgyxh2YpvW4j1aRGZP8pyKTB8yBk4mRiVLIh4gcmmH1dL21PzzLwuSlUuezXcYRCqGqV0vvuxlx0MJZqOJEY7QfyODETreKgj85QHe7CjoXo+d1ncHYMo3RJ6NQ06Brl27vw9CTWeAG7L4NWrCJKVYQXQitWEKUqxrkJzHgcLx3DnZvH29Rz/b+jgICbHCEEH9jZz/eOLd///PJbN7zAKy7NH/zoNr7+7MTL2bWXjVv7Xr6C9dXK2U+8C4DBj339Bvfk+rMqAg6h68iQX2QorBAqFgZPIao11GLe95bQNIRpsPiWYWJf2MfEr92DVoHEqENotorY8wylH7mbfJ9G79fPc/4Hemh/towxtQRzC37xZP2mQNu6kdzdbUQnHMKjeWbuTJM6UUbueRb3DbehNIExV0HLLeCMjbP4E7to++oRzvzKLSTOKNKffYJjf7aD9Z+pUdi5i1KHpJYCvQQ9f7QHvb8PZ3QMfe0aan1tmCfOoxIxVNhETM7i5maR0QjCNMB2wDRQhSIiHgflQc1m6e2bmd+g0fcHe5j81XtwLOg4aIOA2VsM2o44RE8v4B45TvH9dyM8sHI19IP1VRjbhvIN/FIDAl6DNM07DROvZoOqImr2ipQod+ECLX2poSVivvFfuYy7sIgGiP4+1LGTyA1DcOL0cnvPxd0yCHUVvtA3niBEfRV11vcZ0hIJxJZB4gcncUZGSY6M+qufqSQilYTZOZTtoPf2EPvXI3j5PArIPAHilk1oTz4H+CvE2vh5Mg+B7O1BPnqwuR0gMjLmF5BHIuiRMN5i3l+pPQle63tcWIR6SV7DKDUgIOD6k7CMKzd6GXnH1iwPHH7tzeZfLb/7nq389j+/NuRGrzrgEEJowJPAuFLqh4QQa4HPARngKeCnlFI1IUQI+J/AHcAs8EGl1NkXOrZyHDy3hGTl6oVscdV279uB9tDTxL7gpw/1fXUSt/UiDES+/DiJNf04I6N0/oV/StfvfLNAW+/K4hw+Rlv9+/WAtueWj9EoPleA2jAEQPIz+3CBgd/d09w3/L/4xnwJlp11m+/H8v1EnDMjyDMj/sV5csr32airu6xY1Wj0r0VhJvrFx2lYvLgm9P3BHvT6e+v5hr+9+uY70I/4bRt4F7j+BgS82nklx6Zr7Ij/oBt+WpVj+6lWUviu4rqOCFt4uVmQEhmLojwPrScLswtomzfgRUxq7Rsw8jZLWQtzOEvVkkRrNqVNWfSiw8TdEYq3l9lgb2XiDUk6DlQo9pgkTxQp9vm+P9ZMDTuhs7S2h2R7gsKaKNJVaBWFOVfBHt6JOVumkrSwjriMf3gbHQerlLIGbXvG8QDvdbdjjs8zfV8PydNV8lmTmdvW0PewzVK/QeejOebubMead9FLLkoKPF0Qmi6jQhr69BLUbFQiCo6LnU2gNEHo3By8uIXhgICAm0xp9td/YFMQcFyGjdk42mtIOvhaVjh+GTjK8v31HwJ/rJT6nBDiL4GfB/5H/XFeKbVeCHF/vd0HX+jAQkq0TAZcD623Cy8WRp7PUd3aj3V2Fnd8glKnif7euzB+aZKkWebA8TbCI765nhNROAkPa0JD6SCcftqer8vMCoifLSEXiky8vYv2Q2XsOwZwTUn0XIHzb0ziREGr+isUsqbQqhDJOZgLNQx3kLMf7KE0ZKNHbdz5EPGTGokRl8TeEUZ+eoje7xUYeWeM2Jii0CcY+HYJkbkVUXWpdEUIzVeRhRpOykIoMEZyuJNTyHQab2ERmYihKlWEaaLKZWS2g9x9fQx9+BhvSh/jTHUPX07vJn0YItNZpu8wCc0r5m9zEe+9G2taw4kqMocUiTMltMWyv3Jy4hq+3YCAm5dXbGy6JuqBvrJrzRUN5TjgOLjV6kXNm5MOjWtxPRWyYX8aqT/q+CsKZl2Rr/vR+umArqf85wmWa9caNJSvFBB9cuW5jfr2xrG7/9tU8ziN1Qv56EEcoK2uuhcH4p/392XwJ3OSxy6ua2tMd1xYmi6PX3p7QEBAAID+Grr5/vq/ex19qQgL5evgHr9KuKqAQwjRB7wL+H3g14QQAngz8OP1Jp8CPo5/UX9P/TnAF4E/F0IIpV5g2l3WZ+UzKYTj4oV1RHc7WtWluLmDKCA8xdKAzuKZLLu3nMRKVkkd15l4qwtC0b7HYGFYgQQ34jGRERh5wbq/Pe8bbiUidBwoUhgIo6RfeJnbmcAoKPQyKE0QmfawwwKlgTVdZnpnnGjWory5gpw1kdM6aH4QM7VTsrB+CK0Gx3/WAuVQ7QBrSkcrVFGm/9E6EYm5JEGXCIU/66draF1ZX6lKCtB1kLb/XEpULMLc2ypsN8r81wNv5xdvewSxtoh3PIoT0ZA2LGz1sDJlrO/FKdxTou2bYSJTNtp8CTwPUQzyqQJe/bziY9O1IuvF48oDpfyaDrvmpzJZFhiGX2NhGn5Rd8igtKEda6aCXCrjxS0WNsWoJiWlLoU1J7CjfpG4uQTVe/KYpkN+PkI0WUEIRWEyhrAFWkXiWp7/GPaIn9SwY3539DLYCdDKYC4popMeU3dJpA1aRWAuQHTK5fwP2yT3W4RnPRaHJNKBwqCDjNskkyXmp+NIy8Ur6VhjBmYenDDoRXAi4FoQngK9olASQoseellRbtcwih7xM0WUFPB4UDQeEPBi+LE7+vj6odVZg/FS+bMf33Gju/CKkI4YzJfsFdu29vj1KsmIwaGPv51bP/7tG9G168rVrnD8CfDr+JNc4E9wLSjVtAYfA3rrz3upZ+sqpRwhxGK9/UzrAYUQHwE+AmARQZgm3sQ0GDqG7aCW8hjpJPqzi1R3rCd5ZIHkv04Secdm5FbFwI89y/zXNzD8rhPkPrqbjsdyLK3roP1pRb5PI33cYXqHztRbe+j8l1NI24Hjc0SNzSwMWaRHyqQemcDLF2D9AHJ6nvPvG6L7wWmYW2TmXevp/uYY5Q2dxA5alLP+BTT9PCRPlZm8O0zX42Vyt4cZ/uh+9MEBZl7fS6kL5Mwi9mAnxvQCiVOj0NVBZTCNcBTixGnkrZsQZ8+jXBcZieDNLaBl0jiTU2jtGdyjJ9n4H/sYs9vw/rPgy7/3NvpyNmNvgfKSRvqES88f+WlUJ/78bvo/azL6Dg/1hIk5Z+KZGpp47cwUBLymecXHpqumJWVS6L5SVXOlo2Yve+dckPYYmZ5FDfbgpiMoIUgfWvBltcenIJPCPXlmWdXuTxTOW+6g+ztPNV+vtWdWytk2tqfT0NOJGzWRz51aUXgOsPbLfqG6ikcRjotz+iybHunAzeUQhknSCiFjUVAKZ3oGLZmg21rEmbh2Hw2r/qikhrZp3TW/PiAgwOdNGzuv3GgVcS2rFr2p8CvYk6vjL3/yDj76909dueE1YOq+XukHd/a/rMe92bhiwCGE+CFgWin1lBDiTS/XiZVSnwQ+CZAQbcqbX0C5HrK9rWn4J9b1o0ZGMeZKYDu4C4vEzxTZt3cT63aVaP+VAi4QmfFwj52k55EUE/ca9DxSxVyoMvSpRdz2hG+WV78R0BcqdD6Ywxkdo/DuuzAKDtpDT1N96x2kTtYQNRsnlyP9dzkcwDINukpx5P7DjPyfd6FVPYzZIj3/9QBae4a20CAAdm8bc7dA4pQC18U4N4MzPuHncMctjG8/6TuoA+roaZTy/EJ4TUM5Nqrkr0h4i3nwXJwzI5z7T/cw9DcV3JCDHddY97eT2N0pylmz+TkKR2B99XHa23aT/tTeZhni2xwAACAASURBVKFmYAQY8Grneo1NV/1Cz20GE8p1V6xweJWqL44Ri4KncPN5P+iQGu7SEhzy5bIFfl2Z1p5Z4X3RWvOlf2flxfCSwcb6tTC7gHv4mP/6ln2N2jhtwxDOidPQMlnaqKFrpIW1nvdq1O8a77fZj+F1qHPjyGyH7zuUL8DUzAscISAg4Er0JC3ylZsjOXFNJnrlRquI7QOpl/2Yf/C+bewYSBMLrQqdphvG1bz7e4EfFkL8IP5EVQL4UyAlhNDrM4l9QENrdhzoB8aEEDq+zcXFV8QLaBSHt7qLqwN+ZbfXKgO7/1nW+fXazZvqRtG0+cCTrKn7cSjqucIjF5znmaPNi6/11f3N7caD/kX8wp+we+I04oR/vEbReOO87swsxoP+WxOPHWToMS46hvJceMp/Hw0H9eYFuSW32637c7RerAd+xz+f1jgfIE9C6893/a/4RfTpT10soRsQ8CrnuoxN10Rj5aKlngMAz3cid1u9hurbL8Wlgohr4XJS3rA81l4ouvFysMJlnWXjQq9lXA8ICHhpPPobb77RXbgmnvntt3Pb7776U4Yux5s3ZV9wf8x8bQQiV3yXSqnfBH4ToD6L+O+VUj8hhPhH4P34ajA/A/xz/SX/Uv97b33/d681R/rCWbJLMfXv7iH7/+xp/q1t3diczbsWmrN9HX4qgd7Xe1mfjua5LpPC0OBq+r+ifV0Pv9EXEQrh7diE2PvMVR/jQtPCgIBXOzdibLokQviGf5qG0KS/cmn55lrCNEFKMHRUyAQpUIZGrSOKE9YwF2qUsyHmNmlYc4paQmDkoZb0azaW1ntERyVa1a+9KHUJ9DJ+7VlFkTyyQGlNAnPJBlchHz2ItCxktoPSpixKFxhLDsZcidKaBEoKnIikkvJr1bQKVNsEwoPOp8uUO0zmNmsYedBLisSITb7PID7uUElrxM9VmN0axigqwrMu4QMjuFPTqN23IZ88inJd9DV9KF3DPXEaLZ1GVauIsIWzaYBir4WSwGeDGo6AgBeLvMmKq5OR6yvF+3Lytf/tdfzQnz16za/7y5+8A1AMdcSu2PZm+z5fLC8lrPoN4HNCiP8LOAD8dX37XwOfFkKcBOaA+690ICElWnsHSIE3kMVOmLimxFyoUeqxCM/UELZHucti+NcP88bU8/zxsTlO3rkdZkN0DM/gKY9ybQvOwRTZe88zU4jiPZ0knFNkH/JrQ0oDCfID/lsWLlgLHnObNVAQzimMwjrckAA1QGKkRqHXxCh5TN8h6bpjktlChPJYHBV1kKEBknssku87z9TDvZT7HTA9zAmDgW9XUFJQyproZQ9pK4pdOqlTFbSlGsJ28Y6c8KUyPRdcX8feK5XQEgncpSVO/ILB0O8N8JbOY6wJzfA7X/4AdruNOWEgXYFx+zy3dk7wxOgA3kiUvu3nWfrH3USnXd+PY6YAL+wPGBDwauVlG5uuGs/11ZmU55v8VauIcLipPtdIR5Jxv9REP5THjMfB84gWiyQ2rsdtUXxqTCB0QtPXB6AtEkFmO3DqylGytwfr0PN+utZgP87u25Dncjgjo5gjo36NWKWK67lEC/1+0ON5pKp+AaMzOrZCfjwKRKWGkAKZTuPmcmTqfQrXjU7bHwO9rxcvFcedmgZAPP6cv5qLLweuDw74hfLRCCIRQxVLiMcOksy04c5fsMoTEBDwqucvf3IHH/37m9ODpzcVZnzh2oR41nVE2ZCNX7nhVfKRNwy9bMe6UVxTwKGUehh4uP78NHDXJdpUgB+7puN63rL/xtQ0ekvHWtOHIsDYl+Az9NHJ81xYOpVued7b8ryRtBA67MtEtvJC2YWNTL61/+Q/9l2q0f+A/gvztuq0/ldrnFexLBt5Kcf0RorV8M/7OpbfIwz0s5aLU6ZywCALzb/bW/oR1HAEvJZ4pcamqzy5/1hPm2pubtQ/FIvNba01ESvqI46dRMu04c7OoWXaVqxWOr1tUA84RCiEmvc9O+xMFM74N/wylcQ9eQZxEtxQyygnRDNty7lMWpPX4v/TeB/a4KDvJ5TLIW/bjPfscZRpoO69HfHYQVTEAukHQ2jSX8XxfGUuZYVwGsHTBSlkbt2YMCAg4LXGzTGLf6le/sOH7+aNf/Tw9e7KCt5/xyXvQG8qborEMRmPrzTKCwgICFiN1NOrpBXyb8ANA2Ea/mqHbSOiEZThD7te3KKWCiE8cMMSrezhWuvI9+kYRT+IqWQkdhS47x60GpiLCicscCJg5MHZNUjmcC+uJSn0bMQoKKxFFzsicUICNwTpEzVQoFUc5rZE8Az81K0CzatrJQPde2ss9RtUMwLX9H2JYre24Wkw9Us7iJ40kA50mjtY7DFZXC/RS22kTrqEJysU1oQJLfjBTSixDaUJlCbRijVEsYJdl4H0dAkPBilVAQEBy/zp/bff6C5clhdT+H6tuboffeM6njg7x9RShbH5V6etwU0RcATBRkBAwKqnKXfr4ZVKCF1HAMp1cefmV0jhNmhkNustj62rsMlrOH2rgO/lxCUzey6zo7H/MtuTn7ngby7uW7xlEbbxTgXgNVK0TvhyGvKFuxAQEPAa5D2391650Q1gqGNlsPGl//Ue3vcXVxhIXwQfe+cmAH7rK8/x6X2Xzpq52bkpAo4XQu/uumZdeHHnNjh4rFnYLXTddwR+iWgbhq5K+UXv7WkqVl0Jcec21BPPXt3502nfUKxm++9n6apeFhAQ8HLQolAlIxFUreanK0mtXlQuEOEwMuqHBioWgXwRqlW89f3IfAVlGVS6oliPHsXbtg5ZqjG9K41n+EXewoXuB6eZfn0H1bTAXFJ0PJVn4nUJIlMeqcMLiIlZRDxKdU0bsuanOcmyg6w5KEOj1B8jdmAcFQ2jQjqVnjjWZBE3ajI/HKbtqJ8CVu6ysCOS2LkK1YzJ3Gadvu/kmbktRmjRIzpWQZ/JM3d3J6EFD6PoICsu2oFjiLX9OOkI+mIFbMdf7dE0xFIBb3EJipf7EAMCAl6NGNrNkVLVymc/vItIXUHqix/dzfhCmR0D6Su86qWxruPmkhG+FlZFwCEMHS2VQeg6XlcGO20xPxzCzPtKLI4lEC6U2yUbPnSMX+v5Nr915r1sTk7yjWPdePNrCHcXKI/FyQ7nUEowNZZGj9mEnonQ80gRpQnyaywcS6B0CK/ZzvnXCxAK4Qik7f8YjLwgOu6f144Jij2C+F052sIl3pV9jq9NbuPEaBYrVqW8aLFt/RhF2yRXiGJoLvOndzH890Vmt8UILXlUUhLh+k7BelURP1tBzZXQnE6EXv/4PQ/leVCz/XzoTJrFP/V4V89hdkY+x33hClsf+Tmij0Wxo+CZwG1L7O47y2w1ypG9Q6y5c4ypr/STPl5DOgpztuyXywYEBLzytBptKgWehzBNlKcQdQUS5TgI18WZnEJaFsK2QQhEPI4sVqn2JdGLNtZk0Ve52ncItX0rwoXOQwXcsI55fgk3Gabzq6egPQ3Tc7i5HL2n0ggrRG1dF8a5GhDF0wQS0BfKVPoSWON5cDwiDx/FG+pDTs1BMo71/SOomo3Rk6VjPszSljTCBeko0k/mmLmnk45/HSH+tMTNpsh+dwIvHqbcF0PWwmQePQ9SombmUGt7Yf0gYmYeI19ClcsIw0BVa9CeRtVqVN6wFb55Q76lgICAG8R9N5lhIcDudctrvjsH29h5Hc75M/cMooDf+eqR63C268uqCDjwlH9Rclzk5Cwy3EX2u1PM7s6ipMKadQhNl6n8hIPjSf5i6j5OjXZyaryD0EkLcesSUauGvmaR3HOdDO8codhhUsxbVDo9yt0WRsHFmndZWG9gzXksDmqE5kEvgFCQGHERLhS6NaJTDvl+HU8TJE965NbHyBXTVF2dye/30nXMI98fgi01Rr8wxOLdFZQrCJ8KEZKgTS9gFqIUuzSSp23mhw3aD1WRtocx3VIoOjWNTCb8mxXXg4Y0muvSH1/kr773JhZfF+ZrCwbRSJVSNgISau0OlhI89sCthHPgrvMYf7ifvqdLuJaGrLqI8tXL8gYEBLxELkiXai3Ebi0kb7h9e5UKVCpIy0IVinijFcwzFmJoABy3qeQkPI+Ozz6DiITR2lI47TEW10WwsmGipxdx1vcgcjkwDZTnYZ7NQSqJ0+5LVhgTCygpCB+dxBkdQ1/TD5k06twkqj3ty/RuXkthTZTIZBVjfI7k01O+CpZSsHUjbX//BPR2U97QSTWtk8otglJY334G595bUE8fAaXQ2jPIuTyqUkU5Du7kVPN9y0gE78RpZDSK+a0nXqlvIeBFIoRoAz4PDAJngQ8opeYvaHMf8MctmzYB9yulviKE+DvgjUBDJeBnlVIHX+FuB9xEvFakX18qQgh+9p7BIOB4pVCuizMxiYxEcEslxOQULpA6cbqZ7qR1Zen44SlyP3I3i0sOPWkda8ZGe9jPpROGiRxei3t0P2xeT89h/8vShwZxTp9tnisLaNlO0tk2xNRcU9axQUQIhG4QqqdbyVs2kfzMsr7s2o4Sbi5HYvtWys9Hsb62h87/vvx6edtm1PwisS+MEt19G2LvM/Q+6kvdXsq/41KqLbJa4+Tf3MKGv97L9z+4i/jn95H6gTgJ3cX62v6L2jfmDeStm9AOjvra/1qQKR0QsNoRsaifZuU42GuziD3PIG/ZhJZpo7xjDdaeYxTesY3wdNUPHgxJ6tN7kbdvwUlYaM+cQNYldPWhQbx4GC9soE8too2UcecWkLEoKpNC27yBalccc7pIeVOWalIj/cQkQtOQjsIzJWpugfLuYSI1G3tNB0vdIfSB7Rglh/CJaayIBa6HnMvj2DVCz483jU5FNIIzMuqv3lghhGECoHW2oyIWmlJUB9oIHTrrS+wFrCY+BnxHKfUJIcTH6n//RmsDpdRDwO3QDFBOAq1ubv+HUipQAwh41fOjO/r4p6fHXrCN+RLuwYQQfPzdW/h4S9DxMjhG3XBWRcCB8OsovEq1uUlLJXEXFtG6u3BGx3Dqs2WRLz+O2L4V/Tu+e/fCT+2m/eFRnNGxpvFfqwGganzpQqD3dKNScaZ3t5H5q70gtaYUZaPgU+/K4kxMNo0AnUx4RZGjm8uBEKgDh7HqKUt6dxcAS7vWEPny40jL8refGMPFdxHX1/SjIhZiMe+nS3geQtNQjtOc9Wz008vnyfy1X4Gp2f7/MvNbT+C+acdFH53z5jtwLUnoG08sO7IXgwTpgICbgdYJCFGvRfOe83/H5gM5PPwxD8AB5OmzvhTtfB45ZeOUSnh1Cd3WiZVGECAtC3dxCebnEbqOdtTBBczDYAJeNIpXLBJ+rt4fwHzgSRxAr9ZIzCR9fxAhUFuGm2Or2L4VxsZxJqf8sa1UQS0VAFCuh9cih9tar6afPBNIdq9O3gO8qf78U/gS079xucb4xpnfVEqVXqBNQMBNR3vsQvOEi/md92y9ZMCxvjPGyekCGzpjDLa/tFqMn7lnkHfc0kXF9vife8+yofPKBoKrndUxDa5AecrXf08k0Lu78IplZDzeNLxqxQv7cdLcz+0m9em9fqrA0CAA4o6tAFTfeSdi5y0Ix/Wdd2MxVLGIWCwQnXTRtgyD5+IViv5r6uFjowDdnZ1DS6cxR2ZZ+Ond/rG3+8fWBwcAmtsrW3r9FZp6cOBVKnUpX/8CLONxnJFRRKWGcl28fB6vWMTN51F2Xbkl6v/nlGFfX6bybt9GQNVXIXMf3Y328ErTHG39WmpJndA3nmgeQ8bj6P19aKlr0bcJCAh42ZGa/1CfgGhurv/Wha6vrP24GoTwJ2BGRi8plnHhuUQ00vThuJQwhvcCkxNuLrdsRqjUyomcA4ebz52RUb9t3dywIcZxIVoi4fcxErnk/oAbSlYpNVF/PomfDPBC3A989oJtvy+EOCSE+GMhxGXv2oQQHxFCPCmEeDJ3CS+qgIAbydWkfsVCl56r/7G6V8Yfvv/Wl9wPIQTdyTBr26P8p3dvfVWkpAm1CtZpEqJN7U6896rlb/WubHPF46WibRnGPXL86tqm082L6suC1Jo3A01JzdZtL5EH1RefUkpdjzqngIBXJQnRpu4Wb3nhRq1Bg5B+0UbLuCp0HREOIywLoUlUqYy75EvIaZs34KQiCNdDn1oAT+FOTPpppPVVXoRA27QeL2LixEPNiQdhmL7h32Vu2hpqeA0fo4ajuIxEEKYB3Z24R08AfqAi0ymcqRxC09C6OsG2/RWM+nirZTshk7povNQ6OgBwZ2bQ1q+F3CzCsppjdCPQoLsTFdLxIiYP7v3tYGy6zgghHgS6LrHrPwCfUkqlWtrOK6UuKccjhOgGDgE9Sim7Zdsk/sLZJ4FTSqnfvVKfdu7cqZ588slrfi8BL43Bj339svvOfuJdr9h5/83f7uehY5cer17J814r/98jpzk4tsB///GLs0oauJ7C9RTD/3FZAeOrv/Q6NnfH0V/jKe1CiEuO76smpeqSwYYQzbQjvZ6nDDQvZPZb78B48KlrOI+4KBGucfGUkQhisO+ywcfLGeQ08dxmgCHDYbxSCS3mz342bkiuhLx9C97BV19xUUDAzYTQ6tK3Vsg3+jNNX3kOwHURloUqlyEeRYQttK4OmF9CjYxDegPamUlKdwyiNIgqxdzr+9GrisTTE6jFfDMwMNszzZQkZdf8YOOCSQp9cAA1t+DL7uKPrcIwEQO9cPwUXrmMHBpA5ovovT14C4uInizYDuK2TfDsMdzJabSMf7+p6gXw7tQ0XFDzBqwIeBqy4FoKf/zWDURbCrc9gXA85NQczvrul/OjD7hKlFJvvdw+IcSUEKJbKTVRDx4u/qKX+QDw5UawUT92Y3WkKoT4W+DfvyydDnhV8bf/5i7+8zeO8slHrmwfcCP58BuGrthGkwJNCj7xvm187EvPNre91oONF2J1BByKS/vJK9VMA2gEG61cU7BRP97l8EoleIGVjpc92Gie2F0+P1cfaDRfHgQbAQE3lpZx6nLpRE3qIhEiFEJV/Zo1secZv3biW/6NuwMkPncelOLCJKgLRSeAi1ZEm2Nly1ii7Bru8VPN/nrPPY/X+qKGf9DZluPUxzy3pR7jamm8Rtk1nLPn0Bb81RoPkNfomxRwXfgX4GeAT9Qf//kF2n4I+M3WDS3BigDeCzz3SnU0IGA18cE7+zE0yVyxxubu+I3uzqpmdQQcDa6QTqR1dDD+ExvoeKaC9tDTl213tbyQUV8jDeGVQBimf2NyiRWXVpY+tIvEZ/ctp0bUUyICAgJWH0LXQfPrNkTjUdchbEG1CrqOly+gtaXBCqFKZWhP48ZD2AkTveggXA8nYuBENPSSSylrUOqS9H59ClEsU93QhVayUYaGMTaLOzndDFwaQhfg14l4xSJaIoFXroAUyPWDeBGTYl+E+LPTuCfPIKNR1Oa1iJqDcBVOKkypK4QbEigJ4ZxD5Igvqatt3Qjjk7gLi+hDg6hwyF8Rro9hjXNe9LmEQohYDK23CxyXWncCHgrEjFYZnwC+IIT4eWAEfxUDIcRO4KNKqV+o/z0I9APfu+D1nxFCdOBPHR4EPnp9uh0QcGMRQvCj9dqNgBdmdQQcQiCjUYSho/q6kaWKb4YXsXCPHEfv7cEe7CTfGUJ4MHWnhdhxD73fWWBxY4Lo+SrG5CLzOzuxI4LsQxPguhRv6QIPIk+PQM3GW9eLNrWASkRRQuBZOjMf2U37J/eSv38XoQUXI28j9jyDVywhtm/FjZnMbrWIj/mStN7rt7M4ZGFHBV2PzJHblabtaBk7bmBHJWbexdp3HLo6EDUbd2LKl6WsVH3H32QCb34BYUT896iUf3PieWAYYNsIK8TSWzexuE5S+uV7sOYVsbFuFodMYhMOtbiGUfQoZjX0sqLYK3FNGPjEfrSuLKpSQZUrULjRX2xAwGsEIVCuC66LDIVQtZpv9KfriFoNEYuiqjWEEKBpuJk40jJ9/4qlCsJViLLN9L1pst+dQmYTKF0SWnIp9Erm7uwgPOOQ7zeYu82g7ZBEX9uLNdcFCgq9OloNKpkNRCY9lAbShviZIlqxxtKmFE5Y0LY/h+wK46WiuPftoNBuIBQ4liA2XiPfHyIyZVPsNskcrrAwFMKO91J47wBGQZE8G6XcYRI/U2RuS4zw2jvRKi7lToP42TLS9lACltZHsWYdakmdxPElyp0RzFwZeX4arz8QtFhtKKVmgYuKlZRSTwK/0PL3WaD3Eu3e/Er2L+DVzec/sutGdyHgOrA6Ag6llmfG6svujfzfBuKxg0SEIFKfTTv9h7vxDh4hXrcWKrz3LhKf3Qf4KQna+rWEvu6rNzXXTJ6cvyhFwVp7NwCexkpDKuWiDhxGAh3fX95szBZJf/8ASx/ahffc86TT2xGPHcTEr5ZrnE/UZxVVtYpbXZb7XSGB2zhV40lj9aJSIfrFx2mIquldWWobekicszG+/SQN+Y+GHk2y5TjO2PhFxw8ICHiFaVmpXGH65zh+ulXLNm9sHMbGL5KHVUD7c/74If2SDTSgp6W+M1P/dyEvJOToAtHDy8+t46dQ9WNfKLTYqBrufKB+vof8x1aBx1i9r+mW4bIxUjc+hUTdLsgEvPp+VT//NafCBgQEvKq5e+hSo1rAq43VEXC0oCUS2NvXYR47j1IK4lGc9jhatQqdGSbe3I5rgpEHsfMW1JPPIW/ZRGjWxn3TDk59SGP9PziUUwZxT1HrT6MvVODECGJNL8rQ8A49j7x1E2J0Cq2m8N64neSpEure26mmTULzNfTnz1G7dRAnrBH+/vPIZILcWwfIHFhg6UO7iI+Um+cb/j7oa9cw8oFeIlOKzNPzyEIFbyoHW9aDJqi2hwmPLKA0DTGZa+ZiN1K3GgaHMhJBRKOcv38D2T/bw+RXNtP3bxfxDIkd1bAybb6Szfw81R+8k6UBnc7Hlxj54SSdTzlYMxVE1UWbnIXzV/iwAwICXjkaKZP1Ry2RwM3nQammwpQqFpHJBG5fB7JUwz18zJe0DoWYfcc62h+dwOn0C65FzfHHj6OnEH3dlNe3Ezk2jZpfAMPEWd+DcX7ON9+7bbO/cpxbQKXiuIePoa9dg92dQjge2lyBymAboT1HEf09iGIZry2O3RahltRBgF7y0Mou5rkZ0DSc02dx79uBa0ryAwadj83iJiy0M5MIw/BXeWJhRNVGzS/iLiwsv9do2E/F6u2hNpSFR4KUqoCAG8Wnfu4ufuZvLjYRDgh4JVk1AYeMRJppCcYzp6EtjXv6LJqbQZ6fwi2V0OMxer54iuO/OoSRF0zcm8Da7HtxjP/WPfT/3h6yvbuQ33uCWLYTZ2qawq4u2k5O+asmuTlqtw6i7b4Nb+8zyHic8D/vR+2+DfYdwrtvR9PJW926CSNXQiZ8kz5nbJxC7xqqyTSdB8sIx+Psj0QY/sW9LH1oF6UuibmoSP/dXsTWjXhTOZbetY3YF/ahtWcIH7f9POpoFK9a8+s4HBuvWPK3lSt+PnW1ilcqER8bgru2wUNxSttiLKwzSJ6xoTPTVKyJPHqMkU9souuLk6z9jL9yIspVVCzip3AFBARcHxqKep5C1pWq0DRfoSqdgpqNCofQsu14sTDlvihKA2PJpZbSKXRrlDuhlrkbpSn0RQ3hwfTrOjCndGo9NkNrpjl9tpNIeh0Af3DrZ/itw+8hP9pFcmCRxVELVA9asQ9z0Vfh0KopPBPit+6i0CcRLpR6PazpOOUuD+vO2yn1O8iaJDwpiY15zG4TOGkHdNAshbvUjYg49HRKzk+BmNMJzQlO/lQGua6AsX891qwCAZV2QeY5GyecRasphKNYXGcgbUV0yqXU7te28MiN+qICAgLeONxxo7sQ8Bpk1QQcaBpeobCcmrCw2DTOEmELSiWcMyMADP3GFFqmjdLd6/AMgZZI0P97ewBIfmYf8vYtUKzA1DSJf9jXTKPS0ynMJ47jbhvync3zecTOW2DvMyz+xC6Sn9lH9Z13Evrmsmu3wE8J0FJJ+n9/D/n7d6HtO4KqVlm333cZDy25pA4v4B16ntlf2E3nl4/hFYt+sJFIrFCW0UIhvGIJLZnw9fo1DW+p4NdxuK4vp+k4WDM12P8sXfv94nbzW35xuxdaTp5Yettm0s9K3LkFRH/XCjOugICA64hSfg2HUn7aZGvm5CVUnqwDy891IBap13Q5DlpXFq8tjlwqocIhxEK+afK36dYIeFDtivKn6kN0Oh6953PU+lK0OzXmN1pkDhUQnsINGxiTizAzjzs/T1tfL5XhLvT/tpzS1BCiENu3+imkt28hdVSgnjqM1tFB4d61aBVF+MAY9oYeNo/mcLIpyt2+QWnkS+AZRWopEwRknq0g5wt4qahfiF6xieyfh2w7anSCqG0HwhcBAa9hXr+hfdXL4ga8Mqwa478LzbX0Nf04I6Mv6ngv5bWvJgLjv4CAl8ZVGf+1IHQd5Sl/MkFIhBT+5Eb9JltLJPBKJYRp+r47mzeA7aAiIeRiEbsvw+zWMOnjVUpdJk5I0L5/Brs9hjGx4K+aTEzjDQ8gR6chEYOZeUTIbJrzCV3HnZ5BDq9FCYEsVXDbYsjFEl4ijGcZaIdOodYPoE3OooolRCKOm02BBzJfYum2ThLPzSIW86hEDFGzUSET99hJ9N4eVM1eVsSyLD9Qas+ApvmqWZrG/9/ee0fJcZ0Hvr+vQucwPTlgMAHAIJIAAwgQIm0FSiIpryntkbVOklbrlb322u95z9tjy6vnd3zeez7WBtsr2/u8lla2tSvbkldaWVmiSItKJEEQJEBkDNJwZoDJoadzV9V9f1TNoAcYgMgzGN7fOXW6+naFr2533a7vfskdHfOttpUqRiqBKpb8eh8zWb4z/hd6bNLown/LyJWK/92JAnyXnnslFf3T3DwrvPCf+H9WjgOmiSQTqKg/k19870MkX71AflsruTaL6S0KKy+Ets1i/mMdlRTYOfBCz6Db6gAAIABJREFUYM8pkkMuZsXD6G0ifHKE/PYOIhcKGHMF5u5txix6hL+1D7OpifGfWk/T108x+k/XE55VxIdKmGUXPA9zbJbZXR0YjiJxdJLh97RQSUI15ZE+KSgTqgmhmvDjSVIDLnUvnae4oZnQZAlzfIby+ha8kEF4rEC2L0Xi71/E2L4ZdfQ0KM/PXlV18AoFjGgUFVg4xDQY/OhW3Aj8y3/2bf70hXeQOmzT+snnYfe9FNqjXHiL0PWNKmbRId8ZxagqIlMV7AtZpFxBZXMwtczfq0bzZkBkQbnANDFCFy2zXi4Pto0Z9S0C7vS0X5m7KYOVL6IcF8YmYW071Y567DMj1EsrVrZEXClmeiNMPNSIZ0P+HW3UnfCo+/IQ05uTNGSLlNfUEYqFKaxJED8cQtkWyjQx8lG8E6cx1nXjnDmHatmO6j+D1dNFYXsL8Z4OjHwJTJP8T2wivvcs5nQeNx2n1NuAKN+dK3PKzys/sS1K+kwVc80DqJKLeaCf0k89RDltUP/0acjn/UKDtoXMCc7QMFZPl5/6t1BEUkl/XA+HkKAvNBqNRvPmYUUoHGIaUJeCiSmcvk4A3JiFWbed2HARp6WOyNMHiTdkKDato3xPgdxkjIyjsPNCxzOTVOtjTNwTZWaDResf++5VdHUiHn4AdcgmfjbH3PoE0VgMd10bTkwYe2o9dl5RbDDIt8YQD9r+6hDTT24llHNxwwYnfrWJ+BC07q0wviMEKGY3Kj+VZVuJqiskzoc5/55O2v5nP8UHuoldmKCasAhPlVGmYDgKeWArxlQOFY34M5UhG1wPs64OiUXxZmYxUkkwDNr/4/Pkvt3L3/zpu7F6oPyWOYYje0gOepTTglTh9XeFqDsRYvKtZZgJsfmT0yjLhEr1yp2t0WhuLUr5We08wFP+DL9hQqHguyzlC4vqC3nT06ia6tyIYE1M4x0exYvFsF6eQUIh7GGL+u/7swZGLEZLSxNUHby+bqJTDt7AEPmHmrCzJuHxEu75UdxdW6gmbaz2FEbZxZguYPatg1Pnke61OGcHSMQiqNfPI3VpKt1NxE9PowoFVHsjyjaI7DtNeG0ryeExVEczxY4Ebf84DoaBe+QE7lvvx+poJfHqENHmDE5fB8oSzIKDkS+jyhWstlacgSHEEMyONlQ0jLIM5Pw4zlLFCzUajUazqlkRCgeAioQx6jOYhQpOMowTNSnXBeIJmM07GPyAw+ObXyFplbgvNsCnux8lW4pwqrmB+NZpSq9GeeBdRzns7CHfqQhNC05C0SadIBAZKzK9yUQZ9zLTZ+DEFXZW8GzBiSpSZ6CcEQo/uZnJbUJ42kYZEBmD+GOjpH86x9hEI7mjKWgsU5/JMZuLsqFtgqEPpFlfP8HAExkyf+hS7W0lu9bCbjTxLEhccMivTZAsVKCzDckXwXGReFBi3TD8XP2VKmRS7DlYIeuco/U3DvJk4jA/85n/A7MCI496GCWD+g1TTAynmd5iQdZGRV3yG5uwSi7WXBRjJq8tHBrNnUb59bvFECQSA8BsqEdMY6Euh1IK1dqAGwthlByMQpliVx3lR7vxbKHQbNDxzVGcxgTWdAOMT5F7yzrCM1WM77+KMRUj/FoBBaQ/9+JCKloFGD86sChF7oKaY5hYyU6MWMzPhLWhF6f/DMbgEN7OexBA2SbKMvxjhSzyj6wjuf884YPHFqXwNZ975eL74fMIfqybqj1fTXcscm81TKzutXD2JvpYo9HcNCHLoOJ4i9oeXob0tL//vm13/Jya5WFFKBzKcfGOnMCbr1jLxRoTwEJayQ1fh9NB0wG6sHideqC+ZtPx34MWnkfC4YUKvAvnAToDd9ErFqAPqp13f/2S9j+AIrCG0UXNGfw/2TbOkwcauThz2fz85Ye/ch312osY5/ntfgb7wyR5hofpxD9Ya81m9UvuvPQfv0ajuU3Upr8VAzHFr7/huiAGhuehAIlGcSbHMGIx1JEpTMvCaG3GG5sgAtgnTmH1dJGZy+F1tWKf9cca1dxA9EIRZfuuWmrrOth3CABrTQdefRLvteOYqZQfOzE9vTCOAZiZDBKLQqHox42s7wHLXAgYV/sO+UrLK8ewmxtxpqexRuIkzp6HZGLRdUoohGxeh3fg6NW7JBzGzNThjE2A52K1tuCMjGKEbJxzr9/iL0Cj0Vwvj65v5NnjY4vadvVe6ani9rGpNXXHz6lZHlaEwiEimOkUEolALEq1rQ77/DTVtjoqmRDRwTnKrQmcmMHEVouP/Nx3+P9++A7EEeKDJoU2j+RZg/QZh2yXRTUBbgQajrhUowaNP76ANzqO0VjP6GNraDiSR4lgHTvHxFNbsMoKCRR9JRAdrxK+kMWpj2OfGaGyvo1z/yQCCqKj4k/nAUYFqgkIzYJZVjgx/7OWP3keq62V/P2dRIfzVOsiGBUXN2Jh/eN+zI3rfb9tQJXLqEoFxLjYIYYw8Yv3M/mQgz3pp6BseblEvj1EbLSKUXYRBTMbosy8u0D916NM3A9d3/DlVraJkStd1M40Gs3tYz7xRo1rlVgWEo0i4ZAfx2CaYAhmfcbf1HGQSBhVLGG0NOHGwhiRCNX2DNVkM9EXT+IWS7gPbaHYHCI2UkZ+fADv0ft89yXA6mhn6ic6UQLpyD3MrYmR2juIUS7jFYtYvd1QqeI21WHO5FCROGahCOEQXsiCzeswXBdjbBqVjINSFLvrKTzWQ/0rUxS3tBKaLuOtuQ+j6mINT6Hm5pjtSyHrd5E4l8ccGgfbxm1Mo149grlxPVJ1wHVRpTJmKgF2CCJhP6ZjchpzXRccXrZvS6PRLDPNyTBjczp1/5uNFaFwKKVwZ2YBP32kORLDKRSQswOECSrVvgaRTIboP0zzzO8n6WPpojURwNy4HvfEKf9YqRRONotYFs7AIM3ft1BDF/BKJZw928l89oUlj+Pi6xWldzyA9ex+en+45GaXYW5cjws4F0YIf2PET6kbfDbf2fOyQfBgEgrhlcr+jKRhQtWl4TMv0PCZxce+dB4g82PI/LW/nv6bi3KD32cajWZ5UI6DmpuDuaBh3gpSgxtYYM1MBnV2wLeC/PgAIYCWZmRNG07cHzWUJRTft4tK0qAaA2/bHpQF4oITA4iTOTiD09FAeUcHhUaLUM4jvXcI9eoRHPxCqUZbM4xO4GzrIjwwiTt0AadaQTq2ovYfIWIYmCXf/hseKyKeR7kpQqExQipiIW4T5x9zSR2zES9OKB3Gsw2yXRbxrofwLCE6WkFcD2UIoeFpv75Sdg4yabxyGXXkxB34BjQazUplV28DXzvoVyYOW8YbbK1ZLawIheNSvMLFJPZmKoWbzQKgutpgevoN9699oF/Y1/GrcbinLjoPy/MH/ZSOW9eh9i9dw8J6dv/ljUs8PCx17mtBOc6CbMCi4FKNRnOXM+/aNO8uGrgxLXwcifguUJfgjo7B6Bihw/gKCBALlisxP8kQDhaAmpEF9fJh3EAe87lJXMtaGHvmxz/35GmMkxcnLhQQPnjxeEYySd8P57iUxiXkkUvOjw4W12hWDP/mnX2XuVQtB9s60sstguYOsSIUDjEMrLWdqFIZt6cVzzKw5sogwsymFGZZkW81cCNC4bd24E6FWbf5PEPf7ySUhbkej/CkQXjad3GqJhU9X81TaI+Sazdp+57/Rye5Atn72wHIdptUktBw1MUJC2rLw0QnHMZ32LTuLVNosak7OosXtpjcnmDmrSUyz0RIXHAYfcCm2OFgFgzCkwZmBXLdLplDBnPd0PulLE4yTG5NiFDOw8q5lDMWZkWR3D+MSsaQXBFVLKLKlcV9YRrQ1syJf5dgc+cIJ17qxkk7tK6dYvJAM9ERwc4r5nrAiSuiFwzy3Q6EPNZ8wyR+NgeAMTQGyz+WaDRvbi6ZQLi06N0dL4JXI8+iiY5r3X3ucmVDo9HcfSzng/7v/tTmBQuH5s3DilA4lOfhDl/w/wBHxzC4OFuXPABWawuxkdHL9sv8sw6SX3hxUSD1PLLzHmL/ay+pNR04Q8ML7faGZqL9Y8S+PIi5oRe33694aTY24E5MsuZb/napQAZz43oaPn2Ixr8OUXrndqKvDtD5bf9J3mprXagAbAXnaclk/Fz7QP3mDbjH+jFbmrFH/X1q/+KNSAQMwy8EFsw2GpEI6tQA6z9YoQr0cmFh+xSnMXZswTtwlPlcElb32kVBmPN2F20n0WiWESNwpJx/wK+p1aEcZ6E4qdRYGeaxOtfgNqfxIjbW6CyEQ6hzQ3hbezFnCqhYeCFo23tkB8aPDlzc+SrW10Wy1SgeYodQ1QpWRztIUEMjkM9saloo8Acs1Etyl6iefk3dEov5MWs6c7dG86alORl54400q44VoXDA1WfbnCWUDYDkF1688vGCLC61ygaA/cz+hYf+eWUDwL2CuX/eRUpVK4S/uW/Rg/y8slF7nlr3CPdYv/86urSpoXZ2c/7632jG89LsMDrji0azwhABzw1S4ApGLHCEUgoJ2QvbWGs6UOkEc311KAOqMQOr5OGGhdiYg5WrMvTTbeTWuahQisiQjTITGBWh8ls7sI/HKPeWsX79XtTrcZyGKsmjIcwiVJMQHVdMbVMkBg3anptl5JE01STELihKTUJdv0ux0cCoQL5dSJ/xiEw7nPvtNVg5g86dwrm9HbQ/FGN4fztGbw7z1SSFDRXMiIMMRvFshSgITxpUkwqzJMQuKMwKeBY0vpql3BTDnvUtuVPrY4TyHnzp88v05Wg0Go1mOVgRCoeEQpjpBlS5glGXxksnUGETc3LOf6A2TCrvvA8nZpJ87iSFPetxQwaxL+9l8ON7SAwr6g9mkaqLd/g41cceIPyjIyg3sJMYgpFK4fa0Yk3M4Zw5B4DV08XoY+00fPoFyu/ZSfgb+5j9xd2kzpawDp2htLsPO1thpi9ONQ5Nf/4C2Z/bTervXmTmgw+TOZrl9M+kSAwKZlmRPlMhcmYc59zrmC3NuKNjC+l5jWRywR3BbGoC5SHRi8X+VKEIgDszg9lQz/Hf3QCGYsNv7GXs1/ZQd7pC7MQYhY3NzHXauCFhdneJDR96BbVnOyMPx2n7wyXy8Go0mjuOWBbKU6AUXj5/MU13ATBMjKqDl8/DEMSWCB8zYjG8QoG2m7yl55NcKqDl1cs/n48JydS0bXj64no3/oRGDwM3dH4FhGusOHVL5+jQaDQazSpH1BuZ3+8AKalXu+QdC+9rH86Xeg9QfdeD2E+/fGMnvBa3g6tgbunDPXryhveff5i4pnMFrl4AZl16wZXBiMf9B5ar8Iz64n6l1IM3LKhG8ybn0rHpurnJseZaMLduxL3GzE/XMm6AX6zQnbx65dCljjXvIraUq5jZ2OAfUyk9NmkAePDBB9XLL9/g/7jmpun+2DcWvf/Nxzbwm4/13ZFzf+XAMO11UXZ23/naH5rbi4gsOb6vCAsH+EqFhGyoOribuvy0iqaBVD0kV6T4js2YJUWu3WJyu6L+sDD5mQdJHQrR+p+fZ+zX9tD6gynOfiBD1//1Au5b7yfXEaLuRA5zfNaPlUjHmdmSIt9msOYrF8hvaiJ+YoKpXc2Ech5KBCcqZF6dhIkZMISpd/ZSThm4UVCPzBD+eppqUmiLhTCncgx8oJ3EkMf0Rr84x7r/eMTPud/aiHusH3lgK9W6COIprGwZOX4O1nUiJ84iIijXQ0I2Ypp4xRJiGkg8xrE/WEdo1OKRdx7iR88+TPfHXwDL/7qctz/AdJ+fuyb23lHij59h8Hf30PxyFbPiYeWrmLNFuHptLo1Gc6uYj9GwLT/VdSQMnkLCQY6paARKZVQqgZeKUk367eV6i5l1JpEpRWzMxbOEya0mTkLRcu8owxcymFM2kTGDwhoXFfIIj9jYOSh0eChTERkzKf/OfdQ/GyGUVzgRIdsjVNIehiPYWSE6rlAGmCWY64H6I4rJbYKywMr7n1dSQvG+AvXpPOVnmshurWDOWHgRRXjCpJzxCLXlMV9NUskof78xRaFViExCdMIj220QnlY4USE8rag7U8KzDHLtIUT5yT+Sgx58/ovL+GVpNJrl5qkdHcstguYOs2IUDm9uDrEsjHQKs38Ir7cdXvIr4FYfvY/oP7yEWBajn99E3y/0I5t6aXk6R6W7Efdt94MBA0/V49mK4nsfopw0afj6cdzpaVRgJZCd9xCa80j97Yt44TCx0QncuTlSTUmUaYBShAYn8cYnoa8blKL+2/2M/5M+PFvIDSdpOV1m+CcjnH5/ksbXEjS/UsF++mUyySSn/9023GwWs28dTn0ca0MvDIwQOW9TvGeNn3rSDsGxM0jI9l0tLAuvWFrw+QYDd3qWRL9NYtjjhc3dRLbOMPnRh6kmhNY/fp7ZnhBtXxsgd/8aIo+fofzEThKvKyJjBTAMzLEZVEkX1dFo7hjzRf/Kru86dSUrQpADYn7gtYBUjRUTIP6li5tvTqWgtQn35PVV8ay7ymfz84nJL1ztCP1LJuN4I5aqGWzUyKMTYGo0Gs2bkxWjcGCYKE/hTk5hbt6A2n8ECYcxGxtwfug7H1d/cjvJr4Zw9mzF3nscp1Bg+rE12AVF+zfPM7W7lXR/nlxXDLvoMfWejaQ/9yLuxCRWVyfekdPEz0ahbx1MTuP1tGMWq7jPH8QOMk7NOwGY5SoqZKEKRZy4YFQhet7EfG4vnZXt5DqjJL/wIsWnHiIcZI7q+Z0X/MxVp85hqa5FQen2hRHM9T145wb92huuH36+yO1ADD+DTXsrnX/djzs+jni7iY5XsZ696PzceHCOwj0dFBtMIkC+1aLpR6O4/WewWltQ1apWODSau4QrJayAoI5QUEtIo9FoNJq7lRUXwzGfovFWcD2xEkvtVxszcStZCCCFJX2dbxXaT1qjuTluOoajhkuL/oFf2BTbQpIJvLEJvELh4viTySCxKM7wearvepBK0iQ84xAenAHT8CdEbBNlGUzcG6fuVAUrV6GSCRM9MwW2Rak9SfSUn8jCiEQwGhvAMsFxUbEIjIzjZrNYrS0QCeOce30h1bZVk1LcbKhHdbYihTJOY4JSc5jo+SKl5ijR4TxGvkSlPY2Vr4JSGLMFymszhIf88VMKJdzWDEa2iNt/lmfcL+ixSaNjOJaZbx8ewTaFX/qs/x3cyRgOzeplxcdwAL6V4xYpG8CVlY2aQM6lHvglFoVC4bYoG8CCsqHRaN48eJXLi0+4uTxGyEYScbxS2a8N1JDAzPqKiTcwDA/dQ2Qoi1UXxT4/jduYotgaI/LN/Qv1NBprMoSHAFIp3GwW++jF2j9eqYQXKBBWTxfemYGFsc8ZGfVrbBgmBNn9vOkZP3VvNOwrDAePYXV1Is8fJNFQj0SjRF4aRgGuCOZJtagOkNV/ST2gwSE8y7qsGKJGo1keHt92I46TGs2NYSy3AOBXGjcb6kF5C21WTxfAxRz24MdqXILV2rJo+2vBe2QHAOUnd6Ich9lf2L3oc3dqBrOl+Yr7Wz1dmBt6mfnQwwBkf3434//q4cs3FLnsGswG34PaTKV8S4fjIOEwYof8GJZYDDOTYeJXljge/vWamcyiNiPiF9Gxerv9OBCRIB5Eo9GsGJZ60PZcvFIJZ2AQPNd3w3zxNdyjJ3GPnvSzQL10CPfoSeT5gzjnXke9fJjI11+66oO7+wZuWM7ZgcsmWtyJSfBcnMEhX7R8HmdoGLf/DM7weVBqoe6POzm1uMbRNVjKb6c1V6PRaDQrmxXxVKqUQmwbM5lE4jFUXRIlgnrLDoyhSdz2DVgTc8x0hgm9bxfZD2cpHq0jfe8khR83oqx1VOMKp64FqQrR8yaF9RXSB/xMMO3PjFNtTmDNlnFjNpPbIhQe20NyQMGTO6nGBXPrRqqZKKWmMPGhArM9cZzIOqySopIQJvZUSTXmSfxNitl1JpFJxdRbKqQG7mO210BcGPvKJmYH02z+xBBYJjM720CEUNZlttui8VARNVvCbG2C4RFEBAncLObTUBqxGIRsMifLDH58D5WMR2bTFM3/Kk9haxsXtoVoOFLl9V9wsM5FcGOK6IhBw5EqhYiB1deEUfGwZ0ugLdUazZ1H/GJ/YvvDq8Tj4Lp+xXDbAttChSxQirm+NJ4lVGNCeNZjaouJOODdP4frGFi2y462YV4e7KQ6E6F73ShV1+TJ9iN8et+jhBIVKlMR7FkTJ+GBAjNvgAFu1CM8aYIHTkIRuyA4Ub8goFGBfIcfm1ZNKiprK8i0zeb7BshXQ6RDJQ4e6+LtO44yXYlydKQVdSJBtc4j2p6jOBcheiJMocuhri3LzGSC6JkQZhmsPMRHXUJzLngKs+ph5irMbkwSHasy+FgIfltnqdJoNJo3EytC4UApvOycbxFIJai0JDGfe4XC+3eRmo5iHX+d6Sc2MvawC5bC7K+j8wcO6sEKORtS5xTFJiFxwGB0N8RGFcV2k7lej7pjggrbWPtOUHl4MwB1p6vUH/cID0yR39SEMmBiZz3hWY/k8SmUaZJ+ZZTs9mZCcy7ZrhC4wtxAGqPFr6jrhoToyTBDb/P/YJtfKTN4b5jwmIlXl6TcniB5No9RrFJuTZA+52DNFJHJGRDBmZld8NU24nFUvuD7eBcKGMDrv+Kw4bcHecc3jvCpo28h0xkl9J2X6Xg+ibe5m7ofJpi+x4NUleZvCpNbw4SyCrPsIUotWFc0Gs0dRoyL9SlEkHwRIx5F5QvgeYhtYSQSoBSpZ0f9dNeNdWAYhGYTRPvHcP5g0Ldcru9mMraGnn2HsLrX4p4fIVR1eG7Xbjb3n10UcC7hMGZ9Bnd8YsFyqsqBm1ZNAgtj+2a8g8do3NKHsk1kZBKxbZzzI3ib1hGO2lRKETaXxxk6lWP2F7ex7tlzOBcOXXKdghEO45VKXNkeHGwai5E+WAEx2DDcxZk32F6j0dw5NrUmOT4y98YbajQ3wYoLGl/JmH3rrjs95W2RI5PBnZ5+w+100LhGc3Pc6NgkYb8OB4b4MVsiiGUjkTBeLudPNtRWICcocJovLOkq5T16H8YPX71MebhemZaKHzObmnDHx2/omDeC1dvNt0//Jz02rSBE5GeA3wM2Aw8ppZa0j4vI48AnARP4b0qpTwTtPcDngQZgP/BBpdQbBmTqoPGVwR999yR/8my/DhrX3BKuFDS+ImI47hZWgrIBXJOyodFo7jAiC4sql1Gui6o6vnuVZSO2hTc351t0g4QWtQqANzd3xbgMI0gNfqPKxqXnquVOKhsAzplzd/R8mmviMPBPgR9caQMRMYH/AjwBbAF+TkS2BB//e+CPlVLrgWngl26vuBqN5m5jRbhUScjG7F2PFEqgFMVNrXi2QaHZou5UkXJ9iGyXhfHuCWbnYkSjFd7W2c83fvgAyoBwex4RRTxSIREuM1OI4ngGxVNpzBJ0fL+CFzKY7bappvxqu54N5QaFnRWqCYVZEawCiAvJQY9KXLDKisl7hGpzlY09F+hNTvKdH+1APFi3Y4jpUpSJiSSqaC34TrsZhw2fqVJsjZDtNDHLiuSwy8w6i8ZDZezZMka+jMz45ktVLIIdQiJhVLHoB3vbNqf+Uz2/uu0H/GbmHG878hTnBpuQnInVXKRatOlbO0r/YAuRU2GM+2fJj8dY/7cOxaYQ4SmH8PAsHF/mL1ajebMhwRyOsFB1HMCIRvDKZT85RMjGSCXxpmeQdAqJx0ApP03txDTu6Bg8dA/mVI7s9mYiU1XCp8ZQhQI0N+Ae60fu28rkjhT1x/KY2RLKNkEppOyA51FZU4cbMgiPFZGqS7EzSez0FNW2FEbRoZoKoUzBrHiIp/BMA3u2hFGs4qSjOHGL6OkJSr2N2N8/iNnRhgrZFNY3UE2aiKdI/MN+zMYGKhvbMbMVjEIZqTo4zSkq6RCxoyOoWARlW8iFMZyNnZi5Ml7Ehr06hmMloZQ6BiBXd8V9CDillDoTbPt54CkROQa8Hfj5YLvP4ltL/vx2yau5tTzQ5SeiuW9t5g221GhunJXnUlWTsrYWc+N63BOn7rBky8AVrv9G0C5VGs3Ncbe4e95t6LFpZSIizwH/dimXKhF5P/C4UupfBu8/COzCVy5eDKwbiEgn8C2l1LYrnOOXgV8GWLt27QMDAwO34Uo018tUvkJ9PLTcYmhWASu7DofUFPwLHrbnfZXFDoEhSDYHQP+f7aLlx4IyIDZaxX5mP8a9m5i+p47ohEN0MIubiqAMwcxX8A4e84MkXzsOO7fBS37go9ghUN4llb79h32zpRlVKOLe04s8f5DSTz3E0NsNMseE+IhL/IXTuBOTqLfsQH58AKujHWf4POrh7VjZEgyP4OWLCzVFjO2bMbIF1EwWd2bGD7SsVEF5GOEwyvUWfL3ngzDNujSFPX2Ev7mPsV/fQ/OfPe/3S0M9Xm8HRq6Ee6z/ouiXFEw04nHI3dZvTaPRLIVhIqbprysP5amrprAVO4RyqrdsokGjWQoReQZYqvDCx5VSX7lTciilPgV8CvwYjjt1Xs3V0cqG5nazIhQOEQOjvg5c10+Lm8sjVQf3bfdjzVUwBkYhGmHyow/zb972TT6ZeTvNXwsz8KRN38gmTnw0DYZCKhab/qjAqY/WEx80sHMxWiobUEphblrPyP0Jot27ybcadHxtGDWXw52YZOKXH6Zpf5ahd6bp+MTzeGuayHclSJycpfT4TobfZhCZMJCnJpj9TiNzHX3MdUP314tYW/qo1McY/JUuur+cxYtYkC9SeM8O7DmX8MAUhfYEpW1pkkP12CNzSKUKo+N+gcFKFRzH9/VOJv1aHMD451p4au0P+exPvo0n3rGPZzJ7EAfMMhTaFF4oTuZoI9NbFPWHhNk+aP+hS3iijDVbRLJ5rXBoNMuB56LmFYxrsFiqasUvuKdcv7p4OASxKMq2KK9JY8+UmOtNkG81adk7hxcyQYRqwsKoekQGZ1G2hXfkBOy6B3E8vJCJUXYwhyeOJb7dAAASCklEQVRQ9WnU4AWMeAzlergTE5h1dRCyffetGsytG0EpCj1pjKoiu9am/kgBUQolgj00idtSR7kxSrHRJP25FzHicaSrA+/0AEbXGmTOz9DlNdX5Ez2XYLW2wIVb09Waa0cp9dhNHmIY6Kx5vyZomwTqRMRSSjk17RqNRrPANSkcInIOmMMvHOsopR4UkXrgC0A3cA74gFJqWnwn0E8CTwIF4J8rpV656gkMw/d1Ngy88UnoXYsXsVAiuBEL1dOKUaiSGqjyyW89Qd8Dr3N6axfrP59j+F31hCchNA0t+/JU1zaSOSzkO0E8AcfFO9aPsW0Tbd85j9uQxHDiVNbWU0m14NnrSQ76Vg6zBMaOLRRbYjhh35c1PFogNJWm0FXFeK6RtV8bov9XOmj/scvYzhi5rgixYQPxoJqJUElbxF51SfTP+g/9hhDrnyDcmMQLm+C6KNNAohG/EJZSiCFIyAbLQhWKSCJO4/9p8XdPvJ0NnzrO1+p30HHUZbbHxCzBmu855Fsssuuh7rgwda+HSriEsi5WtoQXtjGKxev+MWg0dxu3fWy6WYIU1WLZFzNW4VsgvXzeT4VdKi1YQNzpaazutQuB1dYJUEBiPySCQ85n+ggHr4tsJy++hgIEfz8HYGQUCILS5/e5QuIJ98gJ/9hH/fcNNZ/J/PEGhwgRVDTHLxDI0ZP+/rWJNS6MLHkOJ5BHc9exD9gQZKQaBn4W+HmllBKR7wHvx89U9WHgjllMNBrN3cE1xXAEf+oPKqUmatr+AzCllPqEiHwMyCilfltEngR+A/9PfRfwSaXUrqsd/0p+0lZrC87IKGZd2k8xGbJxJyYx7t2E99px8u/fRfyLexe2n08dOY+5pQ/36EnfchCLLprNuzS17MIfP34V8NpKvdaajoWqulZPF87ZAWTnPah9vnuW2bcOcdwrZl8xkknENKCjFXXar/CrHN+igee7dYlpoqrOIreoRX0RuG0tpMUMZk5H/7c9JAddYl/ee9k+2k9as9pZrrGpRgAQAzFN/x4H303TNBER3z2ysQGVy2M0NfrB4fEoki/6SSJsG2yb6poGzGIVJx0m3xrGcBSiINdq0rLPz2w1/NYUZhlCcwrPxC9KmhQiM4rZHoPouEIZkBxymNpsY5ZBXEXivItZVojjMbc2hFlRlOoN0mccShkTNwKxcRdlCLGhAsNvSxKZVMTGXZyoQbHBAAWJERc761BosYlOukxttEm97iJKUUkYRCZdwtO+QqUMwUnYhIL3XsjEzFcoN0ZRpvCDb39Mj00rCBF5H/CnQBMwAxxQSr1bRNrx098+GWz3JPCf8dPi/qVS6veD9l58ZaMeeBX4RaXU0mnRatBpcTWa1ceVYjhuRuE4AbxVKXVBRNqA55RSG0XkL4L1v7t0uysdXwdm3h60wqFZ7ayYscm4GLOxYNUIhfwK46aJEY1AUwNkc77raCKOyuWhqR4pV/ESETg9iHS0UthQD8p/aI+9nsWNh7GOnIXWJiSbw+1sxpzI4g5dwEglcCenLpskkXAYs70V5+wAVlcnqlBC4lGUZaJGJ3C39SJ7D6N2bcMenADTwG1Ko14+jPP2B4icHEFFwzjNKfLtYdIHxvHq4kixind46fR3Zl0ad2b2yv3juWCYGPEYT2f/So9NGq1waDSrkJsNGlfA0yKigL8Igr5aav6oR4CWYL0DGKzZdyhoW/SnXpupIkLsWq9Do9FoalkZY1NtzEZgfVyoe+E4uOUy1D6Mz1cIr6kUDsDJ04Rr3JI8wNrSh7eh0099e/I0jIziAMa2TVSaYoSG6nD7z6D2bMc8eAo2dGFMz6FsC6unC4olv9ZGUG5DLAvZexg8F3nhIAtpMwb8rrH+cT90tPtJO/oDV66+dciR00gsity3FSNf8hN5RCMUNzQROTeNioWptPYRee4Q9HVjjE2jCkUwBJoacE+d9ZNeXEkp0Wg0Gs2q5VoVjkeUUsMi0gx8V0QWTXEFPpzXlW2iNlNF2mxUZjIFpum7GfR04h7rx2xphoY6pFSh3FWPEzUJf3PfwjEK79uFVfQIfXsf+ffvInlylpmtdSQHitgD4zjD52H3vZiTObzXh1HlMlZvN86Zc5gb/bofXn0SKVbwUlGUIVQyYULfeXlhxtDq6sQJ/ojlvq0U18SJfO0lZj74MA1Pn2b8yXWkXq8wdl+YhmNVjKrCfvplzKYmyveuJXx4EOrTSKG0cBwjHkdsCzyFm81erEoMKNddmCU99/8+zLr/Mc7Yo02kz1SwcpWFLFvF9z5Ers0kcd4l+pWXKL9nJ9FnD2G0t6Lm8n7Ofh00rln93NaxKSX115dF5zZkmnKD+IhL8Q4fx+RiDIc8fxAP4MBR//UKLMrMdwWc4fOLZZhXggoFmJhcFDdinx1YeB/CV5J47fhiGQIl404XGdRoNBrNyuCaKo0rpYaD1zHgy/gFgEYDdwWC1/kAiStlsrjaCXCzWdzZLBIJ+8rG+h7EMHCPnsQ5O4D5vVdwwwbGDr+w6dS/eBiz4lGuMzHX9xD/4l7U0VNkDk4hzx9k7N1dmH3r/CDK4RFf2Whr9eMsdt8LU7M4g0OokEWlw3cl4KVDRAd9t4R59wRnYBCrtQXj3k2MPpwm8rWXAAjlPdzRMer/6gWMskvHn+5HGYL9tG8eVqUS1rP78SancOpiOAODmHXphWBRL5df5ALhpwT2/FlHy8bc0kdsRHBPnKLhv71A+NUzWIMX/6xj3zqIZwvRr/jyhL+xD69UQhmCl81iJBNoNKud2z42XSvzBdMM8+J6YO0wIpGLbfObW4vnesQOYWYyWB3ti9qt1hZk5z1Yba2LtgU/RbYRu2iBkXDYH/MCzKYmzL51mOt7fNHi8cuPbVkY925a1G5u6PXlnXcTw49rq71Oc0MvVlfngrxWRztGMokRj2Nu6PULHFoWZirlx6rNn7N7LWZD/aW9p9FoNJpVzhtaOEQkDhhKqblg/V3A/w18FT8bxSdYnJXiq8CvB1VIdwGzV/ORBt8nwlrTgTs+gUSjGGvboFihsL2T0IURrNYWVDxK6oVznH//Oko/vQezDPV/uQ9594O4jUlmd+8m/bkX6f9QA+s/vwW7oJBKFXlwG3JqEDPWgHNhBHPrRtwXX6P66H2U9/RQaDbJHC9RfO9DVBIGRhXqxhqQRBwcf96u/9fWkgom+M7/1h5iFxSeBamOds6/t5uGoyXGPnI/lbSQTOym/rlzvktF31qMkgOOhwJoakBGJzAzGT9bVaXiW3XKZYxkEi9f8H2c00lkrsDMVoe5v92BWzbp+8h+Ko/vpPJIF6ljs2AKqQF/prL8xE7KdSb1e0dQ4RBGZztqJrtET2s0q4c7MTZdoyBB4Pi8UmH68RsifrxGJIwohRGLIZGwn41vegYJhTBam1G2Pww7jQnMA/2+ErChBylXcdNx1L5DqLo0RiyGVygsJJZwJ6cWiaHK5UVZonw3qmCSwjD9zHiOgxGNIIkEKp1A8gWM2TweF4uruqcHkAe3YQ6OLWSUWpgcCSw4bv+ZRedeZBGp+czNZi8qKZkMXiLmp/2dQKPRaDRvIt4waDzIPvHl4K0F/K1S6vdFpAH4e2AtMICfenIqSD35Z8Dj+KknP7JU1dJa3mxB42JZV3ZrmA+uvAXooHHNambFjE3zCochKM9Pcw1gxGK4Ob8mBZ67oDBAUMAzm8OIRvDWdeJFLMxXT+DduwEzV8aLhzFypQVXTOPeTXgRm1JzlMhYEal6lJujhGYrGIUKha4UiVeGUOkEyjaR8xN42ezFOJIAc0sfVKqo86PMPXEPkckqodE5lG1i5Ep4o76CYqSSqGSc3JYGImNlvJCJMgWj4mFNF8EAOT+Oam/Ci9hYY7NQdfCmZxausbZ/zLo6Ktt7EKWwZko8feD/0WOTRgeNazSrkBsOGldKnQG2L9E+CVz2T6x8DeZf36Ccl7GQBvZmjnFJCtzr4hYqAPPUKhvzyoeEw6hy2U+Pe4vPp9GsRpZ7bFp8cA/lBWlxPYXY1sLsvllX539eqS64NUk6hdFYj2RzGOfOo6an8QCpejA+jTEeWCgCt6b5AnqR+dMR1MEQwVOKyGtBjYzAQcyIxzHrM6hS2a/t0dsNxRJqbBI3CFSPfylIpd1Qj2TSfmxbQz3u5JRfW+MCRAOLyUXnKhbHZgTHWnL6ZL7ooVLQ1kRodA6nPo460n8jPazRaDSau5hrSot724UQmQNOLLcct5hGlt9xoEsp1bTMMmg0dy0iMg7kWf57+Vaz3OOTHps08/fXwDVuvty/2evhbpIVtLy3m7tJ3lsh65Lj+0pROF5ebeb11XhNGs2bkdV4L6/Ga9Ksbu6m3+zdJCtoeW83d5O8t1PWa8pSpdFoNBqNRqPRaDQ3glY4NBqNRqPRaDQazW1jpSgcn1puAW4Dq/GaNJo3I6vxXl6N16RZ3dxNv9m7SVbQ8t5u7iZ5b5usKyKGQ6PRaDQajUaj0axOVoqFQ6PRaDQajUaj0axCtMKh0Wg0Go1Go9FobhvLrnCIyOMickJETonIx5ZbnmtFRP5SRMZE5HBNW72IfFdE+oPXTNAuIvInwTW+JiL3L5/kGo3mWrhbxybQ45Nm9bCS7kMROScih0TkgIi8HLRd930lIh8Otu8XkQ/fQvluyX1/JflE5IHg+k8F+8otlvX3RGQ46N8DIvJkzWe/E5z3hIi8u6Z9yd+HiPSIyN6g/QsiErpRWYPjdYrI90TkqIgcEZH/PWhfcf17FVmXt3+VUsu24BewPQ304hfOPQhsWU6ZrkP2nwDuBw7XtP0H4GPB+seAfx+sPwl8CxBgN7B3ueXXi170cuXlbh6bAvn1+KSXu35ZafchcA5ovKTtuu4roB44E7xmgvXMLZLvpu/7q8kHvBRsK8G+T9xiWX8P+LdLbLsl+O7DQE/wmzCv9vsA/h742WD9vwK/epN92wbcH6wngZOBXCuuf68i67L273JbOB4CTimlziilKsDngaeWWaZrQin1A2DqkuangM8G658F3lvT/t+Vz4tAnYi03RlJNRrNDXDXjk2gxyfNquFuuA+v9756N/BdpdSUUmoa+C7w+K0Q5Bbd90vKF3yWUkq9qPynzP9ec6xbJeuVeAr4vFKqrJQ6C5zC/20s+fsILANvB764xHXfqLwXlFKvBOtzwDGggxXYv1eR9Urckf5dboWjAxiseT/E1TtlpdOilLoQrI8ALcH6artOjWa1sxrvWT0+ae42VtpvUwFPi8h+EfnloO1676s7fU23Sr6OYP3S9lvNrwcuSH857550A7I2ADNKKed2yCoi3cB9wF5WeP9eIissY/8ut8Kxagk0VJ1zWKPRrDj0+KTR3BCPKKXuB54A/rWI/ETthyv9vlrp8gF/DqwDdgAXgD9cXnEuR0QSwJeA31RKZWs/W2n9u4Ssy9q/y61wDAOdNe/XBG13K6PzrgjB61jQvtquU6NZ7azGe1aPT5q7jRX121RKDQevY8CX8V1Orve+utPXdKvkGw7WL22/ZSilRpVSrlLKAz6N3783IuskvguTdStlFREb/wH+b5RS/ytoXpH9u5Ssy92/y61w7AM2BNHuIeBnga8us0w3w1eB+YwDHwa+UtP+oSBrwW5gtsYEp9FoVh6rbWwCPT5p7j5WzH0oInERSc6vA+8CDnP999V3gHeJSCZwaXlX0Ha7uCXyBZ9lRWR34MP/oZpj3RIuiR17H37/zsv6syISFpEeYAN+gPWSv4/A0vA94P1LXPeNyibAZ4BjSqk/qvloxfXvlWRd9v69loj327ngR/KfxI+E//hyy3Mdcv8dvkmqiu+/9kv4fm3PAv3AM0B9sK0A/yW4xkPAg8stv170operL3fr2BTIrscnvayKZaXch/iZeg4Gy5F5WW7kvgL+BX5g7ingI7dQxlty319JPuBB/IfU08CfAXKLZf0fgSyv4T8Et9Vs//HgvCeoyd50pd9H8H29FFzD/wTCN9m3j+C7S70GHAiWJ1di/15F1mXtXwl21Gg0Go1Go9FoNJpbznK7VGk0Go1Go9FoNJpVjFY4NBqNRqPRaDQazW1DKxwajUaj0Wg0Go3mtqEVDo1Go9FoNBqNRnPb0AqHRqPRaDQajUajuW1ohUOj0Wg0Go1Go9HcNrTCodFoNBqNRqPRaG4b/z+aiTEWK/EX+AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ - "batch_x = X[-1:]\n", - "batch_x = tf.keras.preprocessing.sequence.pad_sequences(\n", - " batch_x, dtype = 'float32', padding = 'post'\n", - ")\n", - "p, l = sess.run(\n", - " [tf.nn.sigmoid(model.predictions), model.labels],\n", - " feed_dict = {model.X: batch_x},\n", - ")\n", - "p, l" + "plt.figure(figsize = (15, 5))\n", + "\n", + "plt.subplot(1,3,1)\n", + "plt.imshow(targets[0].T)\n", + "plt.subplot(1,3,2)\n", + "plt.imshow(logits[0].T)\n", + "plt.subplot(1,3,3)\n", + "plt.plot(X[-2])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "scrolled": true }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import IPython.display as ipd\n", + "\n", + "ipd.Audio(X[0], rate = 16000)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": false + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "minibatch loop: 1%| | 3/511 [00:12<35:24, 4.18s/it, cost=6.61]" + "minibatch loop: 100%|██████████| 681/681 [13:05<00:00, 1.15s/it, cost=0.539]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 1, training avg cost 0.607221\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deZQc1XX/P3d6dm0jaUb7MhKSEJIACY8ESMLs1gJGeAlBPzthM0vC4gQ7PnJwMIY4tvGJ4zjGxvYxxMYLJo6dKEY2NtiGmLBIYhFoRSvaQPuKlpnp9/uja2a6W9MzPTNVNV013885c6aq+vW9t19Vf/vVq1u3zDmHEEKI6FPU3QEIIYTwBwm6EELEBAm6EELEBAm6EELEBAm6EELEhOLuclxdXe1qa2u7y70QQkSS5cuX73HO1bT2WrcJem1tLcuWLesu90IIEUnMbEuu1zTlIoQQMUGCLoQQMUGCLoQQMUGCLoQQMUGCLoQQMaFdQTezR8xsl5m9meN1M7NvmNl6M1thZuf4H6YQQoj2yGeE/u/A3DZenweM9/5uAb7d9bCEEEJ0lHbz0J1zz5lZbRtNFgA/dKk6vC+aWZWZDXXO7fQpxky2vAAbfp9aTpTA+26A3q3m2Hed5T+Ag9tSyxOvgGFTg/Hz5i9g1+rU8mkXw+iZ/vtIJuGlh+HYfihKwNSPQdVI//2sWQI7Xk0tT5gDI+r8tV9/LPU5Tr4Hpb3g3NugpNw/+we3was/gmQjDDoDpnzYP9vblsO636SWJ18Ngyf7Y3fZo3BoB/Sqhhm3gFnX7G36X9j0HJRWwoxbU/87y4onYM9bMGQKTFrQORvrfgvblqa+fxOv6HwsPQA/biwaDmxNW9/mbTtF0M3sFlKjeEaNGtU5b9tehue+Cnh13CsHwvSbOmerLY4dgP+5q2V99xr488f89wOw+E44eSS1vOV5uGGJ/z72rIWnPtuybkVw4Wf897Pk03Boe2p5x6vw8Z/7a//tF+Dp+1rWh78Pxlzgn/3XfgJ//FJqubSPv4L+3IMtgn5wG3zIh5PZo3vhV3/Tsj5hDvSv7ZrNpz8P25enlgefCeMv67ytX94KLgkV/Tsv6L/+DOzfBH2GSdDbIdSLos657zrn6pxzdTU1nRxVz/ok3HcA/m6DZzTpX4DpNNmd9yAMnhKcH0iNBmfeBWMuTC0H5QPgmscy14Pwc851MGI6uAB8JL39cPkDqf9++2jql5l3BmN72DkpwfXLdpOdkee2+OgqyUboNSjTfmdp+t4ku/D9aYohiOMpZvgh6NuB9HP3Ed42IYQQIeKHoC8G/tLLdjkPOBjY/LkQQoictDuHbmY/BS4Cqs1sG/B5oATAOfcwsASYD6wH3gNuCCpYIYQQuckny2VhO6874HbfIhJCCNEpon+nqHPh2A3KT8p4juWgfITkJ5A+C3q/BBl/ALaD7uOu2Hc+HddNbw30OxgPoi/oomfS1Vzr2OFzf6h/I0mEBT2sA87C8WUWzpcoNB9B+4mo/aD6xvf9KkGPIhEWdCGEEOlI0IUQIiZI0IUQIibEQNDDygoJEBd0ZkgrdkPxE4CPU+IOK/vID3NB9E3QfexTlkuXjjeX9V/kIgaCHhY6mHoEkU2N8y5iRjZ+4QfRFfSw0qpCS98KKZsmFD8hZOxE1n5AfeO3TaUtRpLoCnqY6NguQILcKdrh6oNoIkEXQoiYIEEXQoiYIEEXQoiYEH1Bj3qaX8p4juWgfITkR8W5grcdSBqn3+mG2csdNeN8iKVnEH1BFz0TZWFkoSwXIUHPk5gV5wol5S+ixbMg2PhVnEsEiARdCCFiggRdCCFiggRdCCFiQgwEXcW5OuwjND8qzpVpLirFuXyyr+JcoRMDQQ8LHUw9gqinxkU9ftEloivoKs5VwH5UnKsNwyrOJQIjuoIeJjq4CxAV5woW9UEUkaALIURMkKALIURMkKALIURMiL6gh5XmFygqztUp+62s+usqSsW5/JzzVnGuqBJhQQ8z+4TgDybVcumEjyAIQiDTCLyWi0/Hqa6JRpIIC3qY6OjuUSirCR3z0USCLoQQMUGCLoQQMSEvQTezuWa21szWm9miVl4fZWZ/MLNXzWyFmc33P1QhhBBt0a6gm1kCeAiYB0wCFprZpKxmnwOecM5NA64FvuV3oLlRca4O+wjTT+D2VZzLd/yKU8W5QiefEfoMYL1zbqNz7iTwOLAgq40D+nrL/YAd/oVYKOhg6hFENjUupGwsUdDkI+jDga1p69u8bencB3zczLYBS4A7WzNkZreY2TIzW7Z79+5OhJthrGvvLzQ/Ks7VQRdRta/iXCI4/LoouhD4d+fcCGA+8JiZnWLbOfdd51ydc66upqbGJ9choIO7AFFxrmBRH0SRfAR9OzAybX2Ety2dm4AnAJxzLwDlQLUfAQohhMiPfAR9KTDezMaYWSmpi56Ls9q8DVwKYGZnkBL0Ls6pCCGE6AjtCrpzrgG4A3gKWE0qm2Wlmd1vZld5zT4F3GxmrwM/Ba53LqSrM1HN1sh0lmM5KB8h+QmllkuA+ylStVz8RLVcokpxPo2cc0tIXexM33Zv2vIqYJa/oQkh8kdz3iLSd4qqOFfB+lFxrtxEpjiXfiCiSIQFPUx0cBceAe4TiRk65qOJBF0IIWKCBF0IIWKCBF0IIWJCDARdxbny89GGT1/9BJyCqeJc2Ua9/z7Oeas4V2SJrqCHXssl6INJtVw65iIg+03CE9VaLn79UOvCcCSJrqALIYTIQIKeDxqtFCAqzhUs6oMoIkEXQoiYIEEXQoiYEH1BV3GuTvgIyY+KcwVvu0cV5+pCKD2E6Au6EALNeQuItKCrOFfB+gnrcwSCinNl2vPFmI+2RFtEWNCFEEKkI0HPC40wCg9VWwwWH/tA/RkaEnQhhIgJMRD0GNRyyXAbUtZOKDVjVMsl01yQtVx8RLVcIksMBF0IoWlBAVEWdBXnKmA/Ec6kUXGuTHv+GPPRlmiL6Aq6EEKIDCTo+aCr9AWIinMFi7JcoogEXQghYoIEXQghYkL0BT3qxblCS8NTca7uJ4C+abbj57RGoRbnitK+7h4iLOgh13IJ3E1YtVwIKQMlolkuLQ4CMht0LZdCtKc59LCIsKCHjEYHPYSo7+eoxy+6ggRdCCFiggQ9L3TKWHioOFewKG0xikjQhRAiJuQl6GY218zWmtl6M1uUo801ZrbKzFaa2U/8DbMtIl6c65SiWWH5CSM7KOrFuVrzVyC2WowGYFLFuaJKcXsNzCwBPARcDmwDlprZYufcqrQ244HPArOcc/vNbFBQAQshhGidfEboM4D1zrmNzrmTwOPAgqw2NwMPOef2AzjndvkbZiuEXpwrcEeoOFdHXETYfpDFuQrSnubQwyIfQR8ObE1b3+ZtS2cCMMHMnjezF81sbmuGzOwWM1tmZst2797duYi7DZ3u9Qiinp4a9fhFl/DromgxMB64CFgIfM/MqrIbOee+65yrc87V1dTU+OQ6BHSVvgBRca5gUZZLFMlH0LcDI9PWR3jb0tkGLHbO1TvnNgHrSAm8EEKIkMhH0JcC481sjJmVAtcCi7Pa/Bep0TlmVk1qCmajj3HmJuq1XLqjxkqgxKyWi6/2g6zl4ieq5RJV2hV051wDcAfwFLAaeMI5t9LM7jezq7xmTwF7zWwV8Afg75xze4MKWgiRjaY1RB5piwDOuSXAkqxt96YtO+Bu7y8kVJyrYP2oOFcbZqNSnKtgjYk20J2i+aLTPREJdJz2ZCToQggREyToeaFTxsIjYjf+RA6lLUYRCboQQsSEGAh6xNP8uqVoVlh+YlCcy0/7gfaNj6PgIFIqVZwrFKIr6LGs5RKWn5CyaWS/NcPBdL9quQiiLOhCCCEykKDnjU73egRRT0+NevyiS0jQ80FX6XsY2t/KcokmEnQhhIgJ0Rd0FecqXD8qzpVtzH+7Ks4l0oi+oAsh0DSRgEgLeszSCQ0V5+qwj0AdBGQ2KsW5lLYYRfKqtijQ6V6PIer7Oerx+8vyLfv4/p82FdzXd+GMUbx/gv9PbZOgCyFiy/+8vpPfvPkO4wb17u5QMjh4rD4QuxL0vNApY+Gh4lzBEo+0Recc/SpK+O3fXthtMYRJhOfQm1Atl8L1o1oumaaC6Jug+9iH7JQu0/laLkkH1oN+oGMg6EIInUW2TtI5inpQ10RX0GNZnCsMX2H4CSuTJkj7ARoOInZlubSKRuhCCBEbNEIXoudSaPltHSXq8ftMMgnWg6ajJOhCiNiiOXRxKj1oDi46BLlPtL/9TVv0z1RH0Rx61Agsa1HFubrsJ4w+VHEub8FP0QqiOFcXbDVnLXb8/c45iqKvcnkT4Y8at1ouIWSGNPsJwYdqueQwq1ouYeLoWXPoulO0HU40NlJ/ooHe5aUZ2xuTqbk5M+NkQ5IdB47hgNqBlZxsTFJkxvIt+5k2qoqy4gQAyaRr/p4kHam5PedCPdze3H6Q0+qTbH33MO6dwxw8Vs+f1u9h3KDeDOxVigGHjjdw24+W828Lp/F/G/Yyon8Ff3prDxedXsOscdXsPnKCnQeOU9+YZPKwvqx99zBTR1ax48BxLk463jvewNadhxhWWs/eXUdoSCZZunk/Y6t70ae8mPrGJIePN3D9o0t59IbprNpxiJreZTz5xk6uPGso00ZV8c7BE7y16zBja3pTmihi58FjzDytmk0b9nJ+iP0VBCmR8ZeDx+rpl+O1+sYkW/e9x9ia1O3v2/a/R0VJgoG9y3Lae+fgcYYAh47Xc/LICVZsO8DI/pWUFSf40Utb6FNWTL/KEvqUF/P23mNcM30Eb24/RGPSMbyqgj1HTjC84jgTfP6cHaWnzaFL0HNw6Hg9fYHvPLuRc/cfxGFcu+hJ3/2UUs+6cvjft/ZwQQjlJr64ZDUPlzTy/Po9fOHrz7XZ9s6fvpqx/sLGve3aX1OW5Ccvvc3pdpx6O8rVX3u2zfY3PLo0Y/3ZdbvbbH9V0ducXwpHTzTQq91oOkOwUzivbj1A4vhBdjvjJh+Op9NsO8+UwTNrdvHhBFz1zT+xwu3sks1nS99jL8UMKYJ7/3sl//XL/u2+51+eXnfKtr4cYUU5HKtvpKJLEXWe1MCp5yh6hKdcgmXZlv0AbNx9NBR/L2xoXyxFC0dONHR3CB2mvjHJ4YCKMhUyJxqS3eY76VyPymmQoOegLJFoXg53UiQYdh483t0h+EoyyIF0QLt79c5DwRgOAD+P+e78/jjnelSWS+SmXI6dbGTljoM8t3YndwP//Ns1/Nuv/Z0KGTmggsT+jfwx9xSjb1jaKf6x+kYSDY3QkKS4yCgqMhoak5gZRQY7Dh5neFUFDY3J5ne9e+g4I/pXttg42cieIycY0b+C3YdPAFDdu4wlK3ZwU/AfJ+OrG8zXKPXJ3zl0gqHAyp0H6TfsPcqKE+w6fJyRA1J9sXnPUYb2q2DHgWPUVvfijW0HOWNoHwDKSxLsOXKCFzbsZf5ZQ9m4+ygNjUlGD+xF/2SSBKl55pHA+l2HqK7qy+7DJ6iqLGVgr1KeXbebycP6smXfewztV87mPe8xon8F5SUJKkoSvHv4OM+t282VZw1j896jFBcZw6oqaEz7FbKwir91gvTYuhJn9v53LolzRRSlTWo3Jh0nG5KYpfaLc459R09SnCiivjHJgMpSzPtJqG9M8rXfrGHL3tS+fWP7QV7etI+LTq/hZEOSZVv2k0w6Rg6o5MiJhubjvycROUG/7tGXeXnTPhI0cnd5MD627jtGbTf8qP9+zS4m2Htc/rlf+277vKJ3uam0/XZR4eFnN/CdUnjo9+tZ8vQfOm1n0S/eyFj/fPEWPpyo56cvb+UzJTD/G3/iJCWdsv2PT67OWP9lgP1fuD8PLYz9+yW4TkwKrCirp6+lpk++/ccNp7z+x7WZ11027QlnmrQQyat3zWyuma01s/VmtqiNdh8xM2dmdf6FmMncyUOA8E7jwstGt1A+Uxh+HGHsn2jaD67//bXp75SLCIt2Bd3MEsBDwDxgErDQzCa10q4P8EngJb+DTKeiNNF+IyGE6IHkM0KfAax3zm10zp0EHgcWtNLuAeArQKBX30oS3XMdt5DnPIVoQsdpzyYfdRwObE1b3+Zta8bMzgFGOufavDppZreY2TIzW7Z7d9v5xrkoSfScK9ZCCNERujzcNbMi4GvAp9pr65z7rnOuzjlXV1PTuSdeZ4/Qg5L3dLvOhfcjEtQIK9tucCO5YDM5mmwGUcGkifT5Yz8/g1/ZI7ls+oWR3r9dyXJp2lfWbLez8XQ1lp5CPoK+HRiZtj7C29ZEH2AK8Ecz2wycBywO6sJod025CFHIxOFeCdF18lHHpcB4MxtjZqXAtcDiphedcwedc9XOuVrnXC3wInCVc25ZEAE3TbmEmX0Sjh8Io4iRc2FkuYTjI4r2XUDjTL+LTsblxqKeRruC7pxrAO4AngJWA08451aa2f1mdlXQAWZTqhG6EEK0Sl43FjnnlgBLsrbdm6PtRV0PKzclxRJ0ERxRn6fVWLhnEzl1TPSkWphCCNEBIifo3SHn0R6zxZMg52U156s7RaNK9AQ9q3JaWGl+QRFeOmHbfoOwG1RKXS5/hU963/hDIEUEzJ84/Tq2LbSUgegTPUHv7gCEKEB0ViEggoJ++HjqwQbhHcBhpS2GM9Z0BH8KHJaPKNoPaqxZ2IJeyLHFi8gJemMYT5LvYQztF1AdYiFEqESuHnp3JbkYjsnD+nL7xeNIOsdv3nyHX63o2rMbu5tV98+hrDiBkapVHQQvfPYSqnuXYcC4e/yv8+430ZqTP5XBfUu59eyxfOe5jb7Y+/Sc0/n01Es4/0u/98WeCJbIjdC7c4D+5F0XMP/MoVx51jBmjavu0HsLLd1y4pA+VJYWk/CejHTG0L4AfP3Pp7b5vivPGsrNF4zhA5MG52wzO61vhvaroCRRRHGiiBm1AwD42jVnt+lj7uQhLJo3Md+PEklGDqhg85evYPOXr+i0jQeunnLKtu98vI7Pzj+DK84a2mF7t1142inbhvYrZ2i/CoZXtf2Y57+6KPO9P7/t/A77F10nciP0ZJaip1+R95OmkdqMsQMYdaQX1RWZgnxN3Uj2HjnBx88bzYbdR9l39CS1AytZueMQ08cM4Hcr3+HAsXqm1w5g6sgqEkXGq28foDhhvPr2fj4waQiPvbiFa84eAN8P5CO0+nk+M3ci/V8s5dwxAzJe/9Wds2lMOkqLi5g7ZQjlJQkak46GZJIiMxqTjuIio9i7Uzf9NQMako6y4iJ4wDh7RBUNxYMoPtKY4eMnN59LQ9JRXpJgzuQh9Corpr4x2fxotkbvtaYfv+tn1pIoMk42JKkoSXC8oZF77vtfIL3gk//7P92iv8W5Wkif5vrcFWfwj0+u5u7LJ/C1363jhlm1PPr85oz3/v38iZQVJ/j84pUUGYwf1IePnzuKJ58ugQaYPb4aNrW0/+LVU6juVcqNs8fwn8u38bHzRvPE0q3U9Clj096jXHHmUPpXlrLv6ElW7jjEniMnuPXCsdz6/rEU/Wsx5wwakKqr6n3fnvnUhRyvb6SoyCjyMs2O1zfSmHSUJIoY0KuUuy+fwMFj9TQ0Oob0K2f5PZfBP3d9X7VkuUT77CkMIi/oQVNsxoj+FdCY+bT2RJFxxyXjAXjf6JZni40fnHpu5fWzxpxi6/zTBgIw3Rup/sOVk+BkuI/LKrLWL1EliqxZSMtLEmnbUsslidbat2wsznq9uJUzkuJEUXO7XmXFnt2iU2w30RRHU0G2ytLIHa6tMnVkVUaHfuKCsXzigrEA3HVp6pj6/Acnt/re62bWZqw/fvN58G1OGUFXVZbyhQWpEfzdHzgdgDs92+mMHFDJ2SOrmtfLihNQUQJZJTbKSxLN+6OJ3mWZ+6MkUUR175YH8RYV2FlpTyByUy7JZNNSSNknIT0xPJzHtnmjz6A/kxlB7Z+J3oOeo1ycK5C+8Xuf+mhP4+rwiJ6gK8ulR5MI6QdWiCgSQUHv7giiTdR/D4sk6ELkJHKC7kJWpGb5iLoSekT9UwQ+WxSs+RCI+h4WXSF6gp61bsCEwb35uzmns/iOWQF5DfBrnp21E1ZtmqB+oDLs+u+j6Tpb1B9B51/fBLAf/dqHTo+gC5vICfplZwzmY+eOytj227+9kNsvHsdZI6p8v+vx0omDfLXXEX5007lcdHrnnr2ai6ifaGRnVjSxaN5Eptf2D8zvivs+EJhtf4j+uUU+dCVvvycQOUEvLS7iix86s/kGmD+rG5Hx+j96N1s886kLOXtkFdW9S7nEE+UHP3JWRttvLJzGk3fNBuC0ml4AzJmcecPMwD7h3BY/fczAjJHh9Nr+zB5f3XzDj1+k0iqD/vJbYHMjHzx7WIuPNG678DRGD+zlm5/s372+5SU+2Q2obwo6y6XF1sBepW20bJumSqtf+vCZVFWW8NH3jWiz/Sdmp1KHp6alZcadyCb2Xj1tOPw3DOuXmX976RmDm3/F//v2U6dgrpk+8pRtrf7q714LD4VXamDikD68siW1/Pq9H6C8NPO3duZpA9l39CRr3jncvO0frpzEA79a1bx+/4LJfPHJ1ZxoSJKL/pWd/0IVAm09gnDikD552fjBjTP4pydXs/bdw62+3re8BI6cuj1RZM03QeXiE7PH8NiLW3Lug5mnDYSGg3nFGUe++KEzue1HyzO2nT2yite3Hmj3vU2/MQtnjGLhjNRZ+ueuOIOGpCPpHGXFCSpLE+w4cKz5x/3G2WMif8x3hMiN0OPKiP6VTB7Wl9EDK+lXWZK6wQO4cdYYZo0byDf/3zk8edcFXDt9JN/62Dk8cn0dN80ew9N3X8iCqcNY88Bc/vL8Wh69YToAfctTv9XzzxzCpi/N5/aLx3XbZwuSfhUtY5IbZ43hWx87hy9cNZkf3jgj53vOHzuQiyaeOpV1+8Wp29ebHkTeRNMU38ovzAFabv5p4pHr65qXzx5ZxScvO/UGniYxqsh1F1UPYe6UIRnrY6t7ZQy8Xv77S5uX7758AkP7lVOcyD0HX1VZSnXvMgb1KadfRQkliaKMM7VhVRVUlPacPo/sCD18gp18NmBcTW/YkXnY1vQp48efOK95/ctZ00bjBvXmX6+d1rw+87TqVs84Zo4dCM/7G3N3MmfyEHgLPjvvDG4ZezGQujNx/pktNUw2f/kKahc9CaRKGyzdvI+rpw6ntLiIT146nufX7+HmC8byx7W7ueyMwan6J/WjYNUrXDpxMGyA1+69nJLy1Mi/vCTBpi/NB1Jic9dPX2Xx6zsoSRSx9J7L+Jen1zFn8hCKDB78zVoWzZvIl3+9BoA375tD+aNfCb5jInCRZNLQvqzaeQiABVOHN28f3LeMQX1bpjjvunR86sfzi0WQ+6RTpCFBF5Fk4YxR8BZUlhVTOaAyZ7u60f1ZtmU/U4b3Y8rwfs3bK0uL+dWdFwCZotLEuWMHwAbvVvi0ebf0J2Y9cPUUJg/ry+xx1ZgZ//ShM5tfa/pRXbPzEAN6laVKHSiHHoBf/PVMjp1s9MoJpCYJ1jwwt7nEw8v3XMqxk41tmRA5iL6gh5F+F+gXMTv+YB+tEKqfQFxkJSy2s/9/cvN5nGjoqDik7e827PerKOHWVioUpvP1tLOnzL7xqXMCOf4d+fZv+3bS91hqqbW6MOnrg7ITEZpiiMDZR3cTfUEXog1Ki4soLe4Jl4oKd/Tfp6wYTnoVIUWgRPxID+MgDumLYsGl+oXuJ8DiXC0+gjUfmIOg+qaA0xb7lKeyTB65brpvNkXrRFzQhRBCNCFBF0KImCBBzxddkOkhRH0/Rz1+0RViIOhhZIWEV5wrnKJZYfkJsnBU0z4JwEfG/LGP9gPpm6D62If+bfq81tWMGZf1X+QiBoIuhCjkLBcRHtEW9LCyQkIhhMyQ0PyElUkTRfs9rziXfmzCIy9BN7O5ZrbWzNab2aJWXr/bzFaZ2Qoze8bMRvsfqhBCiLZoV9DNLAE8BMwDJgELzWxSVrNXgTrn3FnAz4EH/Q5UCCFE2+QzQp8BrHfObXTOnQQeBxakN3DO/cE59563+iLQdqHiSKILMj2CqGczRT1+0SXyEfThwNa09W3etlzcBPy6tRfM7BYzW2Zmy3bv3p1/lEIIIdrF14uiZvZxoA74amuvO+e+65yrc87V1dT49Gg1FecqXD+BFY4Cf4pH5SK/4lwdJ8jiXH4eo/4W50p70nonzeisI1/yKc61HUh/zM8Ib1sGZnYZcA9woXPuhD/htYdquRSkn1hkH6mWi4/GfLQl2iKfEfpSYLyZjTGzUuBaYHF6AzObBnwHuMo5t8v/MIUQQrRHu4LunGsA7gCeAlYDTzjnVprZ/WZ2ldfsq0Bv4D/M7DUzW5zDnBBCiIDIqx66c24JsCRr271py5f5HJcQQogOEu07RcNEF2Z6CFHfz1GPX3SFGAh6WFkhQbkJq2hWO35DceqHybCydQKw73Ku+GXUJ5M+FRHz7dgOOnMqPsRA0MNAV+kLjwD3SSQf5ux3zD7ai2R/RpNoC3os0uOaHaHiXB1xEVX7Ks4lgiPagi6EEKIZCboQQsQECXre6GJMjyDqF92iHr/oEtEX9LAe2RYYMarlEkrGTkhZQYHYD7KWi5/4FadPx5xTlku+RF/Qw0BX6QuQIPdJFPe3slxE5AVdxbkK0k9QBahO8RGog4DMqjiXCI6IC7oQQogmJOhCCBETJOhCCBETJOj5oqvrPYSo7+eoxy+6QgwEPW7FucLyE9HCWac8ci1KxblCeCSfLybTHkHnR3GupgusfhTn0g9Wm0Rb0EOr5RKXGith+Yl4LZegM4FUy0UERLQFXQghRDMSdCGEiAkSdCGEiAkSdCGEiAnRF/TQinN1V7GuoOxGtXBWwD4CzQYKoTiXL3ZVnCuqRF/Qw0DFhQoQFecKFhXniiIRF3QV5+q4H1ScKz8HAZlVcS4RHBEXdCGEEE1I0IUQIiZI0IUQIibEQNBDygoJK5smND8h+AjjMXe++wgwiyIjdr/8BNAffsXp27GtWi75EgNBFz0TXWjLpID7Q1kuoRFtQVdxrgL1o+JcbRhXca5usxF/oi3oQgghmpGgCyFETMhL0FAPRQwAAAgXSURBVM1srpmtNbP1ZraoldfLzOxn3usvmVmt34EKIYRom3YF3cwSwEPAPGASsNDMJmU1uwnY75wbB/wL8BW/AxVCCNE2xXm0mQGsd85tBDCzx4EFwKq0NguA+7zlnwPfNDNzLoRKOq/8ENY95b/d+mOZ67tWw0Pn+u8n2ZC5fnhnMH5OHMlcX/0/sH2Zvz6yd/e+Tf5/lmP7vQXvItkzD8D//Zt/9g/thLLeLevfvxyK8vma5MG+jVA9PrW8/RV/+qb5OPX647/+Gkp7dc3msX0t9p59EF7+XufsNJ70QvNsfe8SKEp03I5LghWljq9vz4pH1syFn4EpH/HdbD5H6nBga9r6NiD7SGxu45xrMLODwEBgT3ojM7sFuAVg1KhRnQw5jfd/Gt55o+t2cjF6JoyYARiUlAfnZ+hUGHcpDDoDTh4hsFzb8ktSPmbdBVueD8bH4MkwcT4Mn5b6IgZBn6EwbBrMuAWOvOuv7ZrTYdRMGHcZTPkoJOv9tT3tL+DEYagc4J/d0bOg7gZ4b0/KdlepmQjn3gr9RsCh7V2zNbwOpi6EV3/c+b4cNAkmzIW3njp1ABRVyqsCMWvtDaLN7KPAXOfcJ7z1vwDOdc7dkdbmTa/NNm99g9dmT2s2Aerq6tyyZT6PEIUQIuaY2XLnXF1rr+VzUXQ7MDJtfYS3rdU2ZlYM9AP2djxUIYQQnSUfQV8KjDezMWZWClwLLM5qsxi4zlv+KPD7UObPhRBCNNPuHLo3J34H8BSQAB5xzq00s/uBZc65xcD3gcfMbD2wj5ToCyGECJG8Lt8755YAS7K23Zu2fBz4M39DE0II0RF0p6gQQsQECboQQsQECboQQsQECboQQsSEdm8sCsyx2W5gSyffXk3WXagFguLqGIUYVyHGBIqro8Q5rtHOuZrWXug2Qe8KZrYs151S3Yni6hiFGFchxgSKq6P01Lg05SKEEDFBgi6EEDEhqoL+3e4OIAeKq2MUYlyFGBMoro7SI+OK5By6EEKIU4nqCF0IIUQWEnQhhIgJkRP09h5Y7bOvkWb2BzNbZWYrzeyT3vb7zGy7mb3m/c1Pe89nvdjWmtmcoOI2s81m9obnf5m3bYCZ/c7M3vL+9/e2m5l9w/O9wszOSbNzndf+LTO7Lpe/PGM6Pa1PXjOzQ2b2N93RX2b2iJnt8h6+0rTNt/4xs/d5/b/ee29ez0XLEddXzWyN5/uXZlblba81s2Np/fZwe/5zfcZOxOTbPrNU6e2XvO0/s1QZ7s721c/SYtpsZq+F2Vfe+3LpQrcfXzjnIvNHqnzvBmAsUAq8DkwK0N9Q4BxvuQ+wjtSDsu8DPt1K+0leTGXAGC/WRBBxA5uB6qxtDwKLvOVFwFe85fnAr0k9KPI84CVv+wBgo/e/v7fc38d99Q4wujv6C3g/cA7wZhD9A7zstTXvvfO6ENcHgGJv+StpcdWmt8uy06r/XJ+xEzH5ts+AJ4BrveWHgb/qbF9lvf7PwL1h9pXXNpcudPvxFbURevMDq51zJ4GmB1YHgnNup3PuFW/5MLCa1PNTc7EAeNw5d8I5twlY78UcVtwLgB94yz8Ark7b/kOX4kWgysyGAnOA3znn9jnn9gO/A+b6FMulwAbnXFt3AwfWX86550jV5s/21+X+8V7r65x70aW+fT9Ms9XhuJxzv3XONT0s80VSTwXLSTv+c33GDsXUBh3aZ97I8hJSD4/PO6b24vLsXgP8tC0bfveVF1cuXej24ytqgt7aA6vbEljfMLNaYBrwkrfpDu/06ZG0U7Vc8QURtwN+a2bLLfXwbYDBzrmd3vI7wOBuiKuJa8n8snV3f4F//TPcW/Y7PoAbSY3ImhhjZq+a2bNmdkFavLn85/qMncGPfTYQOJD2g+VXX10AvOuceyttW+h9laUL3X58RU3QuwUz6w38J/A3zrlDwLeB04CpwE5Sp35hM9s5dw4wD7jdzN6f/qL3y94tOaneHOlVwH94mwqhvzLozv7JhZndAzQAP/Y27QRGOeemAXcDPzGzvvna6+JnLLh9lsVCMgcMofdVK7rQJXt+EDVBz+eB1b5iZiWkdtqPnXO/AHDOveuca3TOJYHvkTrdbCs+3+N2zm33/u8CfunF8K53utZ0qrkr7Lg85gGvOOfe9WLs9v7y8Kt/tpM5LdLl+MzseuBK4GOeGOBNa+z1lpeTmqOe0I7/XJ+xQ/i4z/aSmmIoztreaTxbHwZ+lhZvqH3Vmi60YS+84yufifZC+SP1yLyNpC7GNF14mRygPyM1f/X1rO1D05b/ltScIsBkMi8YbSR1scjXuIFeQJ+05f8jNff9VTIvyjzoLV9B5kWZl13LRZlNpC7I9PeWB/jQb48DN3R3f5F1oczP/uHUi1bzuxDXXGAVUJPVrgZIeMtjSX2p2/Sf6zN2Iibf9hmpM7X0i6J/3dm+SuuvZ7uxr3LpQrcfX4EIYZB/pK4YryP1C3xPwL5mkzptWgG85v3NBx4D3vC2L846+O/xYltL2pVpP+P2DtjXvb+VTfZIzVc+A7wFPJ12cBjwkOf7DaAuzdaNpC5srSdNhLsQWy9So7J+adtC7y9Sp+M7gXpSc5A3+dk/QB3wpveeb+Lddd3JuNaTmkttOsYe9tp+xNu/rwGvAB9sz3+uz9iJmHzbZ97x+rL3Of8DKOtsX3nb/x24LattKH3Vji50+/GlW/+FECImRG0OXQghRA4k6EIIERMk6EIIERMk6EIIERMk6EIIERMk6EIIERMk6EIIERP+P8DshQNq/zw3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.539]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 2, training avg cost 0.538868\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deXgc5ZWv39NaLEveZCTvsmWDDdgsNsiGQCAE7NiGG0xIAngSJgQShxuYkCHLdS4ZQkgyScidySxhQsidZAITQiCTxXMxA4GwTBIw2BiMjTfZBizv2Ma7LUv93T+6JHW31VJLqip1lX7v8+hRVfXX55z+qvrXVd936pQ55xBCCBF9Er0dgBBCCH+QoAshREyQoAshREyQoAshREyQoAshREwo7i3HVVVVrra2trfcCyFEJFm2bNk7zrnq9l7rNUGvra1l6dKlveVeCCEiiZm9les1DbkIIURMkKALIURMkKALIURMkKALIURMkKALIURM6FTQzewnZrbTzFbmeN3M7J/MrN7MVpjZOf6HKYQQojPyOUP/N2BOB6/PBSZ6fwuAH/Y8LCGEEF2l0zx059zzZlbbQZN5wAMuVYf3RTMbYmYjnXPbfIoxk7degA1/SC0XlcC5n4QB7ebY95xlP4N9Danl066AUVOD8bPy17BzdWr55PfDuAv895FMwpL74MheSBTB1I/BkBr//axZDFuXp5YnzYYxdf7aP34k9TkaD0NpBZx3M5SU+Wd/XwMs/3dINsOw0+GMq/2z3bAM1v1XannKVTB8ij92l/4U9m+FiiqYsQDMemZv03/DpuehtBxmfCb1v7useATeWQ8jzoDJ87pnY92T0PBy6vt32hXdj6UP4MeNRaOBzWnrDd62EwTdzBaQOotn7Nix3fPW8BI8/z3Aq+NefhJMv6l7tjriyLvwn59rW9+1Bq590H8/AIv+ChoPppbf+hN8crH/Pt5ZC098pW3dEvC+L/vvZ/EXYf+W1PLW5fDxX/lr/+0X4Km72tZHnwvjL/LP/qsPwbPfTi2XDvRX0J+/p03Q9zXAh3y4mD20G/7f59vWJ82Gytqe2Xzqa7BlWWp5+JkwcWb3bf3mM+CS0L+y+4L++Jdh7yYYOEqC3gmhToo65+53ztU55+qqq7t5Vn3hbXDXu/ClDZ7RpH8BptNid+49MPyM4PxA6mzwgs/B+PelloPyAXDNg5nrQfg55xMwZjq4AHwkvf0w6xup/377aOmXC/4qGNujzkkJrl+2W+zUnNfmo6ckm6FiWKb97tLyvUn24PvTEkMQx1PM8EPQtwDp1+5jvG1CCCFCxA9BXwT8pZftcj6wL7DxcyGEEDnpdAzdzH4BXAJUmVkD8DWgBMA5dx+wGLgcqAcOA58MKlghhBC5ySfLZX4nrzvgFt8iEkII0S2if6eoc+HYDcpPyniO5aB8hOQnkD4Ler8EGX8AtoPu457Ydz4d1y1vDfQ7GA+iL+iib9LTXOvY4XN/qH8jSYQFPawDzsLxZRbOlyg0H0H7iaj9oPrG9/0qQY8iERZ0IYQQ6UjQhRAiJkjQhRAiJsRA0MPKCgkQF3RmSDt2Q/ETgI8T4g4r+8gPc0H0TdB97FOWS4+ON5f1X+QiBoIeFjqY+gSRTY3zJjEjG7/wg+gKelhpVaGlb4WUTROKnxAydiJrP6C+8dum0hYjSXQFPUx0bBcgQe4U7XD1QTSRoAshREyQoAshREyQoAshREyIvqBHPc0vZTzHclA+QvKj4lzB2w4kjdPvdMPs5a6acT7E0jeIvqCLvomyMLJQlouQoOdJzIpzhZLyF9HiWRBs/CrOJQJEgi6EEDFBgi6EEDFBgi6EEDEhBoKu4lxd9hGaHxXnyjQXleJcPtlXca7QiYGgh4UOpj5B1FPjoh6/6BHRFXQV5ypgPyrO1YFhFecSgRFdQQ8THdwFiIpzBYv6IIpI0IUQIiZI0IUQIiZI0IUQIiZEX9DDSvMLFBXn6pb9dlb9dRWl4lx+jnmrOFdUibCgh5l9QvAHk2q5dMNHEAQhkGkEXsvFp+NUc6KRJMKCHiY6uvsUympCx3w0kaALIURMkKALIURMyEvQzWyOma01s3ozW9jO62PN7BkzW25mK8zscv9DFUII0RGdCrqZFQH3AnOBycB8M5uc1eyrwCPOuWnAdcC/+B1oblScq8s+wvQTuH0V5/Idv+JUca7QyecMfQZQ75zb6JxrBB4G5mW1ccAgb3kwsNW/EAsFHUx9gsimxoWUjSUKmnwEfTSwOW29wduWzl3Ax82sAVgM/FV7hsxsgZktNbOlu3bt6ka4GcZ69v5C86PiXF10EVX7Ks4lgsOvSdH5wL8558YAlwMPmtkJtp1z9zvn6pxzddXV1T65DgEd3AWIinMFi/ogiuQj6FuAmrT1Md62dG4CHgFwzr0AlAFVfgQohBAiP/IR9JeBiWY23sxKSU16Lspq8zZwGYCZnU5K0Hs4piKEEKIrdCrozrkm4FbgCWA1qWyWVWZ2t5ld6TX7AvBpM3sN+AVwg3Mhzc5ENVsj01mO5aB8hOQnlFouAe6nSNVy8RPVcokqxfk0cs4tJjXZmb7tzrTlN4AL/Q1NCJE/GvMWkb5TVMW5CtaPinPlJjLFufQDEUUiLOhhooO78Ahwn0jM0DEfTSToQggREyToQggREyToQggRE2Ig6CrOlZ+PDnz66ifgFEwV58o26v33ccxbxbkiS3QFPfRaLkEfTKrl0jUXAdlvEZ6o1nLx64daE8ORJLqCLoQQIgMJej7obKUAUXGuYFEfRBEJuhBCxAQJuhBCxIToC7qKc3XDR0h+VJwreNt9qjhXD0LpI0Rf0IUQaMxbQKQFXcW5CtZPWJ8jEFScK9OeL8Z8tCU6IsKCLoQQIh0Jel7oDKPwULXFYPGxD9SfoSFBF0KImBADQY9BLZcMtyFl7YRSM0a1XDLNBVnLxUdUyyWyxEDQhRAaFhQQZUFXca4C9hPhTBoV58q0548xH22JjoiuoAshhMhAgp4PmqUvQFScK1iU5RJFJOhCCBETJOhCCBEToi/oUS/OFVoanopz9T4B9E2rHT+HNQq1OFeU9nXvEGFBD7mWS+BuwqrlQkgZKBHNcmlzEJDZoGu5FKI9jaGHRYQFPWR0dtBHiPp+jnr8oidI0IUQIiZI0PNCl4yFh4pzBYvSFqOIBF0IIWJCXoJuZnPMbK2Z1ZvZwhxtrjGzN8xslZk95G+YHRHx4lwnFM0Ky08Y2UFRL87Vnr8CsdVmNACTKs4VVYo7a2BmRcC9wCygAXjZzBY5595IazMR+ApwoXNur5kNCypgIYQQ7ZPPGfoMoN45t9E51wg8DMzLavNp4F7n3F4A59xOf8Nsh9CLcwXuCBXn6oqLCNsPsjhXQdrTGHpY5CPoo4HNaesN3rZ0JgGTzOxPZvaimc1pz5CZLTCzpWa2dNeuXd2LuNfQ5V6fIOrpqVGPX/QIvyZFi4GJwCXAfODHZjYku5Fz7n7nXJ1zrq66uton1yGgWfoCRMW5gkVZLlEkH0HfAtSkrY/xtqXTACxyzh13zm0C1pESeCGEECGRj6C/DEw0s/FmVgpcByzKavNbUmfnmFkVqSGYjT7GmZuo13LpjRorgRKzWi6+2g+yloufqJZLVOlU0J1zTcCtwBPAauAR59wqM7vbzK70mj0B7DazN4BngC8553YHFbQQIhsNa4g80hYBnHOLgcVZ2+5MW3bA7d5fSKg4V8H6UXGuDsxGpThXwRoTHaA7RfNFl3siEug47ctI0IUQIiZI0PNCl4yFR8Ru/IkcSluMIhJ0IYSICTEQ9Iin+fVK0ayw/MSgOJef9gPtGx/PgoNIqVRxrlCIrqDHspZLWH5CyqaR/fYMB9P9quUiiLKgCyGEyECCnje63OsTRD09Nerxix4hQc8HzdL3MbS/leUSTSToQggRE6Iv6CrOVbh+VJwr25j/dlWcS6QRfUEXQqBhIgGRFvSYpRMaKs7VZR+BOgjIbFSKcyltMYrkVW1RoMu9PkPU93PU4/eX1xv2cd9zG0gW2Pd3/oyxXDzJ/6e2SdCFELFl8cptPPb6NiYNH9DboWSw78jxQOxK0PNCl4yFh4pzBUs80haTzlFanODJv35fr8UQJhEeQ29BtVwK149quWSaCqJvgu5jH7JTekz3a7k4B4k+9PscA0EXQugqsn2SSUeiD11xRVfQY1mcKwxfYfgJK5MmSPsBGg4idmW5tEvSQZEEXQghok/SuT41JSJBFyKdAktv6zJRj99nks6R6EOD6BJ0IURsSTqNoYts+tABER2C3Cfa3/6mLfpnqqskHRL0SBFY1qKKc/XYTxh9qOJc3oKfohVEca4e2GrNWuxO2qJT2mI0iFstlxAyQ1r9hOBDtVxymFUtlzBp7mNpi7pTtBOONTdz/FgTWIIfPL6GGy+sZfPewzQ1Oyr6FXPaiIEcONrEwLJiiosSHDzWxPodB5haM4QXNuzm/AknseXdIzQnHbVVFSSTDkfqzKEoYazbsZ9TQ/w8K7fs4+TjSR7+0ya+/txj3PsX53DLQ69w22UTeWTpZq6aNprhA/txVs0Qxg0t56P3vcC3rz6TL//HCi44+STMjHXbD3D7rEnUVlWwZNNufrN8K5+fOZF7/1DPj5KOI0ebeGvrPvo3HeKyhY9x1wcn8+9L3mb2lOG8sGE308cPpaaynLPHDGFIeQmfeXAZ3776TD738HKumz6W+p0HGTu0nIsmVTF8UBm/Xb6F4oRx5ujB/PnJNXwxxP4KAkebxDnnUje/dPM0MukcCVK3kg8GVm/fz8jKRha9tpX5M8ZSUtR2zrb3UCOHjzdz9HgzVRX92Hu4kaqB/RjQr00Gtu87SrWDXfuOMgL40fMb6HdwE//nyXXceukpTK+tpKQowdih5Xzl16/znpNP4olV2xk7tIKpNYP54Nmj2HOokc17jrB561au6W4n+USyj91YJEHPwf6jxxkE/Oi5jZy3dx8O475NG7jvuQ2++inlOOvK4OdL3uZjY3013S7fWrya+0qaW9dveegVAP7x6fUA/PDZEz/ftfe/CMBbuw+3bvuL/7sko83z63YB0NQvyc+XvM2pdoxKS9WruOs/3wCgfudBAF55+90TfMy7908AfPe/1rRu+/5T605od2XiCJTC3sONVHb4SbtLsEM4yze/S9HRfexyxk0LH+uxvZNtC0/3g6fX7OTqIvhfv1rBCncIgDt/t6pbNp8rPcxuihmRgNXbDvBbb/995/E1J7R9fOV2AP7Ebn7xEvyv/3i99bVBHOSaMth/tIlB3Yqk56TSFvuOokd4yCVYXn5zLwAbdx0Kxd+WvUdC8RMXtrwbvf463pzkQEBFmQqZ3qx06BwU9aFTdAl6DvoVF7UuuxhkPWzbd7S3Q/CVQDUioN29etuBYAwHgJ/HfG9+f5J9bFI0ckMuRxqbWbV1H8+v3cbtwN89uYZ/frznl64nVZSy+1Bj63qtbePZfj022ymWdol/uLGZkqZmjh49zrGmJCdVlOJcavinvLSY/UePM7CsOOPHBlITP8ebkzQlHeUlRTQlHQePNQFQWpygOGH8bnkDNwf/cTK+usF8j1L9tWP/Mc4EVm/bT9PgfUwcPoCihPHc2l0MG9SPtdsPcMVZI+lfUsTx5lT/tPTjCxt2M722kuakY0h5KbsOHmOA17+l+1NjyG++c4gJwPLNe5g4qoqK0iLWbD/Axl2HONTYxPnjT6JmaH+SDg4ea+LQsSaKEsaza3dy0cRqks5RNaAfW949wtDyUnYeOEZzMpnWN4V7A1B6bD2JM3v/O5fErIh3DzcyuH9J6rb8hOGcI+ngcGMT/UuKMEtta0o6ykqKcCQx4FhTM5/61yXsOdTIqq37ee8pVUyoruDhlzbT2NzWt7e8/2Q2vXOI7fuOtju8F2ciJ+if+OlLvLRpD0U0c3uZf3bTxby3eGbtTibZYWbd9aTvts9P7OLmUt/N9hqPLmtgZin88x/Ws/ipP7bb5ku/WtFlu18r3sbVRcf51bIGvlwC1/7oRRop6Wm4APwmwP4v3J+HNib878W4bgwKrOjXxCDv1+G/17/Tuv2P9e/wx/p3Tmh/7zP+znNFibx618zmmNlaM6s3s4UdtPuwmTkzq/MvxEzmTBkBhHcZF142uoXymcLw4whj/0TTfnD9769Nf4dcRFh0KuhmVgTcC8wFJgPzzWxyO+0GArcBS7Jf85P+pUWdNxJCiD5IPmfoM4B659xG51wj8DAwr5123wC+CwQ6+5aeVxsmhTzmKUQLOk77Nvmo42hgc9p6g7etFTM7B6hxznU4O2lmC8xsqZkt3bVrV5eDBSgp6kNT1kII0QV6fLprZgng74EvdNbWOXe/c67OOVdXXd29J15nn6EHJe/pdp0L70ckqDOsbLvBncn5kyGRixabQVQwaSF9/NjPz+BX9kgum35hpPdvT7JcWvaVtdrtbjw9jaWvkI+gbwFq0tbHeNtaGAicATxrZm8C5wOLgpoY7a0hFyEKmTjcKyF6Tj7q+DIw0czGm1kpcB2wqOVF59w+51yVc67WOVcLvAhc6ZxbGkTALUMuYWafhOMHwihi5FwYWS7h+IiifRfQeabfN1rF5caivkangu6cawJuBZ4AVgOPOOdWmdndZnZl0AFmU6ozdCGEaJe8bixyzi0GFmdtuzNH20t6HlZuSool6CI4oj5Oq3Phvk3k1LEvFdoRQoiuEDlB7w05j/Y5WzwJclxWY766UzSqRE/Qs2obh5XmFxThpRN27DcIu0Gl1OXyV/ik940/BFJEwPyJ069j20JLGYg+0RP03g5AiAJEVxUCIijoB46mysKGdwCHlbYYzrmmI/hL4LB8RNF+UOeahS3ohRxbvIicoDf34tNPhBCikImcoPdWkku0xmr954Nnjwrcx6jBPha47yZR389hxj9qcBkv3zEzNH+icyIn6FE4Qf/pDdP55YLzOXP04N4O5QROHjYg52sj2xHUVV+fzcqvz+ab885o9z2nj2x7/O/ffuhMAMZXVeT0UVZy4iFX/625rPz6bB64aUa77ykEoe8NHvrUefz6sxd0+/2fu/SUjPWrpo6i/ltz+c7VZ3bL3rfT3nfRxCr+/JXLqB6Y+7Fe86YGfxIgMoncE4uyHzibPiPvJy1nOhOHDaA2MQCaGplcNIiS4gTJpOMv3zOOyvJSptcO5ferdzB55CC+tmglfz1rEhecXAXAoze/h5Vb9rF6234WvbaVb151Jq+8vZc5U0bQsPcIjy7bzN98YFyq6HDAtHyeq88ZQ+WLpcw/vYYPfeADlBYlOHY8SVlpgpJEAjM41pSkOGEcOd5MRb+2Q+TN71zB0ePNNCdda02dooRRlDCOHm9OPS7sCWPuGSNp3r4HO9DMq5+YRUW/YvYebmRQWQklRQkMONrUTMIs5asowYCiBKcMG8jGv72cY01JDjc2Mbh/CceakpSXFtGcTD2SbNEDb8Dm9IJP/u//dIv+FufKbfesMYNZ0bCvdf2GC2q54JQqnHMMrShlj/dErS/POZV7/mstQ8pLuH3WJGaUV8FvYGrNYNgG1QP7MaG0glOGDeC2mZMYNaQ/DXuPcO30GkYN6U9Rwrh2eg2HG5vZfegYNZXlDCgrZkj/UgaUFTO1ZgiHvvMFKiuHwDb40uxJ3DrlEspKEowc3J9Zk4czuH9JRk2l1XfP4eCxJhKWuvGvyCx13Bx6B9b0fF+1ZblE4Gyul4m8oAfNmMr+jKIMmotYfONF7bb5yLljAHj05syzqbKSIupqh1JXO5Tr31MLwKkjBgJQWVHKmWMGQ+Oh4ILPgZEqoVBaVtIaZzot6wPbKbOQ3TZ7e4toFScMDIaUp567Nmxg5ll2eWlxu/YSCaN/aVHrg0yKvRiKi4zimDzbZGrNECgbwpvXX9FpWzPjlb+ZlbHts5eknXnvOAzAqSMGwTa4//o6qJne+vJ1M8a2a/PG947P6bOiXzF4+2fEoDJIu+KqGnDiGXn6/hK9S+SGXNqesxvOYPqg8nAexBnOY9s8LGA/ZgT2CDeXWZI1KIIszhVI3/i9T320p/Pq8IieoEdhEF0ERlK7X4icRFDQezsC0Zvo91yI3ERO0F1vfaOlJAWBC/gCPvq3wOg47ctET9Cz1oP+AqZ0PEAv2Vk7AddYaa1WGdQPVIbdAHy0jqGniOoj6Pzrm+D6uMf2s+Y79Ai64ImcoM88fTgfO+/Emft8uLauhm99qP186r5Cv4jXk2/JjhHZRP/aQvScyH27S4sTfOtDZ/IP107N2eaDZ49izpQRGdu+edUZfPcjZ/Gx88bx1StO5zQvfRDgq1eczuD+JXz/2rNbty2ccyoA54yr9PkTtM/08SeFlOUSXAZKho+AMmmuOGtkm48ACa6WS0B9U9BZLsHuq5/cUMfM04cF6iMqRPZ056ppo+F3cNtlE7nt/Z3n86bzqYsm8KmLJpywDeBD01I55exaC8/A0Ipw0hZPGzGQV97Kv/3V54zm76+Zyu9e3cJtD7+a8dodl5/Otxavbvd9Hd3FGQXaewRhzdD+bN5zJDCf/UuKOHK8ucM2CdOEfdAkzHjgxhmMqezPhOrMO54vPW04G3YdpMiMAWXFJMxab8jqS9cukRX0uDGmspxjowYxrrGcN29L/UD9y7P1LNm4h5/eMJ2///06nlq9gzXbD/DqnbNab9iZN3U0Tc2OiyZV8f3fr2fU4DI+ffEEPn3xBDbvOczN/76MoRWlvL9kGGyM35DFP82fBmdeyrwf/JHX0u60zIf7Pn4ui1/fxujK/vzw2Q3UnlQOWSZW3z0HSiuoXfgYl542jD+s2dmurX7FKdEfVFbM/qNN3HBBLQ8teZt5U0fx6LKG7n68WPHa12Yx+evPdPv9ZnDxpOqcr59cfWJZi7BOyAqFeH27AyX47IpTqgfA1rbzic9ecgqfvSS1/MXZp/LF2ae2+94Pe3eqfjurRkfN0HIe+5x3d+uGw7DR76h7j9lTRsD6tvWf3TiDdTsOcu64Sv7x6fUcaWyisqKUa+pqqPvmUwD8csH5bHn3CKeNGET9roPMOWMEc84YQTLp+MzFExhSXsqDX/0BAJedNhw2tNl/+Y6ZDOpfzH+ve4eX39rDj57byEfOHcOi17bS2JTkt7dcyFOrd3DVtNGs3rqfmZOHc9eVUwD43kfPZkXDu3B/CB1TwNlYLRPyk0cO4qJJVdx44XieWbOThb9+nbKSBHdcMZm/+e3KjPd846ozKH7SINmeRZGNBF1EkvkzxmYI+pDyUmaMHwrA7bMmZbS9auoompKO8yac1Lpt8qi2omKJhLVe8Xy0robStcs5b8LQDEFvKUI1c/JwZk4ezlfmng7Apy+awPPrdnHqiIGtZR1GD+l/QrxnjRnCCmBQWd/9yvUrKuJ3t1zIhOoKBnplJ2ZPGcHCX7/Owjmncf3547j+/HHULnwMgD984X2Mr6rAnk5I0PMk+kdXGOl3gd4qnx1/sI9WCNVPIC6yEhbz2P//cN20vK2XFScy93cn9tOFvDNOqa6gZPAQaHzXv+M2kOPf0ZX+7dhO+mHgOLtmSEaLyopS3vxO5hzY+ROGsnP/sbZx8pYYCvjqo1CIvqALERHKS4ugnUldfyjcqb+B/YqhMf/2Dy94T3DBxJzIpS1mElaaXxhugkv1C91PgMW52nwEaz4wB0H1TQGnLQ4s61sTk71JxAVdCCFECxJ0IYSICRL0fNGETB8h6vs56vGLnhADQQ8jKyS84lzhFM0Ky0+QhaNa9kkAPjLGj320H0jfBNXHPvRvy+e1nmbMuKz/IhcxEHQhRCFnuYjwiLagh5UVEgphFM0Ky09YmTRRtN/3inPpxyY88hJ0M5tjZmvNrN7MFrbz+u1m9oaZrTCzp81snP+hCiGE6IhOBd3MioB7gbnAZGC+mU3OarYcqHPOnQX8CrjH70CFEEJ0TD5n6DOAeufcRudcI/AwMC+9gXPuGefcYW/1RWCMv2EWApqQ6RNEPZsp6vGLHpGPoI8GNqetN3jbcnET8Hh7L5jZAjNbamZLd+3alX+UQgghOsXXSVEz+zhQB3yvvdedc/c75+qcc3XV1bnrGncJFecqXD+BFY4Cf4pH5SL/4lxdI4C+OSGN0xej+NO/LWmLWetdNqOrjnzJpzjXFqAmbX2Mty0DM5sJ3AG8zzl3zJ/wOkO1XArSTyyyj1TLxUdjPtoSHZHPGfrLwEQzG29mpcB1wKL0BmY2DfgRcKVzrv1HugghhAiUTgXdOdcE3Ao8AawGHnHOrTKzu83sSq/Z94ABwKNm9qqZLcphTgghREDkVQ/dObcYWJy17c605Zk+xyWEEKKLRPtO0TDRxEwfIer7Oerxi54QA0EPKyskKDdhFc3qxG8oTv0wGVa2TgD2Xc4Vv4z6ZNKnImK+HdtBZ07FhxgIehholr7wCHCfhFa/x0/8jtlHe5Hsz2gSbUGPRXpcqyNUnKsrLqJqX8W5RHBEW9CFEEK0IkEXQoiYIEHPG03G9AmiPukW9fhFj4i+oIf1yLbAiFEtl1AydkLKCgrEfpC1XPzErzh9OuacslzyJfqCHgaapS9AgtwnUdzfynIRkRd0FecqSD9BFaA6wUegDgIyq+JcIjgiLuhCCCFakKALIURMkKALIURMkKDni2bX+whR389Rj1/0hBgIetyKc4XlJ6KFs0545FqUinOF8Eg+X0ymPYLOj+JcLROsfhTn0g9Wh0Rb0EOr5RKXGith+Yl4LZegM4FUy0UERLQFXQghRCsSdCGEiAkSdCGEiAkSdCGEiAnRF/TQinP1VrGuoOxGtXBWwD4CzQYKoTiXL3ZVnCuqRF/Qw0DFhQoQFecKFhXniiIRF3QV5+q6H1ScKz8HAZlVcS4RHBEXdCGEEC1I0IUQIiZI0IUQIibEQNBDygoJK5smND8h+AjjMXe++wgwiyIjdr/8BNAffsXp27GtWi75EgNBF30TTbRlUsD9oSyX0Ii2oKs4V4H6UXGuDoyrOFev2Yg/0RZ0IYQQrUjQhRAiJuQl6GY2x8zWmlm9mS1s5/V+ZvZL7/UlZlbrd6BCCCE6plNBN7Mi4F5gLjAZmG9mk7Oa3QTsdc6dAnwf+K7fgRcvI18AAAfZSURBVAohhOiY4jzazADqnXMbAczsYWAe8EZam3nAXd7yr4AfmJk5F0IlnVcegHVP+G/3+JHM9Z2r4d7z/PeTbMpcP7AtGD/HDmaur/5P2LLUXx/Zu3vPJv8/y5G93oI3Sfb0N+DP/+yf/f3boN+AtvV/nQWJfL4mebBnI1RNTC1vecWfvmk9Tr3++O1nobSiZzaP7Gmz99w98NKPu2enudELzbP140shUdR1Oy4JlkgdXz+8MB5ZM+/7MpzxYd/N5nOkjgY2p603ANlHYmsb51yTme0DTgLeSW9kZguABQBjx47tZshpXPxF2P56z+3kYtwFMGYGYFBSFpyfkVPhlMtg2OnQeJDAcm3LLk35uPBz8NafgvExfAqcdjmMnpb6IgbBwJEwahrMWAAHd/hru/pUGHsBnDITzvgIJI/7a3va9XDsAJQP9c/uuAuh7pNw+J2U7Z5SfRqc9xkYPAb2b+mZrdF1MHU+LP959/ty2GSYNAfWP3HiCVBUKRsSiFnr7CTazD4CzHHOfcpbvx44zzl3a1qblV6bBm99g9fmnfZsAtTV1bmlS30+QxRCiJhjZsucc3XtvZbPpOgWoCZtfYy3rd02ZlYMDAZ2dz1UIYQQ3SUfQX8ZmGhm482sFLgOWJTVZhHwCW/5I8AfQhk/F0II0UqnY+jemPitwBNAEfAT59wqM7sbWOqcWwT8K/CgmdUDe0iJvhBCiBDJa/reObcYWJy17c605aPAR/0NTQghRFfQnaJCCBETJOhCCBETJOhCCBETJOhCCBETOr2xKDDHZruAt7r59iqy7kItEBRX1yjEuAoxJlBcXSXOcY1zzlW390KvCXpPMLOlue6U6k0UV9coxLgKMSZQXF2lr8alIRchhIgJEnQhhIgJURX0+3s7gBworq5RiHEVYkyguLpKn4wrkmPoQgghTiSqZ+hCCCGykKALIURMiJygd/bAap991ZjZM2b2hpmtMrPbvO13mdkWM3vV+7s87T1f8WJba2azg4rbzN40s9c9/0u9bUPN7Pdmtt77X+ltNzP7J8/3CjM7J83OJ7z2683sE7n85RnTqWl98qqZ7Tezz/dGf5nZT8xsp/fwlZZtvvWPmZ3r9X+99968nouWI67vmdkaz/dvzGyIt73WzI6k9dt9nfnP9Rm7EZNv+8xSpbeXeNt/aaky3N3tq1+mxfSmmb0aZl9578ulC71+fOGci8wfqfK9G4AJQCnwGjA5QH8jgXO85YHAOlIPyr4L+GI77Sd7MfUDxnuxFgURN/AmUJW17R5gobe8EPiut3w58DipB0WeDyzxtg8FNnr/K73lSh/31XZgXG/0F3AxcA6wMoj+AV7y2pr33rk9iOsDQLG3/N20uGrT22XZadd/rs/YjZh822fAI8B13vJ9wP/sbl9lvf53wJ1h9pXXNpcu9PrxFbUz9NYHVjvnGoGWB1YHgnNum3PuFW/5ALCa1PNTczEPeNg5d8w5twmo92IOK+55wM+85Z8BV6Vtf8CleBEYYmYjgdnA751ze5xze4HfA3N8iuUyYINzrqO7gQPrL+fc86Rq82f763H/eK8Ncs696FLfvgfSbHU5Lufck865lodlvkjqqWA56cR/rs/YpZg6oEv7zDuzvJTUw+PzjqmzuDy71wC/6MiG333lxZVLF3r9+IqaoLf3wOqOBNY3zKwWmAYs8Tbd6l0+/STtUi1XfEHE7YAnzWyZpR6+DTDcObfNW94ODO+FuFq4jswvW2/3F/jXP6O9Zb/jA7iR1BlZC+PNbLmZPWdmF6XFm8t/rs/YHfzYZycB76b9YPnVVxcBO5xz69O2hd5XWbrQ68dX1AS9VzCzAcB/AJ93zu0HfgicDEwFtpG69Aub9zrnzgHmAreY2cXpL3q/7L2Sk+qNkV4JPOptKoT+yqA3+ycXZnYH0AT83Nu0DRjrnJsG3A48ZGaD8rXXw89YcPssi/lknjCE3lft6EKP7PlB1AQ9nwdW+4qZlZDaaT93zv0awDm3wznX7JxLAj8mdbnZUXy+x+2c2+L93wn8xothh3e51nKpuTPsuDzmAq8453Z4MfZ6f3n41T9byBwW6XF8ZnYD8D+Aj3ligDessdtbXkZqjHpSJ/5zfcYu4eM+201qiKE4a3u38WxdDfwyLd5Q+6o9XejAXnjHVz4D7YXyR+qReRtJTca0TLxMCdCfkRq/+oes7SPTlv+a1JgiwBQyJ4w2kpos8jVuoAIYmLb8Z1Jj398jc1LmHm/5CjInZV5ybZMym0hNyFR6y0N96LeHgU/2dn+RNVHmZ/9w4qTV5T2Iaw7wBlCd1a4aKPKWJ5D6UnfoP9dn7EZMvu0zUldq6ZOin+1uX6X113O92Fe5dKHXj69AhDDIP1IzxutI/QLfEbCv95K6bFoBvOr9XQ48CLzubV+UdfDf4cW2lrSZaT/j9g7Y17y/VS32SI1XPg2sB55KOzgMuNfz/TpQl2brRlITW/WkiXAPYqsgdVY2OG1b6P1F6nJ8G3Cc1BjkTX72D1AHrPTe8wO8u667GVc9qbHUlmPsPq/th739+yrwCvDBzvzn+ozdiMm3feYdry95n/NRoF93+8rb/m/AzVltQ+mrTnSh148v3fovhBAxIWpj6EIIIXIgQRdCiJggQRdCiJggQRdCiJggQRdCiJggQRdCiJggQRdCiJjw/wGmZMHdkFMwngAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.54] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 3, training avg cost 0.538869\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deXwdZfX/3yd7szZp0jVt05XSjS5pgRZooUW6KMhOfyKIyCJUBEQFQeQLqCxf8at+UcSXqKCyKlK0UGT3p7K0ZS1toatNKbSlG92SJnm+f8wkuffm3uQmd2Zyn8l5v155Zea5c88595nnfu7MM2fOiDEGRVEUxX4yujoARVEUxRtU0BVFUUKCCrqiKEpIUEFXFEUJCSroiqIoISGrqxyXl5ebqqqqrnKvKIpiJcuWLdtujKmI91qXCXpVVRVLly7tKveKoihWIiIbE72mUy6KoighQQVdURQlJKigK4qihAQVdEVRlJCggq4oihIS2hV0EblPRLaKyLsJXhcR+amIrBGRt0VkkvdhKoqiKO2RzBH6b4E5bbw+Fxjh/l0M/CL1sBRFUZSO0m4eujHmZRGpamOTU4D7jVOH9xUR6Ski/YwxWzyKMZqN/4a1zzvLmdkw+QIojJtjnzrLfge7a5zlUfOh/wR//Lz7Z9i60lkedjwMnua9j8ZGePUeOLATMjJhwheg50Dv/axaDB++4SyPPAkqq721f+iA8znq9kNOARx5KWTneWd/dw288XtobIDeh8PY07yzXbMM3n/aWR7zeegzxhu7S38Dez6EgnKYejGIpGZv/T9g/cuQkw9TL3H+d5a3H4HtH0DfsTD6lM7ZeP8ZqHnd+f6Nmt/5WLoBXtxYNADYFLFe47a1EnQRuRjnKJ5BgwZ1zlvNa/DynYBbxz2/F0y5sHO22uLALnjyipb1bavg7Ae89wOw6GtQt9dZ3vhPuGCx9z62r4Yl17WsSwbM+Jb3fhZfA3s2O8sfvgHnPuat/f/8G569qWV9wGQYcqx39t/8I7z4Q2c5p8hbQX/5jhZB310Dp3pwMrvvE/jrlS3rI0+C0qrUbD77Pdi8zFnuMw5GzO68rccvAdMIPUo7L+hPfQt2roei/iro7RDoRVFjzL3GmGpjTHVFRSePqqd/HW7aBd9c6xpt9C7ASJrszr0D+oz1zw84R4PTroAhM5xlv3wAnPVA9LoffiadD5VTwPjgo9HdDyfe4vz32kdTv0z7mj+2+09yBNcr2012Bh7Z4iNVGhugoHe0/c7S9L1pTOH70xSDH+MpZHgh6JuByHP3SrdNURRFCRAvBH0RcJ6b7XIUsNu3+XNFURQlIe3OoYvIg8BMoFxEaoDvAdkAxph7gMXAPGANsB+4wK9gFUVRlMQkk+WyoJ3XDXC5ZxEpiqIoncL+O0WNCcauX34c4wmW/fIRkB9f+szv/eJn/D7Y9ruPU7FvPBrXTW/19TsYDuwXdKV7kmqudejwuD+0f63EYkEPasBJML5EgvkSBebDbz+W2verbzzfryroNmKxoCuKoiiRqKAriqKEBBV0RVGUkBACQQ8qK8RHjN+ZIXHsBuLHBx+t4g4q+8gLc370jd997FGWS0rjzcT8VxIRAkEPCh1M3QJrU+Pci5jWxq94gb2CHlRaVWDpWwFl0wTiJ4CMHWvt+9Q3XtvUtEUrsVfQg0THdhri507RHa59YCcq6IqiKCFBBV1RFCUkqKAriqKEBPsF3fY0P8d4gmW/fATkR4tz+W/blzROr9MNY5c7asZ4EEv3wH5BV7onmoURg2a5KCroSRKy4lyBpPxZWjwL/I1fi3MpPqKCriiKEhJU0BVFUUKCCrqiKEpICIGga3GuDvsIzI8W54o2Z0txLo/sa3GuwAmBoAeFDqZuge2pcbbHr6SEvYKuxbnS2I8W52rDsBbnUnzDXkEPEh3caYgW5/IX7QMbUUFXFEUJCSroiqIoIUEFXVEUJSTYL+hBpfn5ihbn6pT9OKveurKpOJeXc95anMtWLBb0ILNP8H8waS2XTvjwAz8EMgLfa7l4NE71mqiVWCzoQaKju1uhWU3omLcTFXRFUZSQoIKuKIoSEpISdBGZIyKrRWSNiFwb5/VBIvKCiLwhIm+LyDzvQ1UURVHaol1BF5FM4G5gLjAaWCAio2M2uwF4xBgzETgH+LnXgSZGi3N12EeQfny3r8W5PMerOLU4V+Akc4Q+FVhjjFlnjKkDHgJOidnGAMXucgnwoXchpgs6mLoF1qbGBZSNpaQ1yQj6AGBTxHqN2xbJTcC5IlIDLAa+Fs+QiFwsIktFZOm2bds6EW6UsdTen25+tDhXB13Yal+Lcyn+4dVF0QXAb40xlcA84AERaWXbGHOvMabaGFNdUVHhkesA0MGdhmhxLn/RPrCRZAR9MzAwYr3SbYvkQuARAGPMv4E8oNyLABVFUZTkSEbQXwdGiMgQEcnBuei5KGab/wCzAETkcBxBT3FORVEURekI7Qq6MaYeWAgsAVbiZLOsEJGbReRkd7NvABeJyFvAg8CXjAno6oyt2RrRzhIs++UjID+B1HLxcT9ZVcvFS7SWi61kJbORMWYxzsXOyLYbI5bfA6Z7G5qiKMmjc96K1XeKanGutPWjxbkSY01xLv2BsBGLBT1IdHCnHz7uExUzdMzbiQq6oihKSFBBVxRFCQkq6IqiKCEhBIKuxbmS89GGT0/9+JyCqcW5Yo26/z2c89biXNZir6AHXsvF78GktVw65sIn+03CY2stF69+qPXCsJXYK+iKoihKFCroyaBHK2mIFufyF+0DG1FBVxRFCQkq6IqiKCHBfkHX4lyd8BGQHy3O5b/tblWcK4VQugn2C7qiKOictwJWC7oW50pbP0F9Dl/Q4lzR9jwx5qEtpS0sFnRFURQlEhX0pNAjjPRDqy36i4d9oP0ZGCroiqIoISEEgh6CWi5RbgPK2gmkZozWcok252ctFw/RWi7WEgJBVxRFpwUVsFnQtThXGvuxOJNGi3NF2/PGmIe2lLawV9AVRVGUKFTQk0Gv0qchWpzLXzTLxUZU0BVFUUKCCrqiKEpIsF/QbS/OFVganhbn6np86JtmO15Oa6RrcS6b9nXXYLGgB1zLxXc3QdVyIaAMFEuzXFoc+GTW71ou6WhP59CDwmJBDxg9Ougm2L6fbY9fSQUVdEVRlJCggp4UesqYfmhxLn/RtEUbUUFXFEUJCUkJuojMEZHVIrJGRK5NsM1ZIvKeiKwQkT96G2ZbWF6cq1XRrKD8BJEdZHtxrnj+0sRWi1EfTGpxLlvJam8DEckE7gZOBGqA10VkkTHmvYhtRgDXAdONMTtFpLdfASuKoijxSeYIfSqwxhizzhhTBzwEnBKzzUXA3caYnQDGmK3ehhmHwItz+e4ILc7VERcW2/ezOFda2tM59KBIRtAHAJsi1mvctkhGAiNF5J8i8oqIzIlnSEQuFpGlIrJ027ZtnYu4y9DTvW6B7emptsevpIRXF0WzgBHATGAB8CsR6Rm7kTHmXmNMtTGmuqKiwiPXAaBX6dMQLc7lL5rlYiPJCPpmYGDEeqXbFkkNsMgYc8gYsx54H0fgFUVRlIBIRtBfB0aIyBARyQHOARbFbPMXnKNzRKQcZwpmnYdxJsb2Wi5dUWPFV0JWy8VT+37WcvESreViK+0KujGmHlgILAFWAo8YY1aIyM0icrK72RLgExF5D3gB+KYx5hO/glYUJRad1lCSSFsEMMYsBhbHtN0YsWyAq92/gNDiXGnrR4tztWHWluJcaWtMaQO9UzRZ9HRPsQIdp90ZFXRFUZSQoIKeFHrKmH5YduOPdWjaoo2ooCuKooSEEAi65Wl+XVI0Kyg/ISjO5aV9X/vGw6NgP1IqtThXINgr6KGs5RKUn4CyadR+PMP+dL/WclGwWdAVRVGUKFTQk0ZP97oFtqen2h6/khIq6MmgV+m7Gbq/NcvFTlTQFUVRQoL9gq7FudLXjxbnijXmvV0tzqVEYL+gK4qCThMpYLWghyydUNDiXB324asDn8zaUpxL0xZtJKlqiwp6utdtsH0/2x6/tyzbuINf///1aff1XTB1EMeN9P6pbSroiqKEliff2sLT737E8N6FXR1KFLsPHPLFrgp6UugpY/qhxbn8JTxpi0V52Txz1YwujSEoLJ5Db0JruaSvH63lEm3Kj77xu489yE5Jmc7XcjHGdPXvSaCEQNAVRdGzyPgYulfP2CvooSzOFYSvIPwElUnjp30fDfsRu2a5xMUYkG50iG6voCuKorSD6WZZPyroihJJuuW3dRTb4/cYY3TKRVEUJRQYujzJJlBU0JOhO40Ia/Bzn+j+9jZt0TtTHcU5Yek++9N+Qfcta1GLc6XsJ4g+1OJc7oKXouVHca4UbDVnLXbm/Zq2aAlhq+USQGZIs58AfGgtlwRmtZZLkHS3OXS9U7QdahsaOFRbT35uNtv2HORAXQPlRbk8/sZmzq4eSHamsPw/O7n35XVcdeJIduyto6wwh0wRRIR+JXm8tWkXU4aUkZ3p/H7uOXiIwpwsRGDPgUOUBPh53t28m+H1jXy0fR/3PfEukwaV8sx7H7H4nY946uvHUrPzABfdvxSAr50wnJ89v4bbTx/H3S+s5ewpA1m+cSdFeVl8Z97h/OOD7VSVF7Dxk30MrShk5ZY9nN7QyMGD9Wz+aA+D8hr4+ZJVVBTm8tGeWh749waeWDidTTsPcMFvXgfgS9Oq+O2/NvDD08bx5FsfMndsXx5bvplTJ/Rn2vBytn9aS1FeNu9+uJtJg0p5e+kmzgywv/ygKTfauEecjQYyxEmvM8bQaKC+sZGsjAwyMxw5cm6QSSxNu91xtOvAIQ7uPsiW3QfomZ9DVa983ty0iwwRNu86wJFDyijIzSJDhF0H6uhdlNfK1qEGwye7D9IXeG/LHj7K/ZifPLeGBVMG0r9nD/7ryRUU5mZRW9/IlbNH0NAI67fvZeZhvamtb2BIeSFv1eyiqHEv1d53X4dw0ha7OIgAUUFPwJ6DhygGfvnSOo7cuRuDcM4Pnova5rt/eTdqfcmKjzvsJ4dDvJ8HKz7cw5gABt73F6/knuwGXli9lfvrN3L/vzc2vzb3J/+I2vZnz68B4Nt/egeAO5esbn7tL29+GNf+qbmGP776Hw6Tg9Tu+ZS7a9ZGvT77rpej1n/7rw0AXPdnx8e/1n4CwFubdsW1f3LGds7MgbqGRnLa/KSdxd8pnDc27SLz4G62GeHC6xanbG+YbOa5XHhu1VZOy4Tzfv0qb5vtKdl8KecAn5BN3wy49+V1/OVF5wc+3j659PfLm5f/+5n3o14rZi9v5/m5r9rHYJBudIxu8ZSLv7y+YScA67btC8Tfc6u2BuInLNQeauzqEDrMoYZGPvWpKFM6U1vfdfuqux2hq6AnICerpWtMAL/wB+safLVfs3O/r/aDxtfjaJ9298otn/pj2Ae8HPNdqOfd7tZ/66ZcDtQ1sOLD3by8egtXAz96ZhU/e+pvnvupki28mOu52VZIhDTtr2sgzzRyqL6B2vpGinKzWLttL31LelCYm8WBugYyM4ScrAzqG1q+JRkirNu+j8rSHmRmCAcPNfDJ3jqK8rLIzc4kK0N44o3NXO7/x4n68vjzRXL6a+untRQDuw/UsX3bXqp6OXP5/Xv24OM9B9m+t5bK0nyMgcwMYef+OvqW5LF0ww4GlRVQnJdFo4GP9xykpEc2ew4eYlhFIZ/uPkgfoGbnAQYCG3fsJSunB/nZmeytrQdgy+6D9Cl2Bkd+ThY1O/dTVpDDmq17qSzNp1dhDgfqGli/fR99ivPYub+O0f2LaWhs2WeSxncwRsaWSpyx+3/3/jpKCpx+21dbz9ZPaxlclk+DMezaf4ie+dkIcLC+kSz32kFtfSPFNCJAXUMDF//mNV5cvY2e+dns2t/6bGfy4FL2HqynZ342r67f0enYbcU6QT//N6/x2vodZNLA1a2v51jNC6u3MlL2ceINT3tu+6iM7VzeVROZPnDnktX8MseZe1/cWOCZ3e9lbeG0zEM8+Np/+FY2nHjXy9SR7Yntx33s//T9eWhhwi3PYDoxKfB2bj3F4kyfvLh6G0BcMQdYtnFnSjHaTlK9KyJzRGS1iKwRkWvb2O50ETEi4tvF7Tlj+gLBTIM4foLBIIF8piD8GILYP3ba96//vbXpZYw2/NiEhXYFXUQygbuBucBoYIGIjI6zXRHwdeBVr4OMpEdOpp/mFUVRrCWZI/SpwBpjzDpjTB3wEHBKnO1uAW4HDnoYXyuacrmDJp3nPBWlCR2n3Ztk1HEAsClivcZta0ZEJgEDjTFtXp0UkYtFZKmILN22bVuHgwXIzuxO16wVRVGSJ+XDXRHJAO4CvtHetsaYe40x1caY6oqKzj3xOvYI3S95j7RrTHA/In4dYcXa9e9IzpsMiUQ02fSjgkkTkfPHXn4Gr7JHEtn0CiGyf1PJcmnaV9Jst7PxpBpLdyEZQd8MDIxYr3TbmigCxgIvisgG4ChgkV8XRrtqykVR0pmgkgSU9CYZdXwdGCEiQ0QkBzgHWNT0ojFmtzGm3BhTZYypAl4BTjbGLPUj4KYplyCzT4LxA0HcAmFMEFkuwfiw0b7x6TjT66KT3ma56I9NULQr6MaYemAhsARYCTxijFkhIjeLyMl+BxhLjh6hK4qixCWpG4uMMYuBxTFtNybYdmbqYSUmO0sFXfEP2+dp9Vi4e2OdOjaVE1UURVGisU7Qu0LO7T5mCyd+zsvqnK/eKWor9gl6TC3MoNL8/CK4dMK2/fph16+UukT+0p/IvvEGX4oIiDdxejW2JbCUAfuxT9C7OgBFSUP0rEIBCwX904NOCdPgBnBQaYvBHGsaWp8CnzZxQLxNPfXhNbba9+tYM70FPZ1jCxfWCXpDEE+S72YcPaxXyjYeu/RoDyJpm1F9i3z3oSg2Y52gd1WSS+Txc2FuFn/6auoCtuqWORzWpzBlO6kyrrKEf3zreE4Y1Tup7S+YXtWqrbqqjD9edGTC95x/9GBevGYmEwf17GyYPHyJ/z8aNs3JTx1S1qqtKf5vzxnVKZvTh8f/cf/cEf2j1o+obP1o88jxU1aQwy2njO1UDErnsU7Q0+EA/fRJA5g8uIyVN89h0cLpTB5c2vzat+eM4k9fncbr18+Oes/z35jBoLL8qLa87EyeuPyYQGJuYmhFyw9IXnYGRblZDCkvYGBZPvd9aQobbpvPlKpSKopy+d2Xp7LhtvlsuG0+3zhxJABzx/ble58bwyvXzWq203Sz17Rh5WRnZnDapMpWfq+YNYKq8gIev2w6G26bz/DeheRlZ/DgRUc1+5h9uCMIV80eyapb5vDzL0xqfv/tp4+jpEc2h/Xt+h9AL7nihOH89WudGwPfnnMYvzpvcqv20vxsLp0xlB+cOo7r5x3e3P6jM4/g1IjptRkjK7j18y2iO6WqlD985Sj6luRFJR/818ljuOusI3jlulncccZ4AH589gTW/mAe933JqfCRnSncecZ4plaVUdIjmx+eNo7Pjo/+EVD8x7onFjXGKHrkFXkvaTrSqSzrQVVOIaW5sPzcE9m+t5Yh5c4TcnrkZDK+siePXHI0H2z9lMP6FEV9ER686CjqGxuZPLiU/Jwsnr16BjU79/Pw65v46sxh7lbBZrWcOrE/pa/lcP7YwZw/f27cbR+9dFqrtoUnDOei44aSl+3Uo+9bkseG2+Zz8FADuRE3ewmGfsV5VBzWm6y9DWy4dH5cH89ePaNV2z3nTqa+0TT7mDeuH+t/OI/a+sbmtvKCHNgRWfDJ+/6LtOhtca5ouxdMr+LyE4aTm5XJhtvmY4xh9l0vccmMYZxV7ZRPenPTLj5/9z+5/PhhfPOkUTy2rIZrHn0LgIkDS8nY5hwkHDuiHNbDT86ZQK9RxyAi/L8jBwFQXVXK4F4FlBXkcPrkSq6YNYLf/HM935l3OLlZGfTvmcfyjbu47HhnTGaJMHlwGfwHfnTmeJhYBTj7/Kzqgc2xAZwwqg+vXDeLPsW5iAiPRE697dvu9mdq+6olyyUNjubSHOsF3W8yRehfkgcNh+hRkENZQevniGVmCKP6Frdqj52bzsnKYGhFIddFHDV1BZ2ZtRKRZlGNJF4b0PxMyI6QlZlBVoy5WL9h+EpPGNgT8noy43NjotpFhOe+MbPVthtua/lRPGNyJWdMbn0G1L9nDwAGlRVAbvTXeuKg0qj1IeUF3BwxHXLCqD6cMKpP1DaZkvz+61sSsmdBWox1Uy4tz9kNaDK9AwM7FYJ5bJvrw+/PJIJvj3Az0SVZ/cLP4ly+9I3X+9RDe2H4EbYF+wQ9HSbRLabR8u6zPX5F8RMLBT1Yf3nZ1nVRmxjLfxAtD19RfMU6tQpCkPIjHkRdUZjX5Nh3v0Fg+xmO8fkE3v5bYOzev0pq2CfoMeuRX8DJg0spL2x90bKjvPjNmW148ZjYrJ2gatP4JexRdn3w0TyH7mDrI+i86xv/+jhl+zHXO/QRdP5jnaDPPrwPX3DTsWI57+jBLL7i2A7Z++5nR7dq612Ux5MLpwMwZ1zfjgfpIZccNzRlG08ubMlzbmhsY0MLyM/xLzHr3KPijys7sP/cwgtumN+SQXbd3FGeHODZhHWCnpOVwfdPHcf/nD0BcG5oOG3iAC4/fhifG9+f3sV5vPadWTz19WN59NKjOXpoL9656TNsuG0+T195LBtum88RA3syfXgvXrhmJhceM4THL5vWPFf+my9NAVqEozgvO5DPNWVIr1aZFQU5mVw6Y1iCd8TnwmOGtGobV1nCje4P1+j+xfj/5fcvk2b++H4tPmL48dlHJG3nD19pfVfrrZ8fx/jKErIzM1odC/7+wsR3wcZydvXAqPWqXvmsvnUOAOVFuf70TVpnubTYipdyGcnfrzouan3VLXOi1ssKclj7g3nMPMx5yPzw3oVc85mRza/POrwl/XLeuH78+7pZvH9r/Pstwoh1eehNfH7iAHgCLps5HI6fEPVa7+I8ehc7c98PXnxUc3tTrvgTl0+P2n7ioFJW3dK1O31U3yKWb2xZP6xPEQ98ZSqlBTkMqyhg7bZ9/HTBRK548A0WLZxOaX4Ox97xAt8/dSxPv/sR//jAuYnju58dTb+SPG7920oAfvflqc32wDn7sJlEjyBcesNsygtzueph56ab208fx7f/9E7UNouvOJZ5P/0HANOHl3P9vMP5/uKVUdtMGNgT9mRBbUvbNZ8ZyTEjypkzpi9Pr/goavuyghx27Kvjxs+O5ua/vsegsnxuP2M8vYtz+dnzawAoyM0iNyuT8QNKoLAnHNiRUh/YzG2njeOxZTVxX8vNymBgxN3U88f3Iy87k8bsDKiHjAxh+XdPBOC3F0yNeu9Fxw1l655aBpblR+XtdzesFfSwUVmaT23/YgbV5vO7eVOZMbKi+bWfnDOR255axUlj+kQN1qblLxw5mFv++h7j3foaXzl2KOdMHURhbvfYvd886TDKC3Oj2k4a07dZ0P/7zCN44s3NjO5fzLIbZrO/rgGAOWP7thL0eJw3rQpoyXgaWl7Auu37AOfmsb+9vYVxlSVR+2ZkHy0kFsvSG2aT1cYzgVe7R9LXzh3FbU+t4tQJTpmCDGl/Dj43KzPqx6C70j2+8Z7gf3bF8IpC+FCixBxg7IASfh9niiCS2GsBYRfzk8b0hQ/grrOOIPOI1tNSRe5UWVFuVtTdlb0Kc2m6f3dgWT6rbpnDqO8+3fJG90LerFF9YC1cOXtk87Rbhnv361dnDuObj70NwHlHDebKWSMYESPgnxnTh5PG9GHJio85Z0r0FIyvpHEWU4nbj2MHFPPu5j3N7Y9eejR9i1vOHC86diiH9yvmuBHlgcdoO+H+1iuhZcHUQfCBUy4gcr7371cdR6NxyjF88P257ZYgyMvOZNyAEs47enBU+5FDy2Bt/IvSIsIN8w/n1r+tpLIsnwHubfeR5GZl8ssvVnfy04Wbxy6dxr7aeibf+iwAU6qiq0ZmZrQ+qFGSw35BDyL9ztdb5WPj9/fRCoH68cVFTMJizP6PPFLObuP0PpInW1U7jNjfEfYvmzmcNzftYtao3vTMz+bsKQObzwSSI7JvPOocX8a/IVH/dtxO5Kd2lvKyMxPWAIpvxngQS/fAfkFXlIAY3ruQ5yOKZ3VMzP0mfdMWi3KzoK51+7+uPSH4YEKO5YIexCAOsAhYEIXAgvDjY3GuFh/+mvfNgV99k8Zpi0V5OXEFvX+cqSolNazLQ1cURVHio4KuKIoSElTQk0UvyHQTbN/PtsevpEIIBD2IrJDginMFUzQrKD9+Fo5q2ic++IiaP/bQvi9941cfe9C/TZ9XUs2YMTH/lUSEQNAVRUnnLBclOOwW9KCyQgIhgMyQwPwElUljo32f+iaNs1z0xyY4khJ0EZkjIqtFZI2IXBvn9atF5D0ReVtEnhORwfHsKIqiKP7RrqCLSCZwNzAXGA0sEJHYIuJvANXGmPHAY8AdXgeqKIqitE0yR+hTgTXGmHXGmDrgIeCUyA2MMS8YY/a7q68AbRc9thK9INMtsD2byfb4lZRIRtAHAJsi1mvctkRcCDwV7wURuVhElorI0m3btiUfpaIoitIunl4UFZFzgWrgznivG2PuNcZUG2OqKyo8qqamxbnS149vhaPAm+JRiYhfnCt1/CzO5eUY9bY4V0tonbSlZx1Jk0wtl81AZEHnSrctChGZDVwPzDDG1Ma+7g9ayyUt/YQi+0hruXhozENbSlskc4T+OjBCRIaISA5wDrAocgMRmQj8EjjZGLPV+zAVRVGU9mhX0I0x9cBCYAmwEnjEGLNCRG4WkZPdze4ECoFHReRNEVmUwJyiKIriE0mVzzXGLAYWx7TdGLE82+O4FEVRlA5i952iQaIXZroJtu9n2+NXUiEEgh5UVohfboIqmtWO30CcemEyqGwdH+ybhCteGfXIpEdFxDwb235nToWHEAh6EOhV+vTDx30SWP0eL/E6Zg/tWdmfdmK3oIciPa7ZEVqcqyMubLWvxbkU/7Bb0BVFUZRmVNAVRVFCggp60ujFmG6B7RfdbI9fSQn7BT2oR7b5RohquQSSsRNQVpAv9v2s5eIlXsXp0ZgzmuWSLPYLeuM8QvcAAAlySURBVBDoVfo0xM99YuP+1iwXxXpB1+JcaenHrwJUrXz46sAns1qcS/EPywVdURRFaUIFXVEUJSSooCuKooQEFfRk0avr3QTb97Pt8SupEAJBD1txrqD8WFo4q9Uj12wqzhXAI/k8MRnxCDovinM1XWD1ojiX/mC1id2CHlgtl7DUWAnKj+W1XPzOBNJaLopP2C3oiqIoSjMq6IqiKCFBBV1RFCUkqKAriqKEBPsFPbDiXF1VrMsvu7YWzvLZh6/ZQAEU5/LErhbnshX7BT0ItLhQGqLFufxFi3PZiOWCrsW5Ou4HLc6VnAOfzGpxLsU/LBd0RVEUpQkVdEVRlJCggq4oihISQiDoAWWFBJVNE5ifAHwE8Zg7z334mEURFbtXfnzoD6/i9Gxsay2XZAmBoCvdE73QFk0a94dmuQSG3YKuxbnS1I8W52rDuBbn6jIb4cduQVcURVGaUUFXFEUJCUkJuojMEZHVIrJGRK6N83quiDzsvv6qiFR5HaiiKIrSNu0KuohkAncDc4HRwAIRGR2z2YXATmPMcODHwO1eB6ooiqK0TVYS20wF1hhj1gGIyEPAKcB7EducAtzkLj8G/K+IiDEBVNJZfj+8v8R7u4cORK9vXQl3H+m9n8b66PVPt/jjp3Zv9PrKJ2HzUm99xO7uHeu9/ywHdroL7kWy526Bf/3MO/t7tkBuYcv6r0+EjGS+JkmwYx2Uj3CWNy/3pm+ax6nbH3+5DHIKUrN5YEeLvZfugNd+1Tk7DXVuaK6tX50AGZkdt2MaQTKc8fWL6eHImpnxLRh7uudmkxmpA4BNEes1QOxIbN7GGFMvIruBXsD2yI1E5GLgYoBBgwZ1MuQIjrsGPnondTuJGDwNKqcCAtl5/vnpNwGGz4Leh0PdXnzLtc07wfEx/QrY+E9/fPQZA6PmwYCJzhfRD4r6Qf+JMPVi2Puxt7YrDoNB02D4bBh7BjQe8tb2xC9C7aeQX+ad3cHTofoC2L/dsZ0qFaPgyEugpBL2bE7N1oBqmLAA3vhD5/uy92gYOQc+WNL6AMhW8nr6YlbaO4gWkTOAOcaYr7jrXwSONMYsjNjmXXebGnd9rbvN9ng2Aaqrq83SpR4fISqKooQcEVlmjKmO91oyF0U3AwMj1ivdtrjbiEgWUAJ80vFQFUVRlM6SjKC/DowQkSEikgOcAyyK2WYRcL67fAbwfCDz54qiKEoz7c6hu3PiC4ElQCZwnzFmhYjcDCw1xiwCfg08ICJrgB04oq8oiqIESFKX740xi4HFMW03RiwfBM70NjRFURSlI+idooqiKCFBBV1RFCUkqKAriqKEBBV0RVGUkNDujUW+ORbZBmzs5NvLibkLNU3QuDpGOsaVjjGBxtVRwhzXYGNMRbwXukzQU0FElia6U6or0bg6RjrGlY4xgcbVUbprXDrloiiKEhJU0BVFUUKCrYJ+b1cHkACNq2OkY1zpGBNoXB2lW8Zl5Ry6oiiK0hpbj9AVRVGUGFTQFUVRQoJ1gt7eA6s99jVQRF4QkfdEZIWIfN1tv0lENovIm+7fvIj3XOfGtlpETvIrbhHZICLvuP6Xum1lIvJ3EfnA/V/qtouI/NT1/baITIqwc767/Qcicn4if0nGdFhEn7wpIntE5Mqu6C8RuU9EtroPX2lq86x/RGSy2/9r3Pcm9Vy0BHHdKSKrXN+Pi0hPt71KRA5E9Ns97flP9Bk7EZNn+0yc0tuvuu0Pi1OGu7N99XBETBtE5M0g+8p9XyJd6PLxhTHGmj+c8r1rgaFADvAWMNpHf/2ASe5yEfA+zoOybwKuibP9aDemXGCIG2umH3EDG4DymLY7gGvd5WuB293lecBTOA+KPAp41W0vA9a5/0vd5VIP99VHwOCu6C/gOGAS8K4f/QO85m4r7nvnphDXZ4Asd/n2iLiqIreLsRPXf6LP2ImYPNtnwCPAOe7yPcBXO9tXMa//CLgxyL5yt02kC10+vmw7Qm9+YLUxpg5oemC1LxhjthhjlrvLnwIrcZ6fmohTgIeMMbXGmPXAGjfmoOI+Bfidu/w74PMR7fcbh1eAniLSDzgJ+LsxZocxZifwd2COR7HMAtYaY9q6G9i3/jLGvIxTmz/WX8r9475WbIx5xTjfvvsjbHU4LmPMM8aYpodlvoLzVLCEtOM/0WfsUExt0KF95h5ZnoDz8PikY2ovLtfuWcCDbdnwuq/cuBLpQpePL9sEPd4Dq9sSWM8QkSpgIvCq27TQPX26L+JULVF8fsRtgGdEZJk4D98G6GOM2eIufwT06YK4mjiH6C9bV/cXeNc/A9xlr+MD+DLOEVkTQ0TkDRF5SUSOjYg3kf9En7EzeLHPegG7In6wvOqrY4GPjTEfRLQF3lcxutDl48s2Qe8SRKQQ+BNwpTFmD/ALYBgwAdiCc+oXNMcYYyYBc4HLReS4yBfdX/YuyUl150hPBh51m9Khv6Loyv5JhIhcD9QDf3CbtgCDjDETgauBP4pIcbL2UvyMabfPYlhA9AFD4H0VRxdSsucFtgl6Mg+s9hQRycbZaX8wxvwZwBjzsTGmwRjTCPwK53Szrfg8j9sYs9n9vxV43I3hY/d0relUc2vQcbnMBZYbYz52Y+zy/nLxqn82Ez0tknJ8IvIl4LPAF1wxwJ3W+MRdXoYzRz2yHf+JPmOH8HCffYIzxZAV095pXFunAQ9HxBtoX8XThTbsBTe+kploT5c/nEfmrcO5GNN04WWMj/4EZ/7qf2La+0UsX4UzpwgwhugLRutwLhZ5GjdQABRFLP8LZ+77TqIvytzhLs8n+qLMa6blosx6nAsype5ymQf99hBwQVf3FzEXyrzsH1pftJqXQlxzgPeAipjtKoBMd3kozpe6Tf+JPmMnYvJsn+GcqUVeFL2ss30V0V8vdWFfJdKFLh9fvgihn384V4zfx/kFvt5nX8fgnDa9Dbzp/s0DHgDecdsXxQz+693YVhNxZdrLuN0B+5b7t6LJHs585XPAB8CzEYNDgLtd3+8A1RG2voxzYWsNESKcQmwFOEdlJRFtgfcXzun4FuAQzhzkhV72D1ANvOu+539x77ruZFxrcOZSm8bYPe62p7v7901gOfC59vwn+oydiMmzfeaO19fcz/kokNvZvnLbfwtcGrNtIH3Vji50+fjSW/8VRVFCgm1z6IqiKEoCVNAVRVFCggq6oihKSFBBVxRFCQkq6IqiKCFBBV1RFCUkqKAriqKEhP8D4vS6/QsNyZ8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.54] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 4, training avg cost 0.538858\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deZwcdZn/30/3XDkmB8nkIJOLnCRBkhASJNzhSFCDgIvJiquIRhQERVbx+AGLurvKS9d1ZUX8qXghoLu6cYkCcopyZALhSghJSICEkIOETO7M8d0/qmamezI90zNdVdNV83m/XslUV3/7eZ76fqs/XfWtp54y5xxCCCHiT6q7AxBCCBEMEnQhhEgIEnQhhEgIEnQhhEgIEnQhhEgIJd3lePDgwW7MmDHd5V4IIWLJihUrdjjnqtp6r9sEfcyYMdTU1HSXeyGEiCVm9lqu9zTlIoQQCUGCLoQQCUGCLoQQCUGCLoQQCUGCLoQQCaFDQTezn5jZNjN7Mcf7ZmbfM7N1Zva8mc0MPkwhhBAdkc8R+h3A/HbeXwBM8P8tAX5QeFhCCCE6S4d56M65x8xsTDtNLgB+7rw6vE+a2QAzG+6c2xJQjNm89gSsf8hbTpfCCZdB3zZz7Atnxc9g9yZvefJ74Ojp4fh58b9h22pvedyZMPrk4H00NsJTt8GBXZBKw/QPwYCRwft5eRm8+ay3PPE8qJ4VrP26A952HN4PZX1gzhVQWhGc/d2b4NlfQmMDDDkWpl0UnO1NK+CVP3nLU98PQ6cGY7fmp1D7JvQZDLOXgFlh9jb8BTY8BmW9YfYnvb9d5fl7YMdaGDYNplzQNRuv3A+blnvfv8nv6XosPYAgbiwaAbyR8XqTv+4IQTezJXhH8YwaNapr3jY9DY/dAvh13HsPghMv75qt9jjwDvzh6pbX21+GD/4ieD8ASz8Dh/d6y6/9FS5bFryPHWvgvi+1vLYUnP6F4P0suw5qN3vLbz4Ll/42WPuvPwF/vqnl9YgTYOypwdlfeSc88i/eclllsIL+2LdaBH33JrgwgJPZfW/D/3625fXE82DgmMJs/vlG2LzCWx56HEw4u+u2fvdJcI3Qa2DXBf2PX4BdG6DyaAl6B0R6UdQ5d7tzbpZzblZVVRePqudeAze9A/+43jfaGFyAmTTZXfAtGDotPD/gHQ2efDWMPd1bDssHwCW/yH4dhp+ZH4HqE8GF4KPRH4dzvub9DdpHU7+c/JlwbB890xPcoGw32Rk5p8VHoTQ2QJ8h2fa7StP3prGA709TDGHsTwkjCEHfDGSeu1f764QQQkRIEIK+FPgHP9vlJGB3aPPnQgghctLhHLqZ/Ro4AxhsZpuAG4FSAOfcbcAy4HxgHbAfuCysYIUQQuQmnyyXxR2874ArA4tICCFEl4j/naLORWM3LD+e8RzLYfmIyE8ofRb2uIQZfwi2w+7jQuy7gPbrpo+G+h1MBvEXdNEzKTTXOnEE3B/q31gSY0GPaoezaHyZRfMlisxH2H5iaj+svgl8XCXocSTGgi6EECITCboQQiQECboQQiSEBAh6VFkhIeLCzgxpw24kfkLwcUTcUWUfBWEujL4Ju48DynIpaH9zrf6KXCRA0KNCO1OPILapcf5FzNjGL4IgvoIeVVpVZOlbEWXTROIngoyd2NoPqW+Ctqm0xVgSX0GPEu3bRUiYg6IBVx/EEwm6EEIkBAm6EEIkBAm6EEIkhPgLetzT/DzjOZbD8hGRHxXnCt92KGmcQacbtl7urBkXQCw9g/gLuuiZKAujFcpyERL0PElYca5IUv5iWjwLwo1fxblEiEjQhRAiIUjQhRAiIUjQhRAiISRA0FWcq9M+IvOj4lzZ5uJSnCsg+yrOFTkJEPSo0M7UI4h7alzc4xcFEV9BV3GuIvaj4lztGFZxLhEa8RX0KNHOXYSoOFe4qA/iiARdCCESggRdCCESggRdCCESQvwFPao0v1BRca4u2W/jZbCu4lScK8g5bxXniisxFvQos08If2dSLZcu+AiDMAQyg9BruQS0n+qaaCyJsaBHifbuHoWymtA+H08k6EIIkRAk6EIIkRDyEnQzm29ma8xsnZld38b7o8zsYTN71syeN7Pzgw9VCCFEe3Qo6GaWBm4FFgBTgMVmNqVVs68C9zjnZgCLgP8MOtDcqDhXp31E6Sd0+yrOFThBxaniXJGTzxH6bGCdc+5V59xh4C7gglZtHNDPX+4PvBlciMWCdqYeQWxT4yLKxhJFTT6CPgJ4I+P1Jn9dJjcBl5rZJmAZ8Jm2DJnZEjOrMbOa7du3dyHcLGOFfb7Y/Kg4VyddxNW+inOJ8Ajqouhi4A7nXDVwPvALMzvCtnPudufcLOfcrKqqqoBcR4B27iJExbnCRX0QR/IR9M3AyIzX1f66TC4H7gFwzj0BVACDgwhQCCFEfuQj6MuBCWY21szK8C56Lm3V5nVgHoCZHYsn6AXOqQghhOgMHQq6c64euAq4D1iNl83ykpndbGYL/WafBz5hZs8BvwY+6lxEV2fimq2R7SzHclg+IvITSS2XEMcpVrVcgkS1XOJKST6NnHPL8C52Zq67IWN5FTA32NCEEPmjOW8R6ztFVZyraP2oOFduYlOcSz8QcSTGgh4l2rmLjxDHRGKG9vl4IkEXQoiEIEEXQoiEIEEXQoiEkABBV3Gu/Hy04zNQPyGnYKo4V2uj/t8A57xVnCu2xFfQI6/lEvbOpFounXMRkv0m4YlrLZegfqh1YTiWxFfQhRBCZCFBzwcdrRQhKs4VLuqDOCJBF0KIhCBBF0KIhBB/QVdxri74iMiPinOFb7tHFecqIJQeQvwFXQiB5rwFxFrQVZyraP1EtR2hoOJc2fYCMRagLdEeMRZ0IYQQmUjQ80JHGMWHqi2GS4B9oP6MDAm6EEIkhAQIegJquWS5jShrJ5KaMarlkm0uzFouAaJaLrElAYIuhNC0oIA4C7qKcxWxnxhn0qg4V7a9YIwFaEu0R3wFXQghRBYS9HzQVfoiRMW5wkVZLnFEgi6EEAlBgi6EEAkh/oIe9+JckaXhqThX9xNC3zTbCXJao1iLc8VprLuHGAt6xLVcQncTVS0XIspAiWmWS4uDkMyGXculGO1pDj0qYizoEaOjgx5C3Mc57vGLQpCgCyFEQpCg54VOGYsPFecKF6UtxhEJuhBCJIS8BN3M5pvZGjNbZ2bX52hziZmtMrOXzOzOYMNsj5gX5zqiaFZUfqLIDop7ca62/BWJrRajIZhUca64UtJRAzNLA7cC5wCbgOVmttQ5tyqjzQTgS8Bc59wuMxsSVsBCCCHaJp8j9NnAOufcq865w8BdwAWt2nwCuNU5twvAObct2DDbIPLiXKE7QsW5OuMixvbDLM5VlPY0hx4V+Qj6COCNjNeb/HWZTAQmmtlfzexJM5vfliEzW2JmNWZWs3379q5F3G3odK9HEPf01LjHLwoiqIuiJcAE4AxgMfAjMxvQupFz7nbn3Czn3KyqqqqAXEeArtIXISrOFS7Kcokj+Qj6ZmBkxutqf10mm4Clzrk659wG4BU8gRdCCBER+Qj6cmCCmY01szJgEbC0VZvf4x2dY2aD8aZgXg0wztzEvZZLd9RYCZWE1XIJ1H6YtVyCRLVc4kqHgu6cqweuAu4DVgP3OOdeMrObzWyh3+w+4G0zWwU8DPyjc+7tsIIWQrRG0xoij7RFAOfcMmBZq3U3ZCw74Fr/X0SoOFfR+lFxrnbMxqU4V9EaE+2gO0XzRad7IhZoP+3JSNCFECIhSNDzQqeMxUfMbvyJHUpbjCMSdCGESAgJEPSYp/l1S9GsqPwkoDhXkPZD7ZsAj4LDSKlUca5IiK+gJ7KWS1R+Isqmkf22DIfT/arlIoizoAshhMhCgp43Ot3rEcQ9PTXu8YuCkKDng67S9zA03spyiScSdCGESAjxF3QV5ypePyrO1dpY8HZVnEtkEH9BF0KgaSIBsRb0hKUTGirO1WkfoToIyWxcinMpbTGO5FVtUaDTvR5D3Mc57vEHy4rXdvLjxzcU3dd38exRnDYx+Ke2SdCFEInlD89t4U8vvsX4IX27O5Qsdh+oC8WuBD0vdMpYfKg4V7gkJ22xsqKU+z93erfGEBUxnkNvQrVciteParlkmwqjb8Lu4wCyUwqm67VcnHPd/XsSKQkQdCGEziLbxtGzeia+gp7I4lxR+IrCT1SZNGHaD9FwGLEry6VNiu1iaNjEV9CFEKIDHA7rQXMuEnQhMon7IV3c4w8Y5zTlIoQQicDR7Uk2kSJBz4eetEfEhjDHROMdbNpicKY6i3fC0nPGM/6CHlrWoopzFewnij5UcS5/IUjRCqM4VwG2mrMWu/J5pS3GhKTVcokgM6TZTwQ+VMslh1nVcomSnjaHrjtFO+BQQwN1h+rpVV7Ki2+8w+ThlZSkUqRT3m7S0Og4XN/I39bv4MxJQ0ilWnaf5Rt3Mmv0QFa+8Q5v7DpAeUmK0YN6U9/gGNqvgqrKcu/Ghwi358XNuxlf18jm7Xv55zuWs+S0Y3h4zXbeP+NoNmzfhxlc8ctnmHp0Pz59xnjqGhpJpYwfPLKeiUO926f/Z+WbjDqqN3UNjcwcNZDzpg1j1FG9OVTXwGxg78F6Nr1VS3V5PdfcsZxPnHoMNRt3cubkIezcd5gG57jsp8uZOWoAV501nkN1jTQ4x/ceXMsp46tYtWU3L7+1h7K011+ThlVy6Umj2VZ7iIm1BxgWYX+FQfMBZ6PL2l8KYfeBOvoDb9UeZMjwbLtv7T7IwD6llJekAVi3bS9VfctZs3UPw/pVUF6awgyGVFZkfWYY8Pi67fQasJN39tcxtF8Fm3YdoPZAHeOG9AGMpza8zb5D9WzedYAX36zlve8azsDeZVw4cwSN++sYEMjWdR3netaMqQQ9B7UH6+gH/PDRV5mzazcOY9Gtfw3cTxl1vFLRcbug+May1dxW2sBjr2znwfptPPjyNgBue3R9VruX3qzlyjufyVq3ektt8/LrO/cDcO8LW7j3hS3N618ub+BXT73OJDvIIdvLQ5u38ZDv49sPvJJl75nX3+Fjd9RkrXtl696s19v2HGL5xl388snXAViYepnvlXV6sztBuFM4z77xDumDu9nujMu/vKxge+NsMw+Ww4Mvb+OiNCz5eQ3Pu10F2Xy0bD9vU8KwFPx2xWZ+v/yJvD/73T+vBeDGpS/Rj708X9G9N/c4HNaDjtFjPOUSLss3el+KV7fvi8TfX9buiMRPUthzsL67Q+g0dQ2N7AmpKFMxc7Cusdt897QjdAl6DppOTwGimBR5Yv3bodrfVnswVPtRs+9wQ3jGQxru1Vv2hGM4BILc5w/Wd6Ogozn0oubA4QZeenM3j63ZwrXAt+9/mf/4473N7/fvVRpIacoxtoVHygs20yGWcYp/oK6BXs6bkz9wuAGHozSdolep9+OSShm1B+t4YdNu5ow9itqD9fSrKCGdMg7VN7Jj7yH6lpeQShnlJanmuf5ttQd5ZM02Lgl/c7K+POF8kbz+2lrrzfEeqm9gxbodDOtfQUOjY3DfcnqVpTnc0MjK19/BAVV9yykrSVFekqKh0fFW7UEanaO8JMWQygp6laXZf6iB/XX1jK1vpBx4Y9cBRgLrttdSb2XsO9TApGGV1B6oo6I0za79h3lg1VZOn1hFQ6M3TiVpY9OuAxw43EB5aYopw/uRThlv7NxPyozGxhZhs5CndgohM7ZC4mw9/rv2HcJZiv69SkkZ1B6op76x0R+btLfuYD11DY2UplP0KU+TNiNNIwbUNTQw4fp7GdqvnMnD+vHoK9vb9JtOGRfNGMGGHfuoeW0XIwb06vI2xI3YCfpHfvo0T2/YSZoGrm1j7jmsOsNR8NDL25hoeznnq38M3PZJqc1cEurcc7T85yPr+WEZfO7ulSxrDO4ixI0lr/GhXo5fP/06XyiF8//9cQ5TmrP9v/7x5bxt/y7E/i/en4cWZn79AVwXJgWeL6+nn0Gjv5Fbaw+xtbZtMQcvUeE3KzY1v978zoFO+4wrefWumc03szVmts7Mrm+n3cVm5sxsVnAhZjN/qpfjEFVuSHTZ6BbJNkXhxxHF+IRn/8Dh+tDsh9f/wdoMMsY4/NgkhQ4F3czSwK3AAmAKsNjMprTRrhK4Bngq6CAz6VWW7riREEL0QPI5Qp8NrHPOveqcOwzcBVzQRruvAd8EQr36Vprunuu4xTznKUQT2k97Nvmo4wjgjYzXm/x1zZjZTGCkc+5e2sHMlphZjZnVbN+eew6sPUrTPematRBC5E/Bh7tmlgK+A3y+o7bOududc7Occ7Oqqrr2xOvWR+hhyXumXeei+xEJ6wirtd3wjuSCyZDIRZPNMCqYNJE5fxzkNgSVPZLLZlAYmf1bSJZL01hZs92uxlNoLD2FfAR9MzAy43W1v66JSmAa8IiZbQROApaGdWG0u6ZchChmoi0gIYqVfNRxOTDBzMaaWRmwCFja9KZzbrdzbrBzboxzbgzwJLDQOVfTtrnCaJpyiTL7JBo/EMUtEM5FkeUSjY842nchHWcGXXQy2CwX/dhERYeC7pyrB64C7gNWA/c4514ys5vNbGHYAbamTEfoQgjRJnndWOScWwYsa7Xuhhxtzyg8rNyUlkjQRXjEfZ5Wx8I9m9ipYzqgcqNCCJE0Yifo3SHn8T5mSyZhzstqzld3isaV+Al6q1qYUaX5hUV06YTt+w3Dblgpdbn8FT+ZfRMMoRQRsGDiDGrftshSBuJP/AS9uwMQogjRWYWAGAp604MNotuBo0pbjOZY0xH+KXBUPuJoP6xjzeIW9GKOLVnETtAboniSvBBCxJDYCXp3Jbnkc/z80ZPHhB9IRKz7xgL+61MnB2532oh+zctrvj6fX1w+O3AfhRCvOfkjiSr+b//d8ZH4EZ0jdoJebAfoZ07yatJ88rRjuGnhVB7/4plHtPnqe46NOqy8+OGHTwBg1FG9Abjt0pnN75WkU5wwemDzF3dQH+/pDN+8+LiWNq1+Xa+eN4HSdIqLZlY3r7vyzHEA/P2cUYwd3Icb3ju1+b3ykjSnTqjiunMnAlA90HuyzN1LTgpmA2PKi/90Hp8/Z2JBNt53/NEAPP7FM/n3RdPZ8C/n888XHtfBpzyG9+9Fhf8IxtMnDmbFV8/mT589le9ccjwPX3cG9159Chef0DLGk4ZWNo9zJieMHljQNojOE7snFjW2UvTMK/JB0nSkc+qEwVS/05tde/bx3PXn8tKW3fQqTbN6yx4mDatkxsgB/G3925wyYTAA1QN78/gXz+S+l7Zy0YwRbNp1gOOq+3O4oRHDuGRWNfO+8yhnHzuUUycMZt64vvDtUDahze25et4EBq4oY/GxIymbOoyXvzaf8pIUh+obqShNs/Ff35P1uYtPqOZ9xx9NOmXN9wBcNLOaQ/WN9C0vYc/BOsyMkpRRUZqGJxzD+1VQNbEK9tRz3HmT+cxZEyhLp0j5n2/t46qzJvCxU8ZSUZJubvPcjedSlvYeG7d97yF6laWpKEnzxRv+AmQWfAp+/DMtBlucK9vugmnDWLN1Dw9eezoAd/xtI5OGVtK3vIQrzhjHtx94hQlD+nLWsUP4/DmTWPj9x9n49r6shy5/+fxJ8CDMHT8INsK/LZrO/btH8olTj+E/Fs8AvH0SYPHskby2cx8XHD+C/r1LOap3GVfd+QzvHjeIr9+7mrOPHcIHThhJ+gGYVj0AXoeFxx8NfcsZ1Nd77Fsmq2+ez+H6Rvr39p7o9A/vHsNRfcp4Y+d+StMphqb3wr8VPlYtWS5FdjRXhMRe0MPGzDuCHdW/FHqXcvI4T7hnjGo5+mgS8yaqB/bm8lPGAjDQP7L99Bnjm99fecO5LY0P7wsr9JwYLSUUKvznlTb9bYuyVnfnlqZTzUXSKivafjxbSTrVPD/Wnu0mepdl74r9e7XYHdovuEfMFQPTRw6AigGcfukJWesvmzu2ebk0nTrih+9Pnz3tSGNbV8GDvmhvhDFH9WHJ8UceLYOX8vulBdlniz/+6IkAfPzUY1pWPgBp63hus1dZOuuBM03jdExVX2/Fvv0d2hDBErspl5bn7CYtyyWaTAUH3q9UmJgRdr/FuThXKH0T9JgGaE/H1dERP0GP+Ag9aTtj0rZHCNFCDAU9Wn9JE8Biu6gshAiO2Am6i1iRmudyE6KEcd+MfObjCyH+t8DEfIBFQcRP0Fu9zucLuGDasC77O3vykDy9dJHWWTsh11jp36ukTb+BkWU3eB+Th/XNshy3R9C1XGAOym4I4xjUGLrieATdVWeO77hRQoidoJ997FA+NGdUpz7zg0tP4OOnjO24YRsUY7neQm5gyszOiSN9yzuXmPXF+ZM77WNg77K82rXO/smHk44Z1OnP5Efx7adR8KuPz+mwzXXnTYogkuIgdoJeVpLiGxcex3c/OL153Z0fn8Pw/hXNN05cetIoFp04kiGV5TzxpbMA+Py5k5g7fhCjB/Xm/713Cp887Rhu/3BL2tg5U4Y2L1dVlvP//8F/JGrYGSE+J44dlHdmxU0Lp/I9P8e484SfgQIWWr813TCT7zZ86oy2U/jaI2X5HZdeOH0E500d2nHDDEpSqXD6pqizXHLbap2a2RF/P2cUz990LsP8FMmTxw3i5HEtP5JnTR6S1f77f9/V70k8iV0eehPvnzEC/geumTcBxg/miS/NA7wBb4teZWl+9fEj70DMuUNtXxNYrPkweVglz7yWve6SWdXcU7OpzfbvOW44v12xiZqNO/nkaeN4YPVbvLi5ts22vUrT3HLhuzKeBBtfcj2C8Oj+FUwcVskja7Yf8d5Dnz+da+95jsvmjuGpDTu586nX27Rx2dwxLHYj4eVnjnhv2dWncv73/nLE+u9cMp3LfrqcS989mr+u3cHdNW+0afvG901h6gv92nyvJ/HBWSP5w/Nvsv9wQ/O6fzxvEuu27eV3z3rPnr9oxgjuX7WVvYfqOW1iFb22pKEOUilrPmh78svzmj9/5yfa+F7v2MfhhkYmDq0MeYuKi9gKetKoHtibQ0f3Y/Th3qz+VMsdeNedN4kzbnmEC2eMYMvug+w+UAd4U0E//1hLHZTPnDWem/93FaMH9eaf/rCKFV89m0F9y1scrH846k2KhPfPOJqlK+C7i2YwrqoPs//5QRpapUIdU9WX3185F4ALpo/godXbeKv2IAD/vmg619y1kvKSFDe+byrc2/YPxpSj+7H8K2dz4jf+3LzODPqUl3DPFe8GvLsqH1u7nS27Pdu/v3Iu77/1r3znkuO9cggv9sxpkUymjxrAofoGfr/yzeZ1V/pz3C9u3s3abXu54oxxfCfjDJxveH8603tjBvcJINr4IUHPm3CzBwwYX9UX3rSsO/CGVFaw6ub5HX4+lTJuWujVScm84zCpnDd1GKyFMyYN4X9PPoVpI/oDsPbrC7jilyu4f9XWnJ998svzOFjXwH89s4kF04ZzDStb5rb9C3nzJg+F9d6RdW2DN6deVVnOohNHctfyto/CgeYzxSY6O6VQMEWcxnTbh2Zy1rRq/u6EavYfbuC7i6Znvf/BE0fy9XtXM6SyPIcF0RESdBFLFs8eBWshZdYs5uD9sN3edP2jHSpK03xozmgAHvjcaYzwC4M1MeeYo2A9LDpxFJS1HO3968Xv4pwpQ7n8ZzWM9IuaifyYd+xQMKMk3fYYXX7KWD42d2xzPR/ReeIv6FGk34V6YbR1/OE+WiFSP6G4aJWwGMD4TzhinjVjvNuwf9bkIfz0oydy2sSqTnrK7JuAOieU/d8RTP+6jP+zl9rCzNr+qjXFUMRnH8VC7LJchOhuzIwzJw8pspTWYoolm8pOppqKrhNzQY9iJ47oi2LhpfpF7ieC4lzhD0tIDsLqmyJOW6ysyC+vXxROzAVdCCFEExJ0IYRICBL0fNEFmR5C3Mc57vGLQkiAoEeRFRJdca5oimZF5SfMwlFNYxKCj6z54wDth9I3YfVxAP3btL1WaMaMa/VX5CIBgi6EKOYsFxEd8Rb0qLJCIiGKollR+YkqkyaO9kPqmyLOctGPTXTkJehmNt/M1pjZOjO7vo33rzWzVWb2vJk9aGajgw9VCCFEe3Qo6GaWBm4FFgBTgMVmNqVVs2eBWc65dwG/Bb4VdKBCCCHaJ58j9NnAOufcq865w8BdwAWZDZxzDzvn9vsvnwSqgw2zGNAFmR5B3LOZ4h6/KIh8BH0EkFlebpO/LheXA39s6w0zW2JmNWZWs337kXWrhRBCdJ1AL4qa2aXALOCWtt53zt3unJvlnJtVVdXZwkY5UHGu4vUTWuEoCLI415G0X5yr64RZnCvIfTTY4lwtoXXRls468iafqjmbgZEZr6v9dVmY2dnAV4DTnXOHggmvI1TLpSj9JCL7SLVcAjQWoC3RHvkcoS8HJpjZWDMrAxbR6mFmZjYD+CGw0Dm3LfgwhRBCdESHgu6cqweuAu4DVgP3OOdeMrObzWyh3+wWoC/wGzNbaWYJeHqlEELEi7wKFTvnlgHLWq27IWP57IDjEkII0UnifadolOjCTA8h7uMc9/hFISRA0KPKCgnLTVRFszrwG4nTIExGla0Tgn2X80VQRgMyGVARscD27bAzp5JDAgQ9CnSVvvgIcUwiq98TJEHHHKC9WPZnPIm3oCciPa7ZESrO1RkXcbWv4lwiPOIt6EIIIZqRoAshREKQoOeNLsb0COJ+0S3u8YuCiL+gR/XIttBIUC2XSDJ2IsoKCsV+mLVcgiSoOAPa55yyXPIl/oIeBbpKX4SEOSZxHG9luYjYC7qKcxWln7AKUB3hI1QHIZlVcS4RHjEXdCGEEE1I0IUQIiFI0IUQIiFI0PNFV9d7CHEf57jHLwohAYKetOJcUfmJaeGsIx65FqfiXBE8ki8QkxmPoAuiOFfTBdYginPpB6td4i3okdVySUqNlaj8xLyWS9iZQKrlIkIi3oIuhBCiGQm6EEIkBAm6EEIkBAm6EEIkhPgLemTFubqrWFdYduNaOCtkH6FmA0VQnCsQuyrOFVfiL+hRoOJCRYiKc4WLinPFkZgLuopzdd4PKs6Vn4OQzKo4lwiPmAu6EEKIJiToQgiRECToQgiREBIg6BFlhUSVTQzgkRwAAAhlSURBVBOZnwh8RPGYu8B9hJhFkRV7UH5C6I+g4gxs31Ytl3xJgKCLnokutGVTxP2hLJfIiLegqzhXkfpRca52jKs4V7fZSD7xFnQhhBDNSNCFECIh5CXoZjbfzNaY2Tozu76N98vN7G7//afMbEzQgQohhGifDgXdzNLArcACYAqw2MymtGp2ObDLOTce+Dfgm0EHKoQQon1K8mgzG1jnnHsVwMzuAi4AVmW0uQC4yV/+LfB9MzPnIqik88zP4ZX7grdbdyD79bbVcOuc4P001me/3rMlHD+H9ma/Xv0H2FwTrI/Ww71zQ/DbcmCXv+BfJHvwa/C3/wjOfu0WKO/b8vrH50Aqn69JHux8FQZP8JY3PxNM3zTvp35//P7TUNanMJsHdrbYe/Rb8PSPuman4bAfmm/rR2dBKt15O64RLOXtXz+Ym4ysmdO/ANMuDtxsPnvqCOCNjNebgNZ7YnMb51y9me0GBgE7MhuZ2RJgCcCoUaO6GHIGp10Hb71QuJ1cjD4ZqmcDBqUV4fkZPh3Gz4Mhx8LhvYSWa1txludj7tXw2l/D8TF0Kkw+H0bM8L6IYVA5HI6eAbOXwN6twdqumgSjTobxZ8O0D0BjXbC2Z3wYDu2B3kcFZ3f0XJh1Gezf4dkulKrJMOeT0L8aajcXZmvELJi+GJ79Vdf7csgUmDgf1t535AFQXKkYEIpZ6+gg2sw+AMx3zn3cf/1hYI5z7qqMNi/6bTb5r9f7bXa0ZRNg1qxZrqYm4CNEIYRIOGa2wjk3q6338rkouhkYmfG62l/XZhszKwH6A293PlQhhBBdJR9BXw5MMLOxZlYGLAKWtmqzFPiIv/wB4KFI5s+FEEI00+Ecuj8nfhVwH5AGfuKce8nMbgZqnHNLgR8DvzCzdcBOPNEXQggRIXldvnfOLQOWtVp3Q8byQeDvgg1NCCFEZ9CdokIIkRAk6EIIkRAk6EIIkRAk6EIIkRA6vLEoNMdm24HXuvjxwbS6C7VIUFydoxjjKsaYQHF1liTHNdo5V9XWG90m6IVgZjW57pTqThRX5yjGuIoxJlBcnaWnxqUpFyGESAgSdCGESAhxFfTbuzuAHCiuzlGMcRVjTKC4OkuPjCuWc+hCCCGOJK5H6EIIIVohQRdCiIQQO0Hv6IHVAfsaaWYPm9kqM3vJzK7x199kZpvNbKX/7/yMz3zJj22NmZ0XVtxmttHMXvD91/jrjjKzB8xsrf93oL/ezOx7vu/nzWxmhp2P+O3XmtlHcvnLM6ZJGX2y0sxqzeyz3dFfZvYTM9vmP3ylaV1g/WNmJ/j9v87/bF7PRcsR1y1m9rLv+3dmNsBfP8bMDmT0220d+c+1jV2IKbAxM6/09lP++rvNK8Pd1b66OyOmjWa2Msq+8j+XSxe6ff/CORebf3jle9cDxwBlwHPAlBD9DQdm+suVwCt4D8q+CbiujfZT/JjKgbF+rOkw4gY2AoNbrfsWcL2/fD3wTX/5fOCPeA+KPAl4yl9/FPCq/3egvzwwwLF6CxjdHf0FnAbMBF4Mo3+Ap/225n92QQFxnQuU+MvfzIhrTGa7Vnba9J9rG7sQU2BjBtwDLPKXbwM+1dW+avX+t4Ebouwrv20uXej2/StuR+jND6x2zh0Gmh5YHQrOuS3OuWf85T3Aarznp+biAuAu59wh59wGYJ0fc1RxXwD8zF/+GfD+jPU/dx5PAgPMbDhwHvCAc26nc24X8AAwP6BY5gHrnXPt3Q0cWn855x7Dq83f2l/B/eO/188596Tzvn0/z7DV6bicc/c755oelvkk3lPBctKB/1zb2KmY2qFTY+YfWZ6F9/D4vGPqKC7f7iXAr9uzEXRf+XHl0oVu37/iJuhtPbC6PYENDDMbA8wAnvJXXeWfPv0k41QtV3xhxO2A+81shXkP3wYY6pzb4i+/BQzthriaWET2l627+wuC658R/nLQ8QF8DO+IrImxZvasmT1qZqdmxJvLf65t7ApBjNkg4J2MH6yg+upUYKtzbm3Gusj7qpUudPv+FTdB7xbMrC/wX8BnnXO1wA+AccB0YAveqV/UnOKcmwksAK40s9My3/R/2bslJ9WfI10I/MZfVQz9lUV39k8uzOwrQD3wK3/VFmCUc24GcC1wp5n1y9degdtYdGPWisVkHzBE3ldt6EJB9oIgboKezwOrA8XMSvEG7VfOuf8GcM5tdc41OOcagR/hnW62F1/gcTvnNvt/twG/82PY6p+uNZ1qbos6Lp8FwDPOua1+jN3eXz5B9c9msqdFCo7PzD4KvBf4kC8G+NMab/vLK/DmqCd24D/XNnaKAMfsbbwphpJW67uMb+si4O6MeCPtq7Z0oR170e1f+Uy0F8s/vEfmvYp3MabpwsvUEP0Z3vzVd1utH56x/Dm8OUWAqWRfMHoV72JRoHEDfYDKjOW/4c1930L2RZlv+cvvIfuizNOu5aLMBrwLMgP95aMC6Le7gMu6u79odaEsyP7hyItW5xcQ13xgFVDVql0VkPaXj8H7UrfrP9c2diGmwMYM70wt86Lop7vaVxn99Wg39lUuXej2/SsUIQzzH94V41fwfoG/ErKvU/BOm54HVvr/zgd+Abzgr1/aauf/ih/bGjKuTAcZt7/DPuf/e6nJHt585YPAWuDPGTuHAbf6vl8AZmXY+hjeha11ZIhwAbH1wTsq65+xLvL+wjsd3wLU4c1BXh5k/wCzgBf9z3wf/67rLsa1Dm8utWkfu81ve7E/viuBZ4D3deQ/1zZ2IabAxszfX5/2t/M3QHlX+8pffwdwRau2kfRVB7rQ7fuXbv0XQoiEELc5dCGEEDmQoAshREKQoAshREKQoAshREKQoAshREKQoAshREKQoAshREL4P7OjqIPAoMySAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.539]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 5, training avg cost 0.538868\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deZgV5ZX/P+fe3oBumqWbfVUWBVSWFo24xgWUKMYYA5PFGCdmGWP2/Mw4olHnF6MzmZkkTkzymM1JoiYzSZgJRhNHYzZBEFwAEWSRRpB9k6W3d/641d23l9t9u29V9a3q7+d5eKjl7XPOfavu91a976lT5pxDCCFE9En0dABCCCH8QYIuhBAxQYIuhBAxQYIuhBAxQYIuhBAxoaCnHFdUVLhx48b1lHshhIgkK1eu3OOcq2xvX48J+rhx41ixYkVPuRdCiEhiZlsz7dOQixBCxAQJuhBCxAQJuhBCxAQJuhBCxAQJuhBCxIROBd3Mvm9mu8zslQz7zcy+YWYbzewlM5vpf5hCCCE6I5sr9B8C8zrYfzkw0ft3E/Dt3MMSQgjRVTrNQ3fOPWtm4zposgD4sUvV4X3OzAaY2XDn3A6fYmzJ1r/C6/+bWk4WwqwboLTdHPvcWfkjOFidWj5lPoyYHoyfV/4Ldq1LLZ98EYw9x38fDQ2w7EE4th8SSZj+fhgw2n8/ry6FN1ellifNhVFV/tqvPZb6HDVHoagfnPVxKCzxz/7Balj1H9BQD0NOhWnX+Ge7eiW89tvU8tSrYehUf+yu+AEcehP6VcDsm8AsN3ub/wibn4WivjD7Y6n/u8tLj8GeDTBsGkxZ0D0brz0J1c+nvn+nzO9+LL0APx4sGglsS1uv9ra1EXQzu4nUVTxjxozpnrfq5fDs/YBXx73vYDjzxu7Z6ohjB+C/b2le3/0qvO9h//0ALPkU1BxJLW/9M9yw1H8fe9bDE19uXrcEXPAl//0s/QIc2p5afnMVfOAX/tp/46/w+zub10fOgvHn+Wd/9U/hma+mlovK/BX0Z+9rFvSD1fBuH25m394L//OZ5vVJc2HguNxs/v4O2L4ytTz0NJh4Sfdt/fJj4Bqgz8DuC/rjX4L9m6FshAS9E0KdFHXOfdc5V+Wcq6qs7OZV9ZxPw50H4Iuve0Yb/AswnUa7l98HQ6cF5wdSV4Pn3ALjL0gtB+UD4LqHW64H4Wfm9TDqTHAB+GjwjsOld6f+99tHY7+c86lgbI+YmRJcv2w32hl9VrOPXGmoh35DWtrvLo3fm4Ycvj+NMQRxPsUMPwR9O5B+7z7K2yaEECJE/BD0JcCHvGyXs4GDgY2fCyGEyEinY+hm9jPgQqDCzKqBO4BCAOfcg8BS4ApgI3AUuCGoYIUQQmQmmyyXRZ3sd8Df+RaREEKIbhH9J0WdC8duUH5SxjMsB+UjJD+B9FnQxyXI+AOwHXQf52Lf+XReN/5poN/BeBB9QRe9k1xzrWOHz/2h/o0kERb0sE44C8eXWThfotB8BO0novaD6hvfj6sEPYpEWNCFEEKkI0EXQoiYIEEXQoiYEANBDysrJEBc0Jkh7dgNxU8APtrEHVb2kR/mguiboPvYpyyXnM431+p/kYkYCHpY6GTqFUQ2Nc6bxIxs/MIPoivoYaVVhZa+FVI2TSh+QsjYiaz9gPrGb5tKW4wk0RX0MNG5nYcEeVB0wNUH0USCLoQQMUGCLoQQMUGCLoQQMSH6gh71NL+U8QzLQfkIyY+KcwVvO5A0Tr/TDVsvd9WM8yGW3kH0BV30TpSF0QpluQgJepbErDhXKCl/ES2eBcHGr+JcIkAk6EIIERMk6EIIERMk6EIIERNiIOgqztVlH6H5UXGuluaiUpzLJ/sqzhU6MRD0sNDJ1CuIempc1OMXORFdQVdxrjz2o+JcHRhWcS4RGNEV9DDRyZ2HqDhXsKgPoogEXQghYoIEXQghYoIEXQghYkL0BT2sNL9AUXGubtlvZ9VfV1EqzuXnmLeKc0WVCAt6mNknBH8yqZZLN3wEQRACmUbgtVx8Ok81JxpJIizoYaKzu1ehrCZ0zkcTCboQQsQECboQQsSErATdzOaZ2Xoz22hmt7azf4yZPW1mq8zsJTO7wv9QhRBCdESngm5mSeAB4HJgCrDIzKa0avYPwGPOuRnAQuDf/Q40MyrO1WUfYfoJ3L6Kc/mOX3GqOFfoZHOFPhvY6Jzb5JyrAR4BFrRq44D+3nI58KZ/IeYLOpl6BZFNjQspG0vkNdkI+khgW9p6tbctnTuBD5hZNbAU+FR7hszsJjNbYWYrdu/e3Y1wWxjL7e/zzY+Kc3XRRVTtqziXCA6/JkUXAT90zo0CrgAeNrM2tp1z33XOVTnnqiorK31yHQI6ufMQFecKFvVBFMlG0LcDo9PWR3nb0rkReAzAOfdXoASo8CNAIYQQ2ZGNoD8PTDSz8WZWRGrSc0mrNm8AFwOY2amkBD3HMRUhhBBdoVNBd87VATcDTwDrSGWzrDGzu8zsKq/Z54GPmtmLwM+ADzsX0uxMVLM1WjrLsByUj5D8hFLLJcDjFKlaLn6iWi5RpSCbRs65paQmO9O3LU5bXgvM8Tc0IUT2aMxbRPpJURXnyls/Ks6VmcgU59IPRBSJsKCHiU7u/CPAYyIxQ+d8NJGgCyFETJCgCyFETJCgCyFETIiBoKs4V3Y+OvDpq5+AUzBVnKu1Ue9/H8e8VZwrskRX0EOv5RL0yaRaLl1zEZD9RuGJai0Xv36oNTEcSaIr6EIIIVogQc8GXa3kISrOFSzqgygiQRdCiJggQRdCiJgQfUFXca5u+AjJj4pzBW+7VxXnyiGUXkL0BV0Igca8BURa0FWcK2/9hPU5AkHFuVra88WYj7ZER0RY0IUQQqQjQc8KXWHkH6q2GCw+9oH6MzQk6EIIERNiIOgxqOXSwm1IWTuh1IxRLZeW5oKs5eIjquUSWWIg6EIIDQsKiLKgqzhXHvuJcCaNinO1tOePMR9tiY6IrqALIYRogQQ9GzRLn4eoOFewKMslikjQhRAiJkjQhRAiJkRf0KNenCu0NDwV5+p5AuibJjt+Dmvka3GuKB3rniHCgh5yLZfA3YRVy4WQMlAimuXS7CAgs0HXcslHexpDD4sIC3rI6OqglxD14xz1+EUuSNCFECImSNCzQreM+YeKcwWL0hajiARdCCFiQlaCbmbzzGy9mW00s1sztLnOzNaa2Roz+6m/YXZExItztSmaFZafMLKDol6cqz1/eWKr2WgAJlWcK6oUdNbAzJLAA8ClQDXwvJktcc6tTWszEfgyMMc5t9/MhgQVsBBCiPbJ5gp9NrDRObfJOVcDPAIsaNXmo8ADzrn9AM65Xf6G2Q6hF+cK3BEqztUVFxG2H2Rxrry0pzH0sMhG0EcC29LWq71t6UwCJpnZn83sOTOb154hM7vJzFaY2Yrdu3d3L+IeQ7d7vYKop6dGPX6RE35NihYAE4ELgUXA98xsQOtGzrnvOueqnHNVlZWVPrkOAc3S5yEqzhUsynKJItkI+nZgdNr6KG9bOtXAEudcrXNuM/AaKYEXQggREtkI+vPARDMbb2ZFwEJgSas2vyJ1dY6ZVZAagtnkY5yZiXotl56osRIoMavl4qv9IGu5+IlquUSVTgXdOVcH3Aw8AawDHnPOrTGzu8zsKq/ZE8BeM1sLPA180Tm3N6ighRCt0bCGyCJtEcA5txRY2mrb4rRlB3zO+xcSKs6Vt35UnKsDs1EpzpW3xkQH6EnRbNHtnogEOk97MxJ0IYSICRL0rNAtY/4RsQd/IofSFqOIBF0IIWJCDAQ94ml+PVI0Kyw/MSjO5af9QPvGx6vgIFIqVZwrFKIr6LGs5RKWn5CyaWS/PcPBdL9quQiiLOhCCCFaIEHPGt3u9Qqinp4a9fhFTkjQs0Gz9L0MHW9luUQTCboQQsSE6Au6inPlrx8V52ptzH+7Ks4l0oi+oAsh0DCRgEgLeszSCQ0V5+qyj0AdBGQ2KsW5lLYYRbKqtijQ7V6vIerHOerx+8vKrft46E+b8+7ru2j2GM6f5P9b2yToQojY8t8v7uC3r+xkwpDSng6lBQeP1QZiV4KeFbplzD9UnCtY4pG26Jyjf59CnvzsBT0WQ5hEeAy9EdVyyV8/quXS0lQQfRN0H/uQnZIz3a/l4oBEL/qBjoGgCyF0F9k+Dc71qp6JrqDHsjhXGL7C8BNWJk2Q9gM0HETsynJpF+d61whadAVdCCE6ocGB9SJFl6ALkU6+5bd1lajH7zsachFCiFigIRfRlt50RkSGII+Jjre/aYv+meoqDc4pyyVSBJa1qOJcOfsJow9VnMtb8FO0gijOlYOtpqzFbqQtut718xxhQY9bLZcQMkOa/ITgQ7VcMphVLZcw6W2TonpStBNO1NdTe6KOfiWF7D58nG37jjF1RH8Kkwmcc5gZRupR3p2HjjOgbyHHaxsYPbAPa3ccYlj/EirLijEzausbKEgYzsGh47UcPFbL2PJwD8Er2w9ycm09O/e8zWce+DN19Q3cMGc800eX8+rOwyTMWLZpLz9fWc23PzCLT/zHSt49YyQ1dQ0sefFNbrl4IudOqGDf0RpwMHpQH/66aR8rt+xjzoQKrnGOo8freGPHIcb2qeMLD69k39EaFp45mikj+rNt3zH6lxTwxw17eGzFNu65ehqLf72Ga2eN4q1Dx3l5+0Huv/YMjtbUUVPfwLD+JRw5Ucfv1r7FiAF9GLN9N+eH2mP+4+hc4hoanPcbn7mlS8uxPnislnLgwLFaag+foLKsuEXb9TsPU5g0ykoKKUwaNXUNDOlf0qJN9f6jlJUUUg7sPHicYcDT63exp3Yb00aWM3ZwX7buPcqjz2+juCDB+rcO89HzTuI3L+/gS3Mnc+hYHWZQVJDgV6u2M760lsu62Dd+43C9asRUgp6BQ8dr6Q985w+bOGv/QRzGwn98ync/RdTyWglsP3CMkb5bb8s/Ll3Hg4UNPLN+Fy/WHQDgCz9/sd22139/OQA/WfZG07b7n1jP/U+sb7f9r1a/yZXFDfxk2RtMtuPUHj7Cb6t3ArB88752/+amh1cC8K2nNzZtu/Jbf8oY/1WJas4vyrjbB4Idwlm17QDJ4wfZ7Ywbb/1NzvZOtu08VQxPvbqLa5LwoYeW8ZLbk5PNPxQdZS8FDEvAr1e/ya9eeClj22fW7wbgp2nnSCP9OcJLJVBT7wj0kHWAJkUFACu27gdg0+63Q/H319f3huJH9By19Q0cDqgoUz5TU9/QY76dJkUFQHEy2bQcRiZrcWGy80Y5UL3/WKD2wyfI4lzBmF2343AwhgMgLtnb2QxvxYnIDbkcq6lnzZsHeXb9Dj4H/POTr/LNx3O/dW3NONvBM8Wdt8sV827xCxLGsdp6Curr2b7nbU7UNTCwb2HT+Ht9g2P34RMkEjCkrIT6BseRE3XgUmOWyzbv5dwJFRw4VsvAvkU0OEdBInUqmxn/9cI2bgn+47T48gTzRUr1167DJxgCrNy6n0PJXZSVFDB1RDl9ipLsPHicA8dqSJpxcmUpm/e+zebdbzN9zABWv3GAkyr7cfBYLSdVlnLkRB0lBanrmvI+hew5eJyhwNa9bzMOeGT5G5SV9mPysFLGV5RyrLaezbvfpq6hgZOHlHL4eB37jtQwpH8xjyzfxowxAxjUr4ixg/s2lUgtKy4Eg/qG5itVC7yoWPdJjy2XOBuPf11Dysah4zUUJgvoU5Tk4LFaausbGNyviAYHyYRRV99AbX1qzLsomSCRMI7W1NGHBgw4UVfP5Ft/wyWnDmHnoeO8sv1Qk69B/Yo4VlPPwtmjWfPmIV7cdoA+RUkOHO1dd0SRE/Trf7Cc5Zv3kaSez5V03j4qvFx9kIbELibZUS79p2d8t392Yi+39NRAZgDc/utX+E4RPPSnTSx99nnf7N5RsINrkrU8tqKaLxXC4iWvUEOhL7Z/GWD/5+/Pg5dtaHDGV57EdWNQ4KXiOvqnXR38ft2uNm32vV0DwA/+vKVp24m6nhvq6Smy6l0zm2dm681so5nd2kG795iZM7Mq/0Jsybypw4DwbgnDy0a3UD5TGH4cYRyfaNoPrv/9telnjPn8YxM3OhV0M0sCDwCXA1OARWY2pZ12ZcCngWV+B5lOn6Jgx5qFECKqZHOFPhvY6Jzb5JyrAR4BFrTT7m7ga8BxH+NrQ2GyZ+Zx83nMU4hGdJ72brJRx5HAtrT1am9bE2Y2ExjtnOtwdtLMbjKzFWa2Yvfu3V0OFqAw2ZvmrIUQIntyvtw1swTwdeDznbV1zn3XOVflnKuqrOzeG69bX6EHJe/pdp0L70ckqCus1naDu5LzJ0MiE402g6hg0kj6+LGfn8Gv7JFMNv3CSO/fXLJcGo+VNdntbjy5xtJbyEbQtwOj09ZHedsaKQOmAc+Y2RbgbGBJUBOjPTXkIkQ+E5e8cZEb2ajj88BEMxtvZkXAQmBJ407n3EHnXIVzbpxzbhzwHHCVc25FEAE3DrmEmX0Sjh8I4xEI58LIcgnHRxTtu4CuM/0uOulvlot+bMKiU0F3ztUBNwNPAOuAx5xza8zsLjO7KugAW1OkK3QhhGiXrB4scs4tBZa22rY4Q9sLcw8rM4UFEnQRHFEfp9W1cO8mcuqYTOiUFUKI9oicoPeEnEf7mi2eBDkuqzFfPSkaVaIn6K1KYYaV5hcU4aUTduw3CLtBpdRl8pf/pPeNPwRSRMD8idOvc9tCSxmIPtET9J4OQIg8RHcVAiIo6IeP1wFhnsBhpS2Gc63pCP4WOCwfUbQf1LVmfgt6PscWLyIn6PVhvEleCCEiSOQEvaeSXHK5fr7x3PHce81pPkaTO5OGlrXZNmV4/6blG+aMa/fvXr17HmvvmstP//asTn2091Tv1dNHNC1fO2tURh+rbr+UK88Y0e7+IMnnMfl3njKk0zZdif9f3ze9yzGcMXpAu9tX3X4p//Opc7tsT/hL5AS9py7QRw/s0+72r1w1ldGD+vDFuZPb3X/DnHHc/q4pLJw9ht99Nn/eVz9lRP822x792Nk88DczWfb3F3PHlVOZf9rwFvtPquxHSWGSvkUFnDOhomn79e8Y26LdNTNTQj28vO0bSP75uun828LpLP/7i/mn957B6aPKW+yff9pwSgqTDOxXxO3vOrVp+8gB7fd/XBg5oA/XVY3ipIp+fPLCk9vs33LvfB66vuvVNLbcO58lN8/hvvec3mbf1TNG8urd87K2dc2Mkfz67+aw5d75FLV6HmRgvyKmjWw+luMG9+1yrCJ3IvfGooZWip4+I+8njVc6502sYNzhUob2S/DgpTN5bEU1F06uZPUbB7jr6mmUFhdw/TnjAJg7dRhrdxxi0tBSnt+8jwYH11U1l8GZOLSM+689nTPHDWJwaRGPv7KTV7fuhJcD+Qjtfp6LTx3KwB1FWEkBa++a6736y1GYTFBUkGD+6c0i/o1FM/j6+87AMByOZKsMo9fuuZyEQUEywe3vmkJdg6Pwq8bw/iVUTh5CwZEdrL1rLg0uddwKEwmSCWPB9OZinf/5iXOob3A0OIdhLYRiSFkJa74yl75FScyMt0/U8ehDL8Gu9IJP/h//dIv+Fudq5tRhpS1qmH71mtM4f1KqYN3bJ+r492deb9o3aWhp6u/NeOj6Km780Qo+Mmc83//z5hbnKZvh4xeczNrkRDbsOswnL5wAwOmjBjB1RDlvHTpOg4O+RUnecfJgAEoKk3zng7Oo3n+MAX0KeXbDbopfS1A1ajC8AXcvmMKtUy7haE0dI9J+VFfdfin1zlFckODtE/VN21++8zLMjNLiAnbtrIYHcz9WzVku+Xv3lC9EXtCDJpGAEeUlUF/LvGnDmTctJXgfekfbthOGlDJhSOrLd8qwtlfAAO9NE/jrqkbD6YNCEfRGkolmYelblDr8xRnOgmTCSCYyv1AkXXwLkgkK0po2vs+00UcmCpMJOno/dr+04PoVF9A34Jdph8H00QOgpIQt985vd3+/4oKM+y4+dWjTvsVXToG31sK3aRLbuVOHMXf0pDZ/l0wYn7p4Yrs253pvAQN4z6xR8C/FYM3Hr29ZMdDyBbvpx6U47cCXlTS/rm9IWYzeERkRIjfk0vye3ZCyT0IqnRvOa9sArOnLGpwLI9hXREe7OFcgfeP3MfXRnq6rwyN6gq4sl16NDr8QmYmgoIfrr0DVHfMKp+s9ITISObVyIV+ilfcpbHQcqt+giMenCI7oPwKjI9ybiZ6gt1rP5Qs4e/wgPnre+CxaBvg1b521E3CNlSZ3Qf1AtbAbgA8Xj1fQ+dc3wfVxzvabjpVeQRcWkRP0S04dyvvPGtO0nv4wTFf4wYfP5LGPvYPb5k9pN1+6kcb0rrgQ9c/TWdZM7yX69xZ+cOeVU3o6hB4lcoJeVJDgH999WtNTbhdObvuy6T/9v4u4++pp/P5zF3DbFafy5ctPoU9hMpWrS2oYZebYgU3tl9x8LhWlRdx47nj+bWHLp+dKQkqTO3P8YBxGn276u/1dU3j+tkt47Z7LO2x3cmUpwX/5g8ukac6T7779Vbdfyot3XNZhm+5eC669ay5rvjK3A7sB9U1eZ7lkb2tyO08wZ8ugfkVNz4Sk8+kM6ZpxJLKXO1fPGAm/TuUxt5ez+8GzU08vNuaFf+yCtk/fNVJZVsyKf7i0aX3B9JGwez084HPQHXDKsDJe2AqJbtY2uOK0YVSWpXKFn/vyxcz7t2cZ1r+Es08azA//sqWpXdSvcLv6CsKy4gIOn6hrWr921igG9isCUg9G3bFkDT9b/gYAU0f0h10woE8hHO5efI39u/6eeVz5zT/x2ltHAFJPxO6Ci06phGP7u2c85nzg7DHcc/Vp/HHDbj740HLePWMkv1zV/D76RML4zS3n4hxMHFpKcUGSg0drqalvwDlHifcA2ouLL6O2oYH+JYX85fU9XDCp7UVfXIncFXpcGTWwL1NH9KeitIhxg/vy/999Glvunc+We+fz+KfPA+Dr151BZVkxL995GasXX8rdV08D4K4FUxle3vwU37DyElYvvozffuZ87rxqKlvunc9Pbuy89kqUeej6Ki6bMrTN9i9fcWqL9fQ7uqKCBF9Nq7Hzm1vO40PvGNvmrViNdW3OGj+oxfa/SRv6g9Sj8Y0UFyT56jWpx+1njBnAkpvP5fSR5SQ0NNKCksKUBL2vajT3XJ06FudNrGTLvfP5l/dNZ8u98+lblLprNWDqiHKmjSxvepipvG8hlWXFDOlfQn/voabyvoVUlBZTVJDgwslD2rxDIc5E+3ItVIKdkDFgQmUpvGk888WLWuw7dXj/pruQxjopkLoLabwT6W3MnToMNsDdV0/lsyddyPiKflw0eQgn/X3q1bfXzBzJrLED+ZuzxnC0po57frMOAMsgqE1X/t5E3sWnDIXX4Y9fuoiBAwZyx5VTAXhyzU4efm4rA/sW8flLJ/HTZW802Wj9QzB99AAWzR7Nxzu4O/SdCGVjvXfWKD5/2WSeXr+Lq3qgEFsckaCLSLJo9hjYAOV9iiiv6AekbsnX3TWP4oJEi6Grvz3vJA4dr+MbT21gWHlxG1uL3zWFcydWtNh21kmD4HWoKC1uUeLzsqnDuCztUfmvX3cGuw6f4N7HX6Ug2VLQkwlrukoX8MMPn8n7f7iK0uIC/vMT5zB5WGq8fNHsMZ38pciW6At6GOl3gd6ytY4/2FcrhOonEBetEhZbHf8+Re1PKt/yzgmcN7GCWWMHtdn3kXNbp66mHe9Ozq9rZo6ipq6BvUdOcPNFnU2+pfeNT50TyPnvyNS/XbfT/KlnjU2V3v38ZZOaxDw7M86HWHoH0Rd0IbKgIJngzHFtxdwPigoS3Da/p9Pl8necuKy4AGpSGWOZio4Jf4j4pGhIxazCwEIomhWWnwCLczX7CNZ8YA6C6ps8TlssKynyzZbomIgLuhBCiEYk6EIIERMk6NmiCZleQtSPc9TjF7kQA0EPIyskvOJc4RTNCstPkIWjGo9JAD5ajB/7aD+Qvgmqj33o38bPa7lmzLhW/4tMxEDQhRD5nOUiwiPagh5WVkgohJAZEpqfsDJpomi/9xXn0o9NeGQl6GY2z8zWm9lGM7u1nf2fM7O1ZvaSmT1lZr3zeXQhhOhBOhV0M0uSqjt4OTAFWGRmrZ+iWAVUOedOB34B3Od3oEIIITommyv02cBG59wm51wN8AiwIL2Bc+5p59xRb/U5YBSxQxMyvYKoZzNFPX6RE9kI+khgW9p6tbctEzcCj7e3w8xuMrMVZrZi9+7d2UcphBCiU3ydFDWzDwBVwP3t7XfOfdc5V+Wcq6qs9KnovIpz5a+fwApHgT/FozKRfXGurhFkcS4/z1F/i3M1h9ZNW7rryJpsinNtB0anrY/ytrXAzC4BbgMucM6d8Ce8zlAtl7z0E4vsI9Vy8dGYj7ZER2Rzhf48MNHMxptZEbAQWJLewMxmAN8BrnLO7fI/TCGEEJ3RqaA75+qAm4EngHXAY865NWZ2l5ld5TW7HygFfm5mq81sSQZzQgghAiKreujOuaXA0lbbFqctX+JzXEIIIbpItJ8UDRNNzPQSon6cox6/yIUYCHpYWSFBuQmraFYnfkNx6ofJsLJ1ArDvMq74ZdQnkz4VEfPt3A46cyo+xEDQw0Cz9PlHgMcktPo9fuJ3zD7ai2R/RpNoC3os0uOaHKHiXF1xEVX7Ks4lgiPagi6EEKIJCboQQsQECXrWaDKmVxD1Sbeoxy9yIvqCHtYr2wIjRrVcQsnYCSkrKBD7QdZy8RO/4vTpnHPKcsmW6At6GGiWPg8J8phE8Xgry0VEXtBVnCsv/QRVgKqNj0AdBGRWxblEcERc0IUQQjQiQRdCiJggQRdCiJggQc8Wza73EqJ+nKMev8iFGAh63IpzheUnooWz2rxyLUrFuUJ4JZ8vJtNeQedHca7GCVY/inPpB6tDoi3oodVyiUuNlbD8RLyWS9CZQKrlIgIi2oIuhBCiCQm6EELEBAm6EELEBAm6EELEhOgLemjFuXqqWFdQdqNaOCtgH4FmA4VQnMsXuyrOFVWiL+hhoOJCeYiKcwWLinNFkYgLuopzdd0PKs6VnYOAzKo4lwiOiAu6EEKIRiToQp9GFkQAAAh7SURBVAgREyToQggRE2Ig6CFlhYSVTROanxB8hPGaO999BJhF0SJ2v/wE0B9+xenbua1aLtkSA0EXvRNNtLUkj/tDWS6hEW1BV3GuPPWj4lwdGFdxrh6zEX+iLehCCCGakKALIURMyErQzWyema03s41mdms7+4vN7FFv/zIzG+d3oEIIITqmU0E3syTwAHA5MAVYZGZTWjW7EdjvnJsA/AvwNb8DFUII0TEFWbSZDWx0zm0CMLNHgAXA2rQ2C4A7veVfAN8yM3MuhEo6L/wYXnvCf7u1x1qu71oHD5zlv5+Gupbrh3cE4+fEkZbr6/4btq/w10frw71vs/+f5dh+b8GbJHvqbvjLN/2zf2gHFJc2rz90KSSy+Zpkwb5NUDExtbz9BX/6puk89frjV5+Eon652Ty2r9neH+6D5d/rnp36Gi80z9b33gmJZNftuAawROr8+vaceGTNXPAlmPYe381mc6aOBLalrVcDrc/EpjbOuTozOwgMBvakNzKzm4CbAMaMGdPNkNM4/wuw8+Xc7WRi7DkwajZgUFgSnJ/h02HCxTDkVKg5QmC5tiXvTPmYcwts/XMwPoZOhVOugJEzUl/EICgbDiNmwOyb4Mhb/tqunAxjzoEJl8C0a6Gh1l/bMz4IJw5D30H+2R07B6pugKN7UrZzpfIUOOtjUD4KDm3PzdbIKpi+CFb9pPt9OWQKTJoHG55oewEUVUoGBGLWOruINrNrgXnOub/11j8InOWcuzmtzStem2pv/XWvzZ72bAJUVVW5FSt8vkIUQoiYY2YrnXNV7e3LZlJ0OzA6bX2Ut63dNmZWAJQDe7seqhBCiO6SjaA/D0w0s/FmVgQsBJa0arMEuN5bvhb431DGz4UQQjTR6Ri6NyZ+M/AEkAS+75xbY2Z3ASucc0uAh4CHzWwjsI+U6AshhAiRrKbvnXNLgaWtti1OWz4OvNff0IQQQnQFPSkqhBAxQYIuhBAxQYIuhBAxQYIuhBAxodMHiwJzbLYb2NrNP6+g1VOoeYLi6hr5GFc+xgSKq6vEOa6xzrnK9nb0mKDngpmtyPSkVE+iuLpGPsaVjzGB4uoqvTUuDbkIIURMkKALIURMiKqgf7enA8iA4uoa+RhXPsYEiqur9Mq4IjmGLoQQoi1RvUIXQgjRCgm6EELEhMgJemcvrPbZ12gze9rM1prZGjP7tLf9TjPbbmarvX9XpP3Nl73Y1pvZ3KDiNrMtZvay53+Ft22Qmf3OzDZ4/w/0tpuZfcPz/ZKZzUyzc73XfoOZXZ/JX5YxTU7rk9VmdsjMPtMT/WVm3zezXd7LVxq3+dY/ZjbL6/+N3t9m9V60DHHdb2aver5/aWYDvO3jzOxYWr892Jn/TJ+xGzH5dswsVXp7mbf9UUuV4e5uXz2aFtMWM1sdZl95f5dJF3r8/MI5F5l/pMr3vg6cBBQBLwJTAvQ3HJjpLZcBr5F6UfadwBfaaT/Fi6kYGO/FmgwibmALUNFq233Ard7yrcDXvOUrgMdJvSjybGCZt30QsMn7f6C3PNDHY7UTGNsT/QWcD8wEXgmif4DlXlvz/vbyHOK6DCjwlr+WFte49Hat7LTrP9Nn7EZMvh0z4DFgobf8IPCJ7vZVq/3/DCwOs6+8tpl0ocfPr6hdoTe9sNo5VwM0vrA6EJxzO5xzL3jLh4F1pN6fmokFwCPOuRPOuc3ARi/msOJeAPzIW/4RcHXa9h+7FM8BA8xsODAX+J1zbp9zbj/wO2CeT7FcDLzunOvoaeDA+ss59yyp2vyt/eXcP96+/s6551zq2/fjNFtdjss596RzrvFlmc+ReitYRjrxn+kzdimmDujSMfOuLN9J6uXxWcfUWVye3euAn3Vkw+++8uLKpAs9fn5FTdDbe2F1RwLrG2Y2DpgBLPM23ezdPn0/7VYtU3xBxO2AJ81spaVevg0w1Dm3w1veCQztgbgaWUjLL1tP9xf41z8jvWW/4wP4CKkrskbGm9kqM/uDmZ2XFm8m/5k+Y3fw45gNBg6k/WD51VfnAW855zakbQu9r1rpQo+fX1ET9B7BzEqB/wQ+45w7BHwbOBmYDuwgdesXNuc652YClwN/Z2bnp+/0ftl7JCfVGyO9Cvi5tykf+qsFPdk/mTCz24A64Cfeph3AGOfcDOBzwE/NrH+29nL8jHl3zFqxiJYXDKH3VTu6kJM9P4iaoGfzwmpfMbNCUgftJ865/wJwzr3lnKt3zjUA3yN1u9lRfL7H7Zzb7v2/C/ilF8Nb3u1a463mrrDj8rgceME595YXY4/3l4df/bOdlsMiOcdnZh8G3gW83xMDvGGNvd7ySlJj1JM68Z/pM3YJH4/ZXlJDDAWttncbz9Y1wKNp8YbaV+3pQgf2wju/shloz5d/pF6Zt4nUZEzjxMvUAP0ZqfGrf221fXja8mdJjSkCTKXlhNEmUpNFvsYN9APK0pb/Qmrs+35aTsrc5y3Pp+WkzHLXPCmzmdSEzEBveZAP/fYIcENP9xetJsr87B/aTlpdkUNc84C1QGWrdpVA0ls+idSXukP/mT5jN2Ly7ZiRulNLnxT9ZHf7Kq2//tCDfZVJF3r8/ApECIP8R2rG+DVSv8C3BezrXFK3TS8Bq71/VwAPAy9725e0Ovlv82JbT9rMtJ9xeyfsi96/NY32SI1XPgVsAH6fdnIY8IDn+2WgKs3WR0hNbG0kTYRziK0fqauy8rRtofcXqdvxHUAtqTHIG/3sH6AKeMX7m2/hPXXdzbg2khpLbTzHHvTavsc7vquBF4ArO/Of6TN2Iybfjpl3vi73PufPgeLu9pW3/YfAx1u1DaWvOtGFHj+/9Oi/EELEhKiNoQshhMiABF0IIWKCBF0IIWKCBF0IIWKCBF0IIWKCBF0IIWKCBF0IIWLC/wFswZqyQxpLBwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.54] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 6, training avg cost 0.538846\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deZwdZZX3v+f2mu7Onk5COntIggmMSQgJsgVZJAQlBGc0jDKKMMAoiqIyqCMizDiK74y+o4wOjiujIoPKxDG+oKigsmUhsiQs2SDpBNJkXzq9Pu8ft7r79u2+3bf7VtW9Vff3/Xz607U8fc65T9X99VNPnTplzjmEEEJEn0S+AxBCCOEPEnQhhIgJEnQhhIgJEnQhhIgJEnQhhIgJpflyPGbMGDd16tR8uRdCiEiybt26N5xztb3ty5ugT506lbVr1+bLvRBCRBIzeyXTPk25CCFETJCgCyFETJCgCyFETJCgCyFETJCgCyFETOhX0M3sO2a2x8yey7DfzOzfzGyzmT1jZgv8D1MIIUR/ZDNC/x6wtI/9FwMzvZ9rgW/kHpYQQoiB0m8eunPuUTOb2keT5cAPXLIO7xNmNsLMTnDO7fYpxu688jhs+W1yuaQMTr0KanrNsc+ddd+HgzuTyyddAhPmBePnuZ/Bnk3J5RlvhSln+O+jvR2e/CY07odECcx7D4yY5L+fF1bDrqeTy7MugokL/bXf0pj8HM3HoLwaFl8PZZX+2T+4E57+L2hvg7FvgpMv98/2znXw0v9LLs+9DMbN9cfu2u/CoV1QPQYWXQtmudnb9gfY9iiUV8Gi65K/B8sz98EbL8P4k2HO8sHZeOkh2Lkm+f076ZLBx1IE+PFgUR2wI2V9p7eth6Cb2bUkR/FMnjx5cN52PgWPfhnw6rhXjYbTrh6crb5oPAC/+EjXesML8O57/PcDsOrD0HwkufzKn+Cq1f77eONFePBTXeuWgCU3++9n9SfgUH1yedfT8N77/bX/6uPwm9u61utOhWln+2d/w4/g9/+cXC4f6q+gP3pnl6Af3AkrfLiYPboX/vejXeuzLoKRU3Oz+ZvPQf265PK4U2DmBYO39fPrwLXDkJGDF/Rf3Qz7t8HQCRL0fgj1pqhz7m7n3ELn3MLa2kGOqs+8EW47AJ/c4hlt9y/AVDrsXnwnjDs5OD+QHA2e8RGYtiS5HJQPgHfd0309CD8L3gcTTwMXgI927zhceEfyt98+OvrljA8HY3vCgqTg+mW7w86kxV0+cqW9DarHdrc/WDq+N+05fH86YgjifIoZfgh6PZB67T7R2yaEECJE/BD0VcDfeNkupwMHA5s/F0IIkZF+59DN7MfAucAYM9sJfA4oA3DOfRNYDSwDNgPHgKuCClYIIURmsslyuaKf/Q74kG8RCSGEGBTRf1LUuXDsBuUnaTzDclA+QvITSJ8FfVyCjD8A20H3cS72nU/ndcefBvodjAfRF3RRnOSaax07fO4P9W8kibCgh3XCWTi+zML5EoXmI2g/EbUfVN/4flwl6FEkwoIuhBAiFQm6EELEBAm6EELEhBgIelhZIQHigs4M6cVuKH4C8NEj7rCyj/wwF0TfBN3HPmW55HS+ubTfIhMxEPSw0MlUFEQ2Nc67iRnZ+IUfRFfQw0qrCi19K6RsmlD8hJCxE1n7AfWN3zaVthhJoivoYaJzuwAJ8qDogKsPookEXQghYoIEXQghYoIEXQghYkL0BT3qaX5J4xmWg/IRkh8V5wrediBpnH6nG6YvD9SM8yGW4iD6gi6KE2VhpKEsFyFBz5KYFecKJeUvosWzINj4VZxLBIgEXQghYoIEXQghYoIEXQghYkIMBF3FuQbsIzQ/Ks7V3VxUinP5ZF/FuUInBoIeFjqZioKop8ZFPX6RE9EVdBXnKmA/Ks7Vh2EV5xKBEV1BDxOd3AWIinMFi/ogikjQhRAiJkjQhRAiJkjQhRAiJkRf0MNK8wsUFecalP1eVv11FaXiXH7Oeas4V1SJsKCHmX1C8CeTarkMwkcQBCGQKQRey8Wn81T3RCNJhAU9THR2FxXKakLnfDSRoAshREyQoAshREzIStDNbKmZvWhmm83sll72Tzaz35nZ02b2jJkt8z9UIYQQfdGvoJtZCXAXcDEwB7jCzOakNfsH4D7n3HxgJfDvfgeaGRXnGrCPMP0Ebl/FuXzHrzhVnCt0shmhLwI2O+e2OueagXuB5WltHDDMWx4O7PIvxEJBJ1NRENnUuJCysURBk42g1wE7UtZ3ettSuQ14r5ntBFYDH+7NkJlda2ZrzWxtQ0PDIMLtZiy3vy80PyrONUAXUbWv4lwiOPy6KXoF8D3n3ERgGXCPmfWw7Zy72zm30Dm3sLa21ifXIaCTuwBRca5gUR9EkWwEvR6YlLI+0duWytXAfQDOuceBSmCMHwEKIYTIjmwEfQ0w08ymmVk5yZueq9LavAqcD2BmbyIp6DnOqQghhBgI/Qq6c64VuAF4ENhEMpvleTO73cwu9Zp9HPhbM/sz8GPg/c6FdHcmqtka3Z1lWA7KR0h+QqnlEuBxilQtFz9RLZeoUppNI+fcapI3O1O33ZqyvBE409/QhBDZozlvEeknRVWcq2D9qDhXZiJTnEv/IKJIhAU9THRyFx4BHhOJGTrno4kEXQghYoIEXQghYoIEXQghYkIMBF3FubLz0YdPX/0EnIKp4lzpRr3fPs55qzhXZImuoIdeyyXok0m1XAbmIiD7HcIT1Voufv2j1o3hSBJdQRdCCNENCXo2aLRSgKg4V7CoD6KIBF0IIWKCBF0IIWJC9AVdxbkG4SMkPyrOFbztoirOlUMoRUL0BV0Igea8BURa0FWcq2D9hPU5AkHFubrb88WYj7ZEX0RY0IUQQqQiQc8KjTAKD1VbDBYf+0D9GRoSdCGEiAkxEPQY1HLp5jakrJ1Qasaolkt3c0HWcvER1XKJLDEQdCGEpgUFRFnQVZyrgP1EOJNGxbm62/PHmI+2RF9EV9CFEEJ0Q4KeDbpLX4CoOFewKMslikjQhRAiJkjQhRAiJkRf0KNenCu0NDwV58o/AfRNpx0/pzUKtThXlI51foiwoIdcyyVwN2HVciGkDJSIZrl0OQjIbNC1XArRnubQwyLCgh4yGh0UCVE/zlGPX+SCBF0IIWKCBD0rdMlYeKg4V7AobTGKSNCFECImZCXoZrbUzF40s81mdkuGNu8ys41m9ryZ/cjfMPsi4sW5ehTNCstPGNlBUS/O1Zu/ArHVZTQAkyrOFVVK+2tgZiXAXcCFwE5gjZmtcs5tTGkzE/gUcKZzbr+ZjQ0qYCGEEL2TzQh9EbDZObfVOdcM3AssT2vzt8Bdzrn9AM65Pf6G2QuhF+cK3BEqzjUQFxG2H2RxroK0pzn0sMhG0OuAHSnrO71tqcwCZpnZn8zsCTNb2pshM7vWzNaa2dqGhobBRZw3dLlXFEQ9PTXq8Yuc8OumaCkwEzgXuAL4lpmNSG/knLvbObfQObewtrbWJ9choLv0BYiKcwWLslyiSDaCXg9MSlmf6G1LZSewyjnX4pzbBrxEUuCFEEKERDaCvgaYaWbTzKwcWAmsSmvzAMnROWY2huQUzFYf48xM1Gu55KPGSqDErJaLr/aDrOXiJ6rlElX6FXTnXCtwA/AgsAm4zzn3vJndbmaXes0eBPaa2Ubgd8AnnXN7gwpaCJGOpjVEFmmLAM651cDqtG23piw74CbvJyRUnKtg/ag4Vx9mo1Kcq2CNiT7Qk6LZoss9EQl0nhYzEnQhhIgJEvSs0CVj4RGxB38ih9IWo4gEXQghYkIMBD3iaX55KZoVlp8YFOfy036gfePjKDiIlEoV5wqF6Ap6LGu5hOUnpGwa2e/NcDDdr1ougigLuhBCiG5I0LNGl3tFQdTTU6Mev8gJCXo26C59kaHjrSyXaCJBF0KImBB9QVdxrsL1o+Jc6cb8t6viXCKF6Au6EAJNEwmItKDHLJ3QUHGuAfsI1EFAZqNSnEtpi1Ekq2qLAl3uFQ1RP85Rj99fnty6l+8/vr3gvr5XLJrMObP8f2ubBF0IEVse2LCLB59/nRm11fkOpRsHG1sCsStBzwpdMhYeKs4VLHFJW3SMri7noY8tyWMM4RHhOfQOVMulcP2olkt3U0H0TdB97EN2Ss4MvpZLoU21BE0MBF0IoavIzBTTBVd0BT2WxbnC8BWGn7AyaYK0H6DhIGJXlkuvOAdWRP/soivoQgjRDw6nEboQRUvUJ12jHr/PFFt3SNCFELGmiAboEvSsKKZrtsgQ5DHR8fY3bdE/UwPFAVZE39/oC3pgWYsqzpWznzD6UMW5vAU/RSuI4lw52OrMWlTaYn9EWNDjVsslhMyQTj8h+FAtlwxmVcslTFyRlULQk6L90NTWRktTK0Mqyti25zDtDmbU1pAwaGptJ2FGWYnhHBxtbuWBp+s5Z1Ytk0dV0dLmKEkY7c5RVpLAOUdru2PHvmOMrqlgWGVp6Kf6c/UHmdHSzrZdB/nQ//k9lWUlXL9keue+5fPquH/dTupGDOH+dTtpbGnj/66cx6bdhzm5bhj/8MBzfO4dc6gqL+VgYwu7Dzbys/X1XHvOdMYNq2SGcxw73sqruw5RV9HCNd94jDkThrF07nh27m9kc8MRVsyv40+b36CirIR7n3qV0TUVfOJts9i85wijqsv56fp6rjtnOpVlCfYdbeHlPYd5Yus+PnrBTOyNI0wPuc/8xpGUuPZ2RyLR+xnQ3p6UopIM+9M52NjCcGDf0WZKjrUwvKqsu0/n2NJwhBFV5YysKu/X7msHjzMe+N9ndlFTuYcRVeUcONbM0MpSGg438cTWfYyuLufUqSMZN6ySg40t1FSU0trmaDjSxIuvHWLFSdX4X61k4BTRjIsEPROHjrcwDPiPR7ayeP9BHMbKf33Udz/ltPBSJdy7ZgcrJ/puvgf/tHoT3yxr48lt+9jWehSAG+/d0Ln/W3/Y1uNvVvz7Y93W3/mNx3u0+cPLbwDwQkU7P3zyVWbbcVqOHGVt837WvrKfHzz+Smfbux/d2uPvH32podv6L/68q0ebX/x5F5cmXubfyruOj/8EO6J7escBSo4fpMEZV396dc72Zlg9D1fAwy/s4fISeP93n+IZtzcnm4+UH2MvpYxPwG827eGB59cMys7XVx/hmUo43NTK0JwiygFXXIIe4SmXYFmzfT8AWxuOhuLv1b3HQvETFw4cC6a4UZC0tLVzOKCiTIVMW3v+pj2Ka8JFgp6RitKSzmUXg6yH+gON+Q7BV5wLsjhXMGY37T4cjOEA8POcz/f3p5ieFI3clEtjcxvP7zrIoy/u5ibgXx56ga/96pe++5lqu/l9he9me2ApY4jGljZK29oodY6Nuw8xZXQ1NRWlNLW2UZZI0NruON7aRmnCONrUxujqcvYebWb/sWaGlJUwblgljS1tmMGwyjKcS85njh1aydcefokvBv9xun11gvkaJftrz+HjTAGOt7SxZddBEmaMrinnxdcOM3v8UA41ttLW7mg43MSIqjLG1FTw2xf2MGFEJdPGVHO8pZ0RVWWMqCrjtYPH2X+shdHV5SQONHKCS14xTQX2HW3iZ8/sZMX8OvYebaat3VFemmDXgUYM4/DxFhZPH80vn91NZWmC+ZNHUlGaoKI0weiaCjbvOcLxljZGVZfT1t6e0jeFO3ZMjS2XOHscf5e8L9DSlrTZ1NpG/YFGpo+pYUvDEaaNqaayLDmQajjcRGnCqChLUOnaSQDNbW3c+F/reHjTHmqHVvQYpJxSN5zL5tcxZVQVH/7x0zS2tA069qgSOUF/33ef4qlt+yihjZsq8x2Nv/z2hT3MsmNc+Knc51bTOT1xDMp9N5s3/vOP2zitHG66bwOr2/07ET5X+hqXl7Rw39od3FwGp//zwzRTxj/+clPOtn8eYP8X7r+HLqZ9+pe4QUwKPFPRyjBLpiD+6rnXgN6vOJ+tP8iz9QdzjjPKZNW7ZrbUzF40s81mdksf7d5pZs7MFvoXYneWzh0PhHcZF142uoXymcLw4wjj+ETTfnD9769Nf6dcRFj0K+hmVgLcBVwMzAGuMLM5vbQbCtwIPOl3kKkMKS/pv5EQQhQh2YzQFwGbnXNbnXPNwL3A8l7a3QF8CTjuY3w9KCvJz33cQp7zFKIDnafFTTbqWAfsSFnf6W3rxMwWAJOcc33enTSza81srZmtbWho6KtpRspKiueOtRBCDISch7tmlgD+Ffh4f22dc3c75xY65xbW1g7uGbL0EXpQ8p5qN9AUuR5+gxlhpdsNbiTnT4ZEJjpsBlHBpIPU+WM/P4Nf2SOZbPqFkdq/uWS5dBwr67Q72HhyjaVYyEbQ64FJKesTvW0dDAVOBn5vZtuB04FVQd0YzdeUixCFTL5zvUVhkI06rgFmmtk0MysHVgKrOnY65w4658Y456Y656YCTwCXOufWBhFwx5RLmNkn4fiBMIoYORdGlks4PqJo3wU0zvS7qmCcHiwqJvoVdOdcK3AD8CCwCbjPOfe8md1uZpcGHWA65RqhCyFEr2T1YJFzbjWwOm3brRnanpt7WJkpK5Wgi+CI+jytxsLFTeTUMdtyokIIUWxETtDzIefRHrPFkyDnZTXnqydFo0r0BD2tuHFYaX5BEV46Yd9+g7AbVEpdJn+FT2rf+EMgRQTMnzj9OrcttJSB6BM9Qc93AEIUILqqEBBBQT98vBUI8wQOK20xnLGmI/hL4LB8RNF+UGPNwhb0Qo4tXkRO0NuK7TXeeWbF/Lr+G+XI7HF5e0FZUVE3YohvtiaNGsIdy+f6Zk/4Q+QEPV9JLgMZP5fGKBNn4sj+ReCmC2fl5GPuhL7fDvrBc2fkZH8gRGtOvid9xf/wx5fw7G1vy7h/3qQRWfs5sbaGK98ylec+f1Gv+x/95FuztiX8I3KCHoUB+i8/cjaffXuPCsOd3H3lqfzk2tNDjKiLSaOqsm47c2wN1y+ZwfeuOo37r38LAFVp5Ytvffscrj5rGjPH1vBXpybfcn3mjDFZ+5gwvJLbLzuZ25fP5R8vOxmAmoruj0e85/QpfPXd8zhpfPGN5IdW9v6oyJOfPp/tX7xkQLYqy0oYWlnGeSeN7bHvLdNH88CHzuzR95nosNFb+3cumMjk0VVcviD4qzvRnci9sag9TdFT78j7ScdI55xZY5h6qIZhZY47F/4FTW3tNBxuorm1ndOnj+K7f9rOre+Yw/X3rOPb7zuNEdVlDKssY/b4oZw7u5Z12/ezZHYt3/7jNq45exr3r9vJhXPGYWb85qYljK1sTZY2C5iOz7NiQR0j15bz3jmTec+yi2ltd7S0tTOkrITjre1UlCY6X+rb8Tqwc2cnv7wv3LGUyrISjre0UVGaoMlrb2b8+qYlSUebjHmTRtBaNpbEkTZevGYprW2O1jZHZXmCxuY2hpSX0NLmSBhUlSdPwb95y1Scc6yYX0d1RSlHm1qpKi/hWHMb1RWl1M2v47L5ddz37SdhR2rBJ/+Pf6pFf4tzZW/3h9csZviQMsYOrWDRFx5m3LAKXj/U1Ll/3LDkW5quOWsqrIEzZoyGV+DK06fwuQVn8vH7NnD2zFo27znChh0H+MLlp3T+7df/ej4fvXcD15w9nfoDx3iu/hDXL0leBT32qfMY8vUKxo8cBTvgjuVz+acFS9m+9yjlJQlGVJWz+2Ajc07ouqpa/9kLGVJWwuGmFgxjZFUZAJ+9ZA5szP1YdWW5RGA0l2ciL+hBU2LGhOGV0NbCu06b1GN/h9h1CloKM2prmFFbA8Cnl70JgA+ee2Ln/hPH1kDz0SDCzoh5PyUJg5IEpSVdwl3jlVUoy/AOkY526b97o2PaqaK0hNRBXMfLt3sbCJoZ1d6O9N9dRP9LPW/SCKgcwfYrsxth9zUSf/fCSbDGu/J6BS5fMBEmjeDhj5+b8W+qyku5+286aueNYsX8rn3DKsugJAGJhNe2BMpKOGl8l4CPqu7+Lr2Odb18Jv9Ebsql6z27IWWfWFhZLmFlKhgE/Zms49+G/3Qc/ygX5wqkb/w+pj7ai/6/4OgQPUGPwiS6CIz2/psIUbREUNDzHYHIJ07/0IXISOQEPW9faAlJURD9hFOdp8VM9AQ9bT2cL2CAXtKzdsKqTRPUP6hudgPIQHHxeAWdf30TwHH06xh2Hiu9gi4sIifoF7xpHO9ZPHlQfzumprzP/c/c9jauPmtat219ZXKI8Kkuj1xiVkhE/9pisGz/4iVMGd3z+YoxNRV5iCa/RE7Qy0sT/NOKU/jqu+f1un/SqJ5PNt769jn84ea38oebz+O5z1/EladP6ba/4/H26vJSPvG22dz69jl86uLZAFw4Z5zPn6B3Tps2OpQsl5KSBMF/+YPLpLnkL07o8jFATp0yMuu22Y4FOx6nX9lLSivAms9cwF+nDEBcUH1T0FkufduqGzGEi+bm9j37+6UndVufNa6GW9+RfLjvjBmjc7IdJSI73Llsfh38D9x4/kxufOvAnpi747KTucN7KrGDr3j/IIaUl/CBs6ZBQzP8NryXUp80fijrX8mu7XVLprN07nimjK7mwLFmfrp+J3f9bkvn/iWzannkpQa2fGEZ+48189Dzr1P+yj7YCIumjoKnAvoQITDQVxB+/wOLOGfmGMyMg40tvPnzD/Vos+2fl7FjXyPnfPl3gPd05pH+bX/l3W/mwjnjqakopa3dce+aHT3ajKkp5wsrTuFHT74KwOnTR0HboQF9hjjz3atO462zx7Jj3zEefP71bvu2f/ESHni6Hvuf5HoiYTx729tY/+oByksStDvHyROGA7DslBN4+ONLKC9JPhg3blglQ8pLuPTNE8L+SHklsoIeNyaOrKJpwjCmNFex/cbkP6ijTa08sXUv578pOXppaWunNGHdasKPqi7nkxed1CnoX3n3m1kxf2Ln/jE1FckR4piJsBESIeXVh8V1S6az8sTFPL5lL1/77ebO7b09jDN8SFmvNsyMyaOruPH8mfBIz3/i/3HlqVx3z7rO9cvmTeCrK+d3a1OSMN5/xlS+99j2HrZTqS4vhcasPlqsST8+k0ZVMXHkEHbub+y2/7L5dbC6BFqS12RDK8tYMqu2V5sdD/EVMxL0rAn2hoyRLHjEri4BqK4o7RRz6PtqYaB1PaLORXPHw8swd8JwmDGGN08cwdGmNm5eOrvP+x5//Pu38u+/38LYoRU0NrcxK6XS48cunAVNk2Hjes4/aRxsgY2fvwirqOFf/urNPLZlLz9dv5NpY3oXjlvfPoeLTx7Prze+zn/+cZvvnzkrCjwb66d/95aMx+f9Z0zlH3+5iV9/7JyQo4oPEnQRSa5YNBle7lqvrijtnDPti4kjq/jCilP6bbd4+ijY0jXCfuepE5M/C+pYNG1Ur3+TSBiLp49m8fTR/Ocft3UrV/vYLecx6ofFV1wslXWfvYBh1dUZ91991jQ+cOY0EjGqVho20Rf0MNLvAp2mSI8/2FcrhOonEBdpCYuBHP+U451m/4wTs6sk+adbzutWKXHCiCFQmtnuoAnk8zv86d/uKabD+qnkaGa9f9U6Yijwq49CIPqCLkQB4ufLJLKjcEe1QytKoTnfURQHkUtb7E5IxazCwEIomhWWnwCLc3X5CNZ8YA6C6psCTlscWtn38x/CPyIu6EIIITqQoAshREyQoGeLbsgUCVE/zlGPX+RCDAQ9jKyQ8IpzhVM0Kyw/QRaO6jgmAfjoNn/so/1A+iaoPvahfzs+r+WaMePSfotMxEDQhRCFnOUiwiPagh5WVkgohJAZEpqfsDJpomi/+Ipz6Z9NeGQl6Ga21MxeNLPNZnZLL/tvMrONZvaMmT1sZlN6syOEECI4+hV0MysB7gIuBuYAV5hZ+jPWTwMLnXN/AdwP3Ol3oEIIIfommxH6ImCzc26rc64ZuBdYntrAOfc759wxb/UJYCKxQzdkioKoZzNFPX6RE9kIeh2QWuh5p7ctE1cDv+pth5lda2ZrzWxtQ0ND9lEKIYToF19viprZe4GFwJd72++cu9s5t9A5t7C2tveaxgNGxbkK109ghaMgX8W5ciOAvumRxumLUfzp3460xbT1AZvRVUe2ZFOcqx5Ifb/WRG9bN8zsAuAzwBLnXJM/4fWHarkUpJ9YZB+plouPxny0JfoimxH6GmCmmU0zs3JgJbAqtYGZzQf+A7jUObfH/zCFEEL0R7+C7pxrBW4AHgQ2Afc55543s9vN7FKv2ZeBGuC/zWyDma3KYE4IIURAZFUP3Tm3Glidtu3WlOULfI5LCCHEAIn2k6JhohszRULUj3PU4xe5EANBDysrJCg3YRXN6sdvKE79MBlWtk4A9l3GFb+M+mTSpyJivp3bQWdOxYcYCHoY6C594RHgMQmtfo+f+B2zj/Yi2Z/RJNqCHov0uE5HqDjXQFxE1b6Kc4ngiLagCyGE6ESCLoQQMUGCnjW6GVMURP2mW9TjFzkRfUEP65VtgRGjWi6hZOyElBUUiP0ga7n4iV9x+nTOOWW5ZEv0BT0MdJe+AAnymETxeCvLRURe0FWcqyD9BFWAqoePQB0EZFbFuURwRFzQhRBCdCBBF0KImCBBF0KImCBBzxbdXS8Son6cox6/yIUYCHrcinOF5SeihbN6vHItSsW5Qnglny8mU15B50dxro4brH4U59I/rD6JtqCHVsslLjVWwvIT8VouQWcCqZaLCIhoC7oQQohOJOhCCBETJOhCCBETJOhCCBEToi/ooRXnylexrqDsRrVwVsA+As0GCqE4ly92VZwrqkRf0MNAxYUKEBXnChYV54oiERd0FecauB9UnCs7BwGZVXEuERwRF3QhhBAdSNCFECImSNCFECImxEDQQ8oKCSubJjQ/IfgI4zV3vvsIMIuiW+x++QmgP/yK07dzW7VcsiUGgi6KE91o604B94eyXEIj2oKu4lwF6kfFufowruJcebMRf6It6EIIITqRoAshREzIStDNbKmZvWhmm83sll72V5jZT7z9T5rZVL8DFUII0Tf9CrqZlQB3ARcDc4ArzGxOWrOrgf3OuROBrwBf8jtQIYQQfVOaRZtFwGbn3FYAM7sXWA5sTGmzHLjNW74f+LqZmXMhVNJZ/wN46UH/7anygloAAAerSURBVLY0dl/fswnuWuy/n/bW7uuHdwfjp+lI9/VNv4D6tf76SD/c+7b5/1ka93sL3k2yh++Ax77mn/1Du6Gipmv92xdCIpuvSRbs2wpjZiaX69f70zed56nXHw98EMqrc7PZuK/L3iN3wlPfGpydtmYvNM/Wt86DRMnA7bh2sETy/PrGmfHImllyM5z8Tt/NZnOm1gE7UtZ3AulnYmcb51yrmR0ERgNvpDYys2uBawEmT548yJBTOOcT8NqzudvJxJQzYOIiwKCsMjg/J8yDE8+HsW+C5iMElmtbeV7Sx5kfgVf+FIyPcXPhpGVQNz/5RQyCoSfAhPmw6Fo48rq/tmtnw+Qz4MQL4OS/hPYWf23PvxKaDkPVKP/sTjkTFl4Fx95I2s6V2pNg8XUwfCIcqs/NVt1CmHcFPP3Dwffl2Dkwaym8/GDPAVBUqRwRiFnrbxBtZn8JLHXOXeOtXwksds7dkNLmOa/NTm99i9fmjd5sAixcuNCtXevzCFEIIWKOma1zzi3sbV82N0XrgUkp6xO9bb22MbNSYDiwd+ChCiGEGCzZCPoaYKaZTTOzcmAlsCqtzSrgfd7yXwK/DWX+XAghRCf9zqF7c+I3AA8CJcB3nHPPm9ntwFrn3Crg28A9ZrYZ2EdS9IUQQoRIVrfvnXOrgdVp225NWT4O/JW/oQkhhBgIelJUCCFiggRdCCFiggRdCCFiggRdCCFiQr8PFgXm2KwBeGWQfz6GtKdQCwTFNTAKMa5CjAkU10CJc1xTnHO1ve3Im6DngpmtzfSkVD5RXAOjEOMqxJhAcQ2UYo1LUy5CCBETJOhCCBEToirod+c7gAworoFRiHEVYkyguAZKUcYVyTl0IYQQPYnqCF0IIUQaEnQhhIgJkRP0/l5Y7bOvSWb2OzPbaGbPm9mN3vbbzKzezDZ4P8tS/uZTXmwvmtlFQcVtZtvN7FnP/1pv2ygz+7WZvez9HultNzP7N8/3M2a2IMXO+7z2L5vZ+zL5yzKm2Sl9ssHMDpnZR/PRX2b2HTPb4718pWObb/1jZqd6/b/Z+9us3ouWIa4vm9kLnu+fm9kIb/tUM2tM6bdv9uc/02ccREy+HTNLlt5+0tv+E0uW4R5sX/0kJabtZrYhzL7y/i6TLuT9/MI5F5kfkuV7twDTgXLgz8CcAP2dACzwlocCL5F8UfZtwCd6aT/Hi6kCmObFWhJE3MB2YEzatjuBW7zlW4AvecvLgF+RfFHk6cCT3vZRwFbv90hveaSPx+o1YEo++gs4B1gAPBdE/wBPeW3N+9uLc4jrbUCpt/yllLimprZLs9Or/0yfcRAx+XbMgPuAld7yN4G/G2xfpe3/F+DWMPvKa5tJF/J+fkVthN75wmrnXDPQ8cLqQHDO7XbOrfeWDwObSL4/NRPLgXudc03OuW3AZi/msOJeDnzfW/4+cFnK9h+4JE8AI8zsBOAi4NfOuX3Ouf3Ar4GlPsVyPrDFOdfX08CB9Zdz7lGStfnT/eXcP96+Yc65J1zy2/eDFFsDjss595BzruNlmU+QfCtYRvrxn+kzDiimPhjQMfNGlueRfHl81jH1F5dn913Aj/uy4XdfeXFl0oW8n19RE/TeXljdl8D6hplNBeYDT3qbbvAun76TcqmWKb4g4nbAQ2a2zpIv3wYY55zb7S2/BozLQ1wdrKT7ly3f/QX+9U+dt+x3fAAfIDki62CamT1tZo+Y2dkp8Wbyn+kzDgY/jtlo4EDKPyy/+ups4HXn3Msp20LvqzRdyPv5FTVBzwtmVgP8FPioc+4Q8A1gBjAP2E3y0i9sznLOLQAuBj5kZuek7vT+s+clJ9WbI70U+G9vUyH0Vzfy2T+ZMLPPAK3AD71Nu4HJzrn5wE3Aj8xsWLb2cvyMBXfM0riC7gOG0PuqF13IyZ4fRE3Qs3lhta+YWRnJg/ZD59zPAJxzrzvn2pxz7cC3SF5u9hWf73E75+q933uAn3sxvO5drnVcau4JOy6Pi4H1zrnXvRjz3l8efvVPPd2nRXKOz8zeD7wdeI8nBnjTGnu95XUk56hn9eM/02ccED4es70kpxhK07YPGs/W5cBPUuINta9604U+7IV3fmUz0V4oPyRfmbeV5M2YjhsvcwP0ZyTnr76atv2ElOWPkZxTBJhL9xtGW0neLPI1bqAaGJqy/BjJue8v0/2mzJ3e8iV0vynzlOu6KbON5A2Zkd7yKB/67V7gqnz3F2k3yvzsH3retFqWQ1xLgY1AbVq7WqDEW55O8kvdp/9Mn3EQMfl2zEheqaXeFP3gYPsqpb8eyWNfZdKFvJ9fgQhhkD8k7xi/RPI/8GcC9nUWycumZ4AN3s8y4B7gWW/7qrST/zNebC+Scmfaz7i9E/bP3s/zHfZIzlc+DLwM/Cbl5DDgLs/3s8DCFFsfIHljazMpIpxDbNUkR2XDU7aF3l8kL8d3Ay0k5yCv9rN/gIXAc97ffB3vqetBxrWZ5Fxqxzn2Ta/tO73juwFYD7yjP/+ZPuMgYvLtmHnn61Pe5/xvoGKwfeVt/x5wfVrbUPqqH13I+/mlR/+FECImRG0OXQghRAYk6EIIERMk6EIIERMk6EIIERMk6EIIERMk6EIIERMk6EIIERP+P6+5fzKtKIeQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.54] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 7, training avg cost 0.538854\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deXgc5ZWv39Otzfsqb7K8gDdsFtsIm2uz2AaClwQDyQAOmbAlMCEEEkh4nJAQLgkzAW5myQwDCZONTAhh5obEc3EwCUtICGDMjjEGY7PYGLzg3bK1ffePLkmtllpqqatKXaXf+zx6VFX99Tmnv/r611VfnTplzjmEEEJEn0R3ByCEEMIfJOhCCBETJOhCCBETJOhCCBETJOhCCBETirrL8dChQ924ceO6y70QQkSS5557bodzrryt17pN0MeNG8eaNWu6y70QQkQSM3sn22uachFCiJggQRdCiJggQRdCiJggQRdCiJggQRdCiJjQoaCb2U/MbJuZvZrldTOzH5jZBjN72cxm+h+mEEKIjsjlCP1nwMJ2Xl8ETPT+LgfuzD8sIYQQnaXDPHTn3BNmNq6dJkuBe1yqDu/TZjbQzEY657b6FGNL3nkK3no0tZwshuMvgb5t5tjnz3M/hz2bU8tTlsCo6cH4efU3sG1davnI+TB2jv8+GhrgmbugehckkjD9QhhY6b+f11fC+y+kliedCaOr/LVfW536HDUHoaQPzP47KC7zz/6ezfDCf0JDPQw7Co4+1z/bm5+DNx5KLU87G4ZP88fump/C3vehz1CYdTmY5Wdv059h0xNQ0htmXZH631Vevh92vAkjjoapS7tm442HYfOzqe/flCVdj6UH4MeNRRXAe2nrm71trQTdzC4ndRTPmDFjuuZt82p44nbAq+PeewiccFnXbLVH9W74n6ub17e/Duf/wn8/ACu+BDX7U8vvPAmXrPTfx471sOrrzeuWgFOv99/Pyq/C3i2p5fdfgM/8t7/2330K/nhT83rF8TD+ZP/sv3gvPP4PqeWSfv4K+hO3NQv6ns1wjg8nswd2wv/7cvP6pDNh0Lj8bP7x27DludTy8GNg4uldt/XAFeAaoNegrgv676+HXZug3ygJegeEelHUOfcj51yVc66qvLyLR9Vzr4GbdsPX3vKMNvgXYDqNdhfdBsOPDs4PpI4G51wN409NLQflA+C8X7RcD8LPzItg9AngAvDR4O2HM76T+u+3j8Z+mfOlYGyPmpkSXL9sN9qpnN3sI18a6qHPsJb2u0rj96Yhj+9PYwxBjKeY4YegbwHSz91He9uEEEKEiB+CvgL4rJftciKwJ7D5cyGEEFnpcA7dzH4FzAOGmtlm4NtAMYBz7i5gJbAY2AAcBC4JKlghhBDZySXLZVkHrzvgi75FJIQQoktE/05R58KxG5SflPEsy0H5CMlPIH0W9H4JMv4AbAfdx/nYdz6N68a3BvodjAfRF3TRM8k31zp2+Nwf6t9IEmFBD2vAWTi+zML5EoXmI2g/EbUfVN/4vl8l6FEkwoIuhBAiHQm6EELEBAm6EELEhBgIelhZIQHigs4MacNuKH4C8NEq7rCyj/wwF0TfBN3HPmW55DXeXMZ/kY0YCHpYaDD1CCKbGuddxIxs/MIPoivoYaVVhZa+FVI2TSh+QsjYiaz9gPrGb5tKW4wk0RX0MNHYLkCC3Cna4eqDaCJBF0KImCBBF0KImCBBF0KImBB9QY96ml/KeJbloHyE5EfFuYK3HUgap9/phpnLnTXjfIilZxB9QRc9E2VhZKAsFyFBz5GYFecKJeUvosWzINj4VZxLBIgEXQghYoIEXQghYoIEXQghYkIMBF3FuTrtIzQ/Ks7V0lxUinP5ZF/FuUInBoIeFhpMPYKop8ZFPX6RF9EVdBXnKmA/Ks7VjmEV5xKBEV1BDxMN7gJExbmCRX0QRSToQggREyToQggREyToQggRE6Iv6GGl+QWKinN1yX4bq/66ilJxLj/nvFWcK6pEWNDDzD4h+MGkWi5d8BEEQQhkGoHXcvFpnOqaaCSJsKCHiUZ3j0JZTWjMRxMJuhBCxAQJuhBCxIScBN3MFprZejPbYGbL23h9jJk9ZmYvmNnLZrbY/1CFEEK0R4eCbmZJ4A5gETAVWGZmUzOafRO43zk3A7gA+He/A82OinN12keYfgK3r+JcvuNXnCrOFTq5HKHPAjY45zY652qA+4ClGW0c0N9bHgC871+IhYIGU48gsqlxIWVjiYImF0GvAN5LW9/sbUvnJuAzZrYZWAl8qS1DZna5ma0xszXbt2/vQrgtjOX3/kLzo+JcnXQRVfsqziWCw6+LosuAnznnRgOLgV+YWSvbzrkfOeeqnHNV5eXlPrkOAQ3uAkTFuYJFfRBFchH0LUBl2vpob1s6lwH3AzjnngLKgKF+BCiEECI3chH0Z4GJZjbezEpIXfRckdHmXeA0ADM7ipSg5zmnIoQQojN0KOjOuTrgKmAVsI5UNstaM7vZzM7yml0HfN7MXgJ+BVzsXEhXZ6KardHSWZbloHyE5CeUWi4B7qdI1XLxE9VyiSpFuTRyzq0kdbEzfduNacuvAXP9DU0IkTua8xaRvlNUxbkK1o+Kc2UnMsW59AMRRSIs6GGiwV14BLhPJGZozEcTCboQQsQECboQQsQECboQQsSEGAi6inPl5qMdn776CTgFU8W5Mo16/32c81ZxrsgSXUEPvZZL0INJtVw65yIg+43CE9VaLn79UOvCcCSJrqALIYRogQQ9F3S0UoCoOFewqA+iiARdCCFiggRdCCFiQvQFXcW5uuAjJD8qzhW87R5VnCuPUHoI0Rd0IQSa8xYQaUFXca6C9RPW5wgEFedqac8XYz7aEu0RYUEXQgiRjgQ9J3SEUXio2mKw+NgH6s/QkKALIURMiIGgx6CWSwu3IWXthFIzRrVcWpoLspaLj6iWS2SJgaALITQtKCDKgq7iXAXsJ8KZNCrO1dKeP8Z8tCXaI7qCLoQQogUS9FzQVfoCRMW5gkVZLlFEgi6EEDFBgi6EEDEh+oIe9eJcoaXhqThX9xNA3zTZ8XNao1CLc0VpX3cPERb0kGu5BO4mrFouhJSBEtEsl2YHAZkNupZLIdrTHHpYRFjQQ0ZHBz2EqO/nqMcv8kGCLoQQMUGCnhM6ZSw8VJwrWJS2GEUk6EIIERNyEnQzW2hm681sg5ktz9LmPDN7zczWmtm9/obZHhEvztWqaFZYfsLIDop6ca62/BWIrWajAZhUca6oUtRRAzNLAncAZwCbgWfNbIVz7rW0NhOBrwNznXO7zGxYUAELIYRom1yO0GcBG5xzG51zNcB9wNKMNp8H7nDO7QJwzm3zN8w2CL04V+COUHGuzriIsP0gi3MVpD3NoYdFLoJeAbyXtr7Z25bOJGCSmT1pZk+b2cK2DJnZ5Wa2xszWbN++vWsRdxs63esRRD09Nerxi7zw66JoETARmAcsA+42s4GZjZxzP3LOVTnnqsrLy31yHQK6Sl+AqDhXsCjLJYrkIuhbgMq09dHetnQ2Ayucc7XOuU3AG6QEXgghREjkIujPAhPNbLyZlQAXACsy2vyW1NE5ZjaU1BTMRh/jzE7Ua7l0R42VQIlZLRdf7QdZy8VPVMslqnQo6M65OuAqYBWwDrjfObfWzG42s7O8ZquAnWb2GvAY8DXn3M6gghZCZKJpDZFD2iKAc24lsDJj241pyw641vsLCRXnKlg/Ks7VjtmoFOcqWGOiHXSnaK7odE9EAo3TnowEXQghYoIEPSd0ylh4ROzGn8ihtMUoIkEXQoiYEANBj3iaX7cUzQrLTwyKc/lpP9C+8fEoOIiUShXnCoXoCnosa7mE5SekbBrZb8twMN2vWi6CKAu6EEKIFkjQc0anez2CqKenRj1+kRcS9FzQVfoehva3slyiiQRdCCFiQvQFXcW5CtePinNlGvPfropziTSiL+hCCDRNJCDSgh6zdEJDxbk67SNQBwGZjUpxLqUtRpGcqi0KdLrXY4j6fo56/P7y2OvbuH/Nex03DJlls8ZwyiT/n9omQRdCxJZfP/seD639gEnD+3Z3KC3YU10biF0Jek7olLHwUHGuYIlP2uLk4f1Y9ZVTujWGsIjwHHojquVSuH5Uy6WlqSD6Jug+9iE7JW9UyyVXYiDoQgidRQqIsqDHsjhXGL7C8BNWJk2Q9gM0HETsynIRRFnQhRBCtECCLkQ6UU9PjXr8Ii8k6EIIERMk6LmgNLYCJMh9ov3tb9qif6ZE+0Rf0APLWlRxrrz9hNGHKs7lLfipmkEU58rDVlPWoqaTOiLCgh63Wi4hZIY0+QnBh2q5ZDGrWi4iOHSnaAccrq+n9nAdfUqLeeiVrVQO7s2Bw3VMGNaXwX1KMDMaGhy1DQ0UJxIkEkZ9gyNhsGV3NQkz+pQWMaBXMQB19Q18sPcQ7+8+RNXYQZhzoQ73V7fsYUJtA29/sJeFyx/k07PHcO8z73L9wsnMmzSM3Qdr+J+XtzJ6UC8unjOOXQdrOHC4nofXfsBfNuygurae5YumMKRPKU9v3EnC4M7H3+L7502nYmAvRtY3UF1dx+ate6ksq+OY5Q9yzowKHnhhC5edNJ4LTqhkx/4annhzOyP6l/E3VaPZub+Gw3UN/PTJTdTWN7CnupYr501gSN8SnnhjBx/uPcRz7+zi++cdx/vv7WJGiP0VBI3HmQ0NzUecyUTnRkHjGGt8157qWgYAL23ZzeBeB6lvcIwb2iflzzuyNU+kD9XW8/7uasYP7dO0bf/hOjbvOsiUEf0B+GDPIUYA3/ztq+xbN4l1W/fyk4tPYOP2A+w7VEfVuEEUJYw91bXc8MCrfPXMSVQM7M0bH+7jre37KUoYiyb0Yqj3eSXp4SBBz8LeQ7X0B374p43M3rUHh/GF9c/77qeEWt4og7++tZM5vX0334pbVq7jruJ6nnprJwD3PvMuALc9tJ7bHlrfou3tq9a3ej/Ap+9+ptW2ZXc/DcDrpY57V7/LZDtEzb79ADzwwhYAfvyXTfz4L5tavO/bK9a26WPV2g9bbZv9949wVuJtZpRATX0DJVk/ZT4Ee1r/wnu7SR7aw3ZnXPaNlXnbO9K28EgpPPL6Ns5NwrceeJWXXXVeNv9UcpCdFDEikRL63734PgAn3fpY1vd88s6nWm27nf28XJb6AemVV0QiVyI85RIsz769C4CN2w+E4u8vb+4IxU9cqKuP3nxqbX0D+wIqylTI1HTjvnI9rFyABD0LpUXJpuVwJ0WCYdveQ90dgq80BPk9DWh3r9u6LxjDAeDnmO9uSe1JSWqRm3Kprqln7ft7eGL9Vq4Fvv/w6/zr7x9s9z1D+5awY38NAP3Kith3qK7d9n1KkpTXbubxUr+izo6lDffq2nrKvDn1mroGipPGjv019CpJ0re0iF0HauhbVkRRwjAz6uobMLOm+ddtew9RnEwwsHdqvt7MqK1v4MDhOh57fRvnB/9xWshAMN+jVH99uPcQfYGa+no2b99Pr5IkzsHBmnqG9S/l3Z0HqRzcm9KiBHura9l7qI5RA8uoa3Bs3X2I2voGJgzry97qWrbtO8zw/mUM6l3M/oOpuejNuw5SCew6cJiNu/czfmhf3t9dTe+SJPUNjv69iilJJkiYsfdQLYP6lHC4tp5t+w6zYdt+TjtqGDv317BldzWThvejtChBfUNDWt90t8xlJz22fOJs3P+ucRLdOTDDOdc0d59OXX0DHx2soX9ZMWXFSe+9DmjAgMN19Uxenvquj+hfRuXgXlQOTs3blyQTPP/ubs6cNpwtu6t5Z8dBPjtnbJtTd3EmcoJ+0U9Xs3rTRySp59qy3N7TKOZAh2IOcKCmnvJu+FV/9PVtTLL9nLG8/R+ornBiYgvnBzPp3C3ctmo9PyyBL9/3IisbchwIOfDtos2cm6zlV6vf4/pimP0Pj1BDsS+2Hwiw/wv356GZ8d94ENeFSYGXS+von/F9/GDvIT7Ye6hparSRdAG/47G3uhRnlMmpd81soZmtN7MNZra8nXafNDNnZlX+hdiShdNGAOFNg4SXjW6hfKYw/DjC2D/RtB9c//trM05TLj2JDgXdzJLAHcAiYCqwzMymttGuH3AN0DoFwkd6lSQ7biSEED2QXI7QZwEbnHMbnXM1wH3A0jbafQe4FQj06ltxsnuu4xbynKcQjWic9mxyUccKIP0pq5u9bU2Y2Uyg0jnX7uSvmV1uZmvMbM327ds7HSxAcbIHXbIWQohOkPfhrpklgH8EruuorXPuR865KudcVXl51554nXmEHpS8p9t1LrwfkaCOsDLtBnck50+GRDYabQZRwaSR9PljPz+DX9kj2Wz6hZHev/lkuTTuK2uy29V48o2lp5CLoG8BKtPWR3vbGukHHA08bmZvAycCK4K6MNpdUy5CFDJxuFdC5E8u6vgsMNHMxptZCXABsKLxRefcHufcUOfcOOfcOOBp4Czn3JogAm6ccgkz+yQcPxBGxQvnwshyCcdHFO27gI4z/S5E6G+Wi35swqJDQXfO1QFXAauAdcD9zrm1ZnazmZ0VdICZlOgIXQgh2iSnG4uccyuBlRnbbszSdl7+YWWnuEiCLoIj6vO0Ohbu2UROHTtbZlQIIXoKkRP07pDzaB+zxZMg52U156s7RaNK9AQ9o6hPWGl+QRFeOmH7foOwG1RKXTZ/hU963/hDIEUEzJ84/RrbFlrKQPSJnqB3dwBCFCA6qxAQQUFvrJYY3gAOK20xnGNNR/CnwGH5iKL9oI41C1vQCzm2eBE5Qa/Xk7+FEKJNIifo3ZXkkuvx83GVAwOOJHge++o8TpowlJ9eckLTNr/z/++7/EROmVTOHZ+e2bTttCnDsra/ZO44X/1nI1pz8q0JI/4BvYoZ1q+U//hsFT+5uIr+ZZF7rEJsiZygF+oB+os3nsHqb5zG7744l3FDUk97fuFbZ2Rt/4V5R4YVWgvK+7V+DNMVpxzBkD7NT1+oHNSL//zcbOZPHsZL3/4YN31iKm/csoijK1JPhG/838jdn63i3s/NBlIXrZccM7KVjzOmDqdiYPOjgqeN6s89l85iybEj+fP187n1k8fw44ubf0A+OXN0i/dfvWAiU0b068InjhZfWjCBeZPLeerrC4D2f+RyZe6EITxw5Rw2/cNirl84mW8uOarNdiMH5PagkKe+voDVN5zO6VOHs2DKcJ5cvqDVvpk/uWu1mkR+RO6ntSFD0dOvyPtJ+pHOuPK+UFfDHafP5J2PDnD29ApG9C/j3x/fQH0DXHjiGAb2bhbEx782v2n5rs/MpLxfGTMqB7LjwGHe++gg6z/YzwUnVPKV0yfxwY6dcFcgH6HNz3PuzAoGvVTChVPHcMGihRQlEiQTxvULp1Bbn3pEWlHa0fiAXsVcPHc8AL+9ci4NDkq8m7saGhw19Q1Njwt7+3tL4GYYN6QPoycPI7GvnvWfX4hhlBQlqG9wHK6rB6B3SfPQqxzcm/MHjwFg/XcXkjSjKJng++cdx+G6+qb3P/TlU/jKN1L3tzUXfPJ//6db9Lc4V9t2L5w9hl8+8y4AnzlxLMP7p4T17e8tAWDB9x9n4/YD3PHpmfz9ynXMnTCERUePZOueQ/z8d6lCqCdPHAqb4IpTj+Ct0smcO7OCe595l007DnDbp45t6u8r502gvsFxsKaeM6eNSD2i71AtyYQxYVhfHl77IcP/UMrIwUPgXfjO2dP49rEfo7QowZ6DtZhZi30H0K+smIe+fErrD3zgCLg9/33VnOVSoEdzBUTkBT0MRg0og/oko45teeR51YKJHb534dHN7xnWr4xh/co4fuxgAEoSxpjBvf0NtgPM+ytKGEVpD8JOJoxkov2HhxRlTLskEkZZlvcUJQys5cO2k4nWYpBJevu21uPA9MqBUDaQt/92SdO2W845Jmv7R6+b17S8JGMMfnrcKXAnjPLOfhZOGwmVEwC47mOT27SXTBhXn9b22P3EcaPg0UTTk5V7FyehLPUIvmH947cv4kbkplyan7Mbt0fQhZOp4LDgH4NujT8bwRHl4lyB9I3f+9RHezquDo/oCXqhTqJHBPWeEPElgoIerr9xQ/uE6zBg9HsoRHyJnKC7kBWptLG6o5SwIGi8ABsU0b8FRuO0JxM9Qc9Yz/ULOGl43y75+8SxozrhpQtkZu0EXGPFNdoP6geqhV3/fUz29mPUH0HnX98EsB/92odOj6ALm8gJ+ulHDefC2WNybv+1Mydz92erePgrp+bUfnrGjUG9S+J1Zf+Yimjf+NRPN7FkIfrnFl3l0ety+273BCIn6CVFCW455xj++fzprV675Zyj+cGyGU3rf75+Pl+cP4Ezpg4H4PXvLGTDLYv45edmM7RvCfMnl/PHa0/htCnDmDAsdeR3/xX/i59ecgJTvCPB8v653WyRLyeMH5JTZsXcCUPy8jNyQC+C//IHl0nzieNGNfvwkcwbYzo6Fky/SaojRqXdsNOvrDiYvinoLJf2bf34os49fvjkiUObll+56WMcUd6XGz8+tUWb31w5hxljUgcvVy+Y0Cn7USayhztnz6iA38E1p03kmvlLWrx2VtOXviWN869zJwxlzTeb7+JMv0MRYP7kYcwffDzc4XPQ7TBlRD+ef6fltsXHjODaMyZx+j8+0bTtl587kUO19dz9xEYuOWk8G7fv56x/e7Lp9XNmVPDy5t28t6uamroG3vjuIv7jLxt5/cn1UBvWpwmO9koQrLz6ZBb/4M9N6y/d+DGOu/lhIHWTzrjlD2Z974NXn8w3fvMKR33YjwH7imFfy9f/6fzj+NXq91i96SMgJRiL/+XP7DxQw2Nfncf8//N4m3bPmVHBbZ86ls/fs4bhO8oYOHwg1OzO8dPGn78uX9CUQ5/Jzy+dxXX3v0iy3sCl7nv409fmMXZIH3bsP0xRwlI/kMClJ43n0pPGt3j/A1fODTz+QiOygh43Rg/qzeFR/Rlb05u3r2n5A9V4x2AjZcVJvuTdGHJMxQCuOW0i559QyepNH/HxY0e2ugHoynkToHIG/CLYz9Ad/GDZDG4/aiElyQRmxsRhfXlz236+sXgKA3oXZ33f4mNGUN63lJ8/9Q43LD6KZMK49VPHwoODYW3zEWXvkiTVNXDG1BHU1rkmQe9TWsQVpx7B3698nSF9S7K54cQjBlOcTPCzS2bBD0uhhz8TN2Hw2s0LmfKthzi6on9WMQc4Ymif1IHXLQmoTZ2TjR2Syjob2rd1CQsRwSmX7iPYCzIGTCjvS7KTp7pmxlfOmMSogb04e0ZFKzGPK2dOG9G0XFqUbHrwyYqrTuKFb53B5ae0rpVz7+dnc8Pio3j7e0v49wuPp7itvvIu5J02JTVN94NlMzh1Ujm9i5P0KU0d/0yvHEjf0iIuP+VI3v7eEvqXFTcVD1t0dCqufl7bXh3cGes7BZ6Ndf3CKZQVJ/npJSdwz6Wzm7b/ywWpKdRzZ1R0V2ixQEfoIpIsmzUG3my9vVdJkl5pF7LXfPN0DtWm6sfMOXIoc45snn+9aM44Hl2/jaXTW0/RzT5iMLwFc48cytyjxgIpsb556TTOq6ps1X75olQtnOvOmMydnzme6pp67l39Lh9vo1BZT+XN7y6CotTZzPzJLYuOLZ1ewdLpKTEvK0ly7zPv0rdU8tRZot9jYaTfBXqrfGb8wT5aIVQ/gbjISFjsYP+3d2peObh3izopzaTt7zT7iYTx2f81rk1bpUVJvnt2cz2WXiVJLsuY023ZNz51TiDj35Fr/3ZsJ/1T52brf581jS+ceiSDGiuANsZQ4GcfhUDPOD8XIvYUbtpiv04eaRcnE1SGXLQuLkRc0MMYxCF9USyEollh+QmhOFfwuyUgB0H1TQGnLfYry37RWPhLxAVdCCFEIxJ0IYSICRL0XNEFmR5C1Pdz1OMX+RADQQ8jKyS84lzhFM0Ky0+QhaMa90kAPlrMH/toP5C+CaqPfejfxs9r+WbMuIz/IhsxEHQhRCFnuYjwiLagh5UVEgohZIaE5iesTJoo2g+obwo4y0U/NuGRk6Cb2UIzW29mG8xseRuvX2tmr5nZy2b2iJmN9T9UIYQQ7dGhoJtZklTdwUXAVGCZmU3NaPYCUOWcOxb4b+A2vwMVQgjRPrkcoc8CNjjnNjrnaoD7gKXpDZxzjznnDnqrTwOj/Q2zENAFmR5B1LOZoh6/yItcBL0CeC9tfbO3LRuXAb9v6wUzu9zM1pjZmu3bt+cepRBCiA7x9aKomX0GqAJub+t159yPnHNVzrmq8vJyf5yqOFfh+gmscBT4UzwqG20X58qfIItz+TlG/S3O1RxaF23prCNncqmaswVIrxc62tvWAjM7HbgBONU5d9if8DpCtVwK0k8sso9Uy8VHYz7aEu2RyxH6s8BEMxtvZiXABcCK9AZmNgP4IXCWc26b/2EKIYToiA4F3TlXB1wFrALWAfc759aa2c1mdpbX7HagL/BfZvaima3IYk4IIURA5FSo2Dm3EliZse3GtOXTfY5LCCFEJ4n2naJhogszPYSo7+eoxy/yIQaCHlZWSFBuwiqa1YHfUJz6YTKsbJ0A7LusK34Z9cmkT0XEfBvbQWdOxYcYCHoY6Cp94RHgPgmtfo+f+B2zj/Yi2Z/RJNqCHov0uCZHqDhXZ1xE1b6Kc4ngiLagCyGEaEKCLoQQMUGCnjO6GNMjiPpFt6jHL/Ii+oIe1iPbAiNGtVxCydgJKSsoEPtB1nLxE7/i9GnMOWW55Er0BT0MdJW+AAlyn0RxfyvLRURe0FWcqyD9BFWAqpWPQB0EZFbFuURwRFzQhRBCNCJBF0KImCBBF0KImCBBzxVdXe8hRH0/Rz1+kQ8xEPS4FecKy09EC2e1euRalIpzhfBIPl9Mpj2Czo/iXI0XWP0ozqUfrHaJtqCHVsslLjVWwvIT8VouQWcCqZaLCIhoC7oQQogmJOhCCBETJOhCCBETJOhCCBEToi/ooRXn6q5iXUHZjWrhrIB9BJoNFEJxLl/sqjhXVIm+oIeBigsVICrOFSwqzhVFIi7oKs7VeT+oOFduDgIyq+JcIjgiLuhCCCEakaALIURMkKALIURMiIGgh5QVElY2TWh+QvARxmPufPcRYBZFi2Ktd48AAAhYSURBVNj98hNAf/gVp29jW7VcciUGgi56JrrQ1pIC7g9luYRGtAVdxbkK1I+Kc7VjXMW5us1G/Im2oAshhGhCgi6EEDEhJ0E3s4Vmtt7MNpjZ8jZeLzWzX3uvP2Nm4/wOVAghRPt0KOhmlgTuABYBU4FlZjY1o9llwC7n3ATgn4Bb/Q5UCCFE+xTl0GYWsME5txHAzO4DlgKvpbVZCtzkLf838G9mZs6FUEnn+XvgjVX+262tbrm+bR3cMdt/Pw11Ldf3bQ3Gz+H9LdfX/Q9sWeOvj8zd/dEm/z9L9S5vwbtI9sh34K//6p/9vVuhtG/z+o/PgEQuX5Mc+GgjDJ2YWt7yvD990zROvf747ZVQ0ic/m9UfNdv7022w+u6u2amv8ULzbN29ABLJzttxDWCJ1Pi6c248smZOvR6O/qTvZnMZqRXAe2nrm4HMkdjUxjlXZ2Z7gCHAjvRGZnY5cDnAmDFjuhhyGqd8FT54JX872Rg7B0bPAgyKy4LzM3I6TDgNhh0FNfsJLNe2bEHKx9yr4Z0ng/ExfBpMWQwVM1JfxCDoNxJGzYBZl8P+D/21XT4ZxsyBCafD0Z+Chlp/bc/4Wzi8D3oP9s/u2LlQdQkc3JGynS/lU2D2FTBgNOzdkp+tiiqYvgxe+GXX+3LYVJi0EN5c1foAKKqUDQzErHV0EG1mnwIWOuc+563/LTDbOXdVWptXvTabvfW3vDY72rIJUFVV5das8fkIUQghYo6ZPeecq2rrtVwuim4BKtPWR3vb2mxjZkXAAGBn50MVQgjRVXIR9GeBiWY23sxKgAuAFRltVgAXecufAh4NZf5cCCFEEx3OoXtz4lcBq4Ak8BPn3FozuxlY45xbAfwY+IWZbQA+IiX6QgghQiSny/fOuZXAyoxtN6YtHwL+xt/QhBBCdAbdKSqEEDFBgi6EEDFBgi6EEDFBgi6EEDGhwxuLAnNsth14p4tvH0rGXagFguLqHIUYVyHGBIqrs8Q5rrHOufK2Xug2Qc8HM1uT7U6p7kRxdY5CjKsQYwLF1Vl6alyachFCiJggQRdCiJgQVUH/UXcHkAXF1TkKMa5CjAkUV2fpkXFFcg5dCCFEa6J6hC6EECIDCboQQsSEyAl6Rw+s9tlXpZk9ZmavmdlaM7vG236TmW0xsxe9v8Vp7/m6F9t6MzszqLjN7G0ze8Xzv8bbNtjM/mBmb3r/B3nbzcx+4Pl+2cxmptm5yGv/ppldlM1fjjFNTuuTF81sr5l9uTv6y8x+YmbbvIevNG7zrX/M7Hiv/zd4783puWhZ4rrdzF73fD9gZgO97ePMrDqt3+7qyH+2z9iFmHzbZ5Yqvf2Mt/3XlirD3dW++nVaTG+b2Yth9pX3vmy60O3jC+dcZP5Ile99CzgCKAFeAqYG6G8kMNNb7ge8QepB2TcBX22j/VQvplJgvBdrMoi4gbeBoRnbbgOWe8vLgVu95cXA70k9KPJE4Blv+2Bgo/d/kLc8yMd99QEwtjv6CzgFmAm8GkT/AKu9tua9d1EecX0MKPKWb02La1x6uww7bfrP9hm7EJNv+wy4H7jAW74L+EJX+yrj9e8DN4bZV17bbLrQ7eMrakfoTQ+sds7VAI0PrA4E59xW59zz3vI+YB2p56dmYylwn3PusHNuE7DBizmsuJcCP/eWfw6cnbb9HpfiaWCgmY0EzgT+4Jz7yDm3C/gDsNCnWE4D3nLOtXc3cGD95Zx7glRt/kx/efeP91p/59zTLvXtuyfNVqfjcs497JxrfFjm06SeCpaVDvxn+4ydiqkdOrXPvCPLBaQeHp9zTB3F5dk9D/hVezb87isvrmy60O3jK2qC3tYDq9sTWN8ws3HADOAZb9NV3unTT9JO1bLFF0TcDnjYzJ6z1MO3AYY757Z6yx8Aw7shrkYuoOWXrbv7C/zrnwpv2e/4AC4ldUTWyHgze8HM/mRmJ6fFm81/ts/YFfzYZ0OA3Wk/WH711cnAh865N9O2hd5XGbrQ7eMraoLeLZhZX+D/Al92zu0F7gSOBKYDW0md+oXNSc65mcAi4Itmdkr6i94ve7fkpHpzpGcB/+VtKoT+akF39k82zOwGoA74pbdpKzDGOTcDuBa418z652ovz89YcPssg2W0PGAIva/a0IW87PlB1AQ9lwdW+4qZFZPaab90zv0GwDn3oXOu3jnXANxN6nSzvfh8j9s5t8X7vw14wIvhQ+90rfFUc1vYcXksAp53zn3oxdjt/eXhV/9soeW0SN7xmdnFwMeBCz0xwJvW2OktP0dqjnpSB/6zfcZO4eM+20lqiqEoY3uX8WydC/w6Ld5Q+6otXWjHXnjjK5eJ9kL5I/XIvI2kLsY0XniZFqA/IzV/9c8Z20emLX+F1JwiwDRaXjDaSOpika9xA32AfmnLfyU19307LS/K3OYtL6HlRZnVrvmizCZSF2QGecuDfei3+4BLuru/yLhQ5mf/0Pqi1eI84loIvAaUZ7QrB5Le8hGkvtTt+s/2GbsQk2/7jNSZWvpF0Su72ldp/fWnbuyrbLrQ7eMrECEM8o/UFeM3SP0C3xCwr5NInTa9DLzo/S0GfgG84m1fkTH4b/BiW0/alWk/4/YG7Eve39pGe6TmKx8B3gT+mDY4DLjD8/0KUJVm61JSF7Y2kCbCecTWh9RR2YC0baH3F6nT8a1ALak5yMv87B+gCnjVe8+/4d113cW4NpCaS20cY3d5bT/p7d8XgeeBT3TkP9tn7EJMvu0zb7yu9j7nfwGlXe0rb/vPgL/LaBtKX3WgC90+vnTrvxBCxISozaELIYTIggRdCCFiggRdCCFiggRdCCFiggRdCCFiggRdCCFiggRdCCFiwv8HiYCUqofY0rkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.539]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 8, training avg cost 0.538862\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deZgdZZX/P+f2ml6ydmftTjohCSEEEpImKJEAYkwCI0FAhFFHcUFHEZRRBseR4UGdUfip83NkFHwGt1EB94zEHyIiOChLQkIgG1lJOgnZyZ5e398ft7r79k3f7tvdVdW3qr+f5+mna3nvOee+VfdbVW+dOmXOOYQQQkSfRH8HIIQQwh8k6EIIERMk6EIIERMk6EIIERMk6EIIERPy+8txRUWFq6mp6S/3QggRSVasWLHfOVfZ2bp+E/SamhqWL1/eX+6FECKSmNlrmdZpyEUIIWKCBF0IIWKCBF0IIWKCBF0IIWKCBF0IIWJCt4JuZg+a2V4zeyXDejOzb5rZJjNbbWaz/Q9TCCFEd2Rzhv59YFEX6xcDU7y/m4Bv9z0sIYQQPaXbPHTn3NNmVtNFkyXAD12yDu+zZjbUzMY453b7FGNHXvsrbP5jcjqvAObcCGWd5tj3nRU/gMN1yelpV8DYWcH4eeWXsHddcvqMS2HChf77aGmB574DJw9BIg9mvQeGVvvvZ/0y2LUyOT11IVTV+mu/8WTyezScgMJSuOBjUFDsn/3DdbDyv6GlGUaeBTOu9s923Qp49f8lp8++Ckad7Y/d5d+DI7ugtALm3gRmfbO39c+w9WkoLIG5H03+7y2rH4H9G2H0DJi+pHc2Xv091L2Q/P1Nu6L3sQwA/HiwaBywI2W+zlt2mqCb2U0kz+IZP35877zVPQ9P3wt4ddxLRsD5H+qdra44+Qb8zy3t8/vWw7t/5L8fgKWfhIZjyenXnoEbl/nvY/8GeOxz7fOWgItv99/Pss/AkZ3J6V0r4b0/99f+9r/CH+5qnx83ByZe5J/9VT+BP/1bcrqw3F9Bf/qedkE/XAfv9OFi9vgB+O2n2uenLoRhNX2z+Yd/gZ0rktOjzoEpb+u9rV99FFwLDBrWe0H/3e1waCuUj5Wgd0OoN0Wdcw8452qdc7WVlb08q553K9z1Bnx2s2e0xb8AU2m1u/geGDUjOD+QPBu88BaYeHFyOigfANf9qON8EH5mvx+qzgcXgI8Wbzss+GLyv98+Wvvlwk8GY3vs7KTg+mW71U71Be0++kpLM5SO7Gi/t7T+blr68PtpjSGI/Slm+CHoO4HUa/cqb5kQQogQ8UPQlwJ/52W7vAk4HNj4uRBCiIx0O4ZuZj8FLgEqzKwO+BegAMA59x1gGXA5sAk4AdwYVLBCCCEyk02Wyw3drHfAJ3yLSAghRK+I/pOizoVjNyg/SeMZpoPyEZKfQPos6O0SZPwB2A66j/ti3/m0X7d+NNDfYDyIvqCLgUlfc61jh8/9of6NJBEW9LB2OAvHl1k4P6LQfATtJ6L2g+ob37erBD2KRFjQhRBCpCJBF0KImCBBF0KImBADQQ8rKyRAXNCZIZ3YDcVPAD5Oizus7CM/zAXRN0H3sU9ZLn3a31zaf5GJGAh6WGhnGhBENjXOu4kZ2fiFH0RX0MNKqwotfSukbJpQ/ISQsRNZ+wH1jd82lbYYSaIr6GGifTsHCXKjaIOrD6KJBF0IIWKCBF0IIWKCBF0IIWJC9AU96ml+SeMZpoPyEZIfFecK3nYgaZx+pxumT/fUjPMhloFB9AVdDEyUhZGGslyEBD1LYlacK5SUv4gWz4Jg41dxLhEgEnQhhIgJEnQhhIgJEnQhhIgJMRB0FefqsY/Q/Kg4V0dzUSnO5ZN9FecKnRgIelhoZxoQRD01Lurxiz4RXUFXca4c9qPiXF0YVnEuERjRFfQw0c6dg6g4V7CoD6KIBF0IIWKCBF0IIWKCBF0IIWJC9AU9rDS/QFFxrl7Z72TWX1dRKs7l55i3inNFlQgLepjZJwS/M6mWSy98BEEQAplC4LVcfNpPdU80kkRY0MNEe/eAQllNaJ+PJhJ0IYSICRJ0IYSICVkJupktMrMNZrbJzO7oZP14M3vSzFaa2Wozu9z/UIUQQnRFt4JuZnnAfcBiYDpwg5lNT2v2z8AjzrnzgOuB//Q70MyoOFePfYTpJ3D7Ks7lO37FqeJcoZPNGfpcYJNzbotzrgF4CFiS1sYBg73pIcAu/0LMFbQzDQgimxoXUjaWyGmyEfRxwI6U+TpvWSp3Ae81szpgGfDJzgyZ2U1mttzMlu/bt68X4XYw1rfP55ofFefqoYuo2ldxLhEcft0UvQH4vnOuCrgc+JGZnWbbOfeAc67WOVdbWVnpk+sQ0M6dg6g4V7CoD6JINoK+E6hOma/ylqXyIeARAOfcX4FioMKPAIUQQmRHNoL+AjDFzCaaWSHJm55L09psBy4DMLOzSAp6H8dUhBBC9IRuBd051wTcDDwGrCOZzbLGzO42syu9Zv8AfMTMXgJ+CnzAuZDuzkQ1W6OjswzTQfkIyU8otVwC3E6RquXiJ6rlElXys2nknFtG8mZn6rI7U6bXAvP8DU0IkT0a8xaRflJUxbly1o+Kc2UmMsW5dICIIhEW9DDRzp17BLhNJGZon48mEnQhhIgJEnQhhIgJEnQhhIgJMRB0FefKzkcXPn31E3AKpopzpRv1/vs45q3iXJEluoIeei2XoHcm1XLpmYuA7LcKT1Rrufh1oNaN4UgSXUEXQgjRAQl6NuhsJQdRca5gUR9EEQm6EELEBAm6EELEhOgLuopz9cJHSH5UnCt42wOqOFcfQhkgRF/QhRBozFtApAVdxbly1k9Y3yMQVJyroz1fjPloS3RFhAVdCCFEKhL0rNAZRu6haovB4mMfqD9DQ4IuhBAxIQaCHoNaLh3chpS1E0rNGNVy6WguyFouPqJaLpElBoIuhNCwoIAoC7qKc+Wwnwhn0qg4V0d7/hjz0ZboiugKuhBCiA5I0LNBd+lzEBXnChZluUQRCboQQsQECboQQsSE6At61ItzhZaGp+Jc/U8AfdNmx89hjVwtzhWlbd0/RFjQQ67lEribsGq5EFIGSkSzXNodBGQ26FouuWhPY+hhEWFBDxmdHQwQor6dox6/6AsSdCGEiAkS9KzQJWPuoeJcwaK0xSgiQRdCiJiQlaCb2SIz22Bmm8zsjgxtrjOztWa2xsx+4m+YXRHx4lynFc0Ky08Y2UFRL87Vmb8csdVuNACTKs4VVfK7a2BmecB9wAKgDnjBzJY659amtJkCfA6Y55w7ZGYjgwpYCCFE52Rzhj4X2OSc2+KcawAeApaktfkIcJ9z7hCAc26vv2F2QujFuQJ3hIpz9cRFhO0HWZwrJ+1pDD0sshH0ccCOlPk6b1kqU4GpZvaMmT1rZos6M2RmN5nZcjNbvm/fvt5F3G/ocm9AEPX01KjHL/qEXzdF84EpwCXADcB3zWxoeiPn3APOuVrnXG1lZaVPrkNAd+lzEBXnChZluUSRbAR9J1CdMl/lLUulDljqnGt0zm0FXiUp8EIIIUIiG0F/AZhiZhPNrBC4Hlia1ubXJM/OMbMKkkMwW3yMMzNRr+XSHzVWAiVmtVx8tR9kLRc/US2XqNKtoDvnmoCbgceAdcAjzrk1Zna3mV3pNXsMOGBma4Engc865w4EFbQQIh0Na4gs0hYBnHPLgGVpy+5MmXbAbd5fSKg4V876UXGuLsxGpThXzhoTXaAnRbNFl3siEmg/HchI0IUQIiZI0LNCl4y5R8Qe/IkcSluMIhJ0IYSICTEQ9Iin+fVL0ayw/MSgOJef9gPtGx/PgoNIqVRxrlCIrqDHspZLWH5CyqaR/c4MB9P9quUiiLKgCyGE6IAEPWt0uTcgiHp6atTjF31Cgp4Nuks/wND2VpZLNJGgCyFETIi+oKs4V+76UXGudGP+21VxLpFC9AVdCIGGiQREWtBjlk5oqDhXj30E6iAgs1EpzqW0xSiSVbVFgS73BgxR385Rj99fnly/l0eW7+i+YcjcMHc886f6/9Y2CboQIrY8/MIO/rh+LzUVJf0dSgcOn2wMxK4EPSt0yZh7qDhXsMQnbXFiRSmPfXp+v8YQFhEeQ29FtVxy149quXQ0FUTfBN3HPmSn9BnVcsmWGAi6EEJXkQKiLOixLM4Vhq8w/ISVSROk/QANBxG7slw6xQ2ws/roCroQQogOSNCFSCXq6alRjz8ABtI9bgm6EELEBAl6NgykQ3xkCHKbaHv7m7bonynRNdEX9MCyFlWcq89+wuhDFefyJvxUzSCKc/XBVlvWYs8/P9BGoCIs6HGr5RJCZkibnxB8qJZLBrOq5SKCQ0+KdkN9czON9U3k5+WRaGqhMP/0Y6BzjtV1h5kxbgh/3riPkeXFTKosZe+RegrzE4waXERzi8PMSBhs2X+cjXuOUlsznEHWRGmI3+eVnYeZ3NjCXzfsZdzsowwdVMCa3UeYXFnGGycaWbf7CGbw7JaDVJQX8sS6vcwYO5grZ43lB395jUUzRnPsVBPHG5qYNnowa3cd5pt/3MTYIcWcamphhcGxU03UvX6EYZzi2N6jVJYVs+PQCYryE9Q3tbB21xESCWN13RsMKsjj2S0HOGvMYC6cXMHja/cwf0oFb5xopLGlhVlVQ/nxc9t5Yv0eyooK+NIZu1kUYn8FgSOzxDU1t5AwI5EwnEvuM53acI4WB3ne/OGTjQzJYHPnGycZVJBHWVE+m/Yeo6aihP1HGxg/ov1x+GP1TWzdd5xzqpJWXj98itHAqaZmmuqb2H7gBIMH5bP9wAn+sG4v8yaPYMVrh5hZPZQ1u47w5kkjONnYxPjhJew4eJJHlu/gs/NHMqk3HSR6jQQ9A0dONTIYuP+pLVxw6DAO4/p//p3vfgpp5NVi381m5MvL1vGdgma27T/Ojd94OqvPbNp7jF+v2gXAU6/u67TNrsOnAKgvaubHz23nTDtFvZ3iqq9n5+OlusM89EKyiNL/vLSr0zanGutZ9vLrLCrMymQvCfYafeWON8g7dZh9zvjQHY/22d4ZtpMniuCJ9Xu5Og+u/Nb/strt7pPNpwpPcIB8Rifgjl+8zK9/dvqh4sFntnaY/+YTG09r88wrm1gd4r4tIj3kEiwvbDsEwJZ9x0Pxt9sTRBFfGptbOBpQUaZcpqllgA1k9yMS9AwU5LV3jQthDHDbgWAPHHWHTgRqP3yCLM4VjNl1u48GYzgA/NznTzS2+Garpwy0Q0nkhlxONjSzZtdhnt6wm9uAr/1+Pf/xu0f5+0vO4Nt/2uybnxrbzZ+KfDOXEfN2uYPHGziZ30xBcwst3lh96xhqfVMzpxpbKC3M43hDM2VF+RhwrKGJ/UfrqRlRyv7j9QwZVMC2/ScYVlrA8JJCjtc3A/Ds1gP88rdruT/4r9NBBoLRxWR/7T1az0hg1+GTDDreQFFBguP1zRQXJNhz5BSDBxVwvL6Z/ISRn2es2v4GcyYMY/O+40yqLOXF1w4xcnAx4BhaUsj2gyd4asM+7sx3JIAdh05SDew+fILBZQkOn2ykrDifuoMnGVFWyJ4jp3AOhpcWsnLHG8weP5S1u44wrLSQ4vw8GppbOF7fxBkjy/jdy8khkDkt7cJmOSw1qbH1Jc7W7d/c4pIzzoEZpxqbaXEO55Jj9xVlReQlkq1PNDRxsqG57T5CwqDMO7w0tbQw+Y5HOWvMYNbtPtLmZ1JFKSPKCnlh2yHKi/M5eqqpQxzTRpf3+jtEjcgJ+vu/9zzPbz1IHs3cljI+56eY9wdrdh6B3XuZasdZEMBY/ZsSjRDo2HO4fOE3r3B/IXzpt2tZtnSwb3Yn5G/jXQXN/PT57dxeABff+ycaKPDF9q8C7P/cPTy0M/GfHsX1YlBgdVEjg807MEAHMYdkksGW/ckr3HQxB1j/enSujPpKVr1rZovMbIOZbTKzO7pod42ZOTOr9S/Ejiw6ezQQzjBI0k84OCyU7xSGH0cY2yc4+80tLYHZD67//bXpZ4xRONjEhW4F3czygPuAxcB04AYzm95Ju3LgVuA5v4NMZVBhXveNhBBiAJLNGfpcYJNzbotzrgF4CFjSSbsvAl8FAk3XSL1ZGSa5POYpRCvaTwc22ajjOCD1Lat13rI2zGw2UO2c6zKx1sxuMrPlZrZ8377O85m7oyBPT50JIURn9Pl018wSwNeBf+iurXPuAedcrXOutrKyd2+8Tj9DD0reU+06F95BJKgzrHS7wZ3J+ZMhkYlWm0FUMGkldfzYz+/gV/ZIJpt+YaT2b1+yXFq3lbXZ7W08fY1loJCNoO8EqlPmq7xlrZQDM4A/mdk24E3A0qBujPbXkIsQuUxYSQIit8lGHV8AppjZRDMrBK4HlraudM4dds5VOOdqnHM1wLPAlc655UEE3DrkEmb2STh+IIwiRs6FkeUSjo8o2ncBnWf6XVXQ3ywXHWzColtBd841ATcDjwHrgEecc2vM7G4zuzLoANMp1Bm6EEJ0SlYPFjnnlgHL0pbdmaHtJX0PKzMFnVQ7FMIvoj5Oq3PhgU3k1LH1EWEhhBAdiZyg94ecR/ucLZ4EOS6rMV89KRpVoifoaQX/w0rzC4rw0gm79huE3aBS6jL5y31S+8YfAikiYP7E6de+baGlDESf6Al6fwcgRA6iqwoBERT01mpq4e3AYaUthnOu6Qj+EjgsH1G0H9S5Zm4Lei7HFi8iJ+jNA+013kIIkSWRE/T+SnKJ1lht7zm/ZhgAX3vXzMB8lBcls2Xfc8H4wHz0lqhv5/T4hwzyp5Z7K3++/VLKiyP3GoUBQ+QEPddO0P/v9bP4yYcvYPO/Xs5HLpqY1WcWnj0q4Kgy092P8Wcfu5BtX7mCa+ZUccmZyXo7s6qHcsPc8Vw9u70mW37CuGZ2FU9+5pK2ZVXDBgFw4RkVXfpYeecCXv3SYr64ZEZbPLPHD+Wm+ZOoKGt/TdRZYwZz7ZwqvnjVjB59x6gyvLTQ97frPHrLW9j2lSt8s1c9vIS/3PHWjOsL8xJMHlnmmz/RMyJ3qG1JU/TUO/J+0nqmc9V5Y5mwq4wia2JmYggLpo9i+8ET5CWMySPLece5Y0l4lw2fW3wWS2aNY/m2g1x3fjUtDlbveIPSonzy84yxQwaRSBjlRfn8069eZtfhU/zrFZPg24F8hU6/zz3Xnsuw3xbynunjufbtC8nPM041tFBSdHqd+e/fOJf6pmbyEwnyEkZLi+Pfrj6HovyObdfevZDGZkd5UT72JeO86qE0FYwkcayZle9bQFFBgpMNzZR6Z+b5KU/7vnzXQk40NFGcn0ciYXzm7WficB18OOe44pwx5Jlx15f+nFzWVvDJ/+2fatHf4lxd233xCwsA2LjnKAu+8TQAH5w3kfWvH+HwyUYumlLJlJFllBbl8bH/fhGA98ythpdg3uQRsA0qygp54Ko5fPupzcw7o4KqYSUArLpzAT9fUUdJYT5vPmMET23Yy0VTKykrSr6yLS9hfOqhlfzr1ecw+Af5jKwcDnXwj4umcvcFC9m09xg1FaUAlBcXsO0rV7D3yCkqyoo4eqqJwvxE27sK6pua2X7gBOOLT8A3+r6t2rNccuxsLgeJvKAHTX4iwbihxdDcyG8++JYu2yYSxoxxQ5gxbkjbsgsnd362+pVrzk1ONAT7cuh0EmYYyTPsfE9g0wU6ldR1iYRRlDi9bUnh6btRvneQG1ZamLFNZ58v7ORJYDNjeGl83p83q3ooFA9l2/s6P3OeMqq827PqtvV71sJLJIV7G3z3786H6tG83XuzVytDSwr58EWT2uYnVrRfTY7y3uD3m5u9/bu4ALyD7sjyYijKZ2b10NNiSL6TFYaUdBzWKcrPY8qocjhe3+V3EP4TuSGX9vfshjSYHpKbcF7bBmBgAfsxI+iOi3JxrkD6xu9t6qM9nVeHR/QEPdcG0YUQIkeIoKD3dwRCCJGbRE7QXdhj6K038HRlkBMUB/yS8Og/AqP9dCATPUFPmw/6Bzh9zOBgvaRn7YRVmyaoA1QHu/77mDaqrIPlqL6Czr++CWA7+rUNnV5BFzaRE/S3nTUqqwdSnv7spb74i/4ZW0fKB0UusakDrQ8liXSitafOmTCsv0OIJZET9ML8BF9+5zn8+7tnZWwzfcxgxo8oYf0XF/HbT76Fxz89H4ApI8u4e8nZfPySMwC4bcFUzhk3hPe/eQL3/e1snvrsJW02PjivBoDSYn+ftMvE+RNHdJlZ8dH5kzKu6wn5iTyC//EHl0nzNzPHtvvIwD2tKaF9oKtzwdo+iFFxQV4wfZPTWS6n25pZdXoaZE+YNrqcr71rJnNrhrcte/ELCxhWcvrvdWbVkNOWxZXInu5cdd44+A3cetkUbr2085zd4oK8tpzw9Lze2xdNA+CWy6Z0WN7Wbt8GWN6eTx0000aX8+Jrmdd/+KJJVJYX8aVH13HzpZP51pObOqyfM2EYF0wczn/+aTMAN82fxJJZY7nim/8LwDtnjYO1gYUfGtm8gvDq2eO4/RerAXjwA7Xc+tCqtqJunfHWaSP54/q9LJ4xmvNPDaN8Xz4c67ztzz72ZvYeqWf5a4c4t2oIR042su3AiYy2504czvNbD/KFv5lO5V+KmDJyGDQd7vY7xJ3OhBfgq9ecwz/+4uVO1yUSxsovLOBEYzPjhiafSr5mThWvHTjO2KGDKMhLsPLOtwOw72g92w+eYOzQYt/LH+QykRX0uFE1rIT6sYOZ0FDCtluv4Bcr6vjFi3Vcfs4Y3vumCQDcOG8iIwcX845zx/CZhWcCsOPgCQ6daOBc74xnZvVQbnt4FbctmEpxQV77AWrzk7EQ9HT+z3Uz2fBkORv2HAXg3mvPJT8vwW0LpvL1x1/l0jNH8vJdC6m549EOnyvKT1DflHyo4ZxxQ3jwA+cnVzw6GA5mPmicXzOcdbuPAHBdbTXvfdMEPvLD5Ty+dk9bm4umVLBqxxscPdXEwrNH88hH35xcsaYYCvIg87FlwLBoxmi+9virLLvlIs4cXc4Z/5R8w+W7zx/P957ZxvrXj7LslouYPnYwfDkPGpPXZMNKC0m/PpowovQ0+5XlRVSWF522PO5I0LMm2BsyBkyuLINdySuCa+ZUcc2cqg5t8hLGlW1DDkmqh5dQPbykbX7h2aNZc/eiQGPNBRaePRo2Js/YH/v0fA6fbORbf9zIklnJejO3XDalw9XX+OElbD94giWzxvKbVbv4wLwacHD/01s6Zk5505dNGwWbk091/nXHKb5+3UzKvPH7s8YM5vnPX0alV3dm2uhyHl+7h6mjynh1zzGGlRTyrjnVPPjM1tCzsnI5G2vKyFJm1oziutqqrJ6GFT1Hgi4iyQ1zx8PG9vkhgwr4/BXTM7ZffM5o7n9qC7PHD+M3q3ZRPayEWdVDuf/pLbxt+unF0i6YNBw2wwPvm8PrJ71H2VMYWV7cNv2JSydTXJDHlTPHctE9T/K3F4xnwogSVu04xNWzq9JND1iW3TIf8rsv4fC5y8/itodXMbHi9DNv0TXRF/Qw0u8CfVQ+Pf5gX60Qqp9AXKQlLGa5/f9x4TT+/uIzGDKogJqKUuZPqcDMMpwltm/v8qJ8ygd3XT2wuCCPT1w6Geh4r+aXH5+XIfbs4+6WQPZ/R0/7N7Od1G+dna2Lp1aywitU1iGGHL76yBWiL+hCZEEiYQwtSZ4dXjy1sp+jCYLcTVssL8qHhq7bfOPdM8lLRC7pLueIuKCHVMwqDCyEollh+QmhOFfwmyUgB0H1TQ6nLZYXF3Yr6O88T0NTfqBDohBCxAQJuhBCxAQJerbohswAIerbOerxi74QA0EPIyskvOJc4RTNCstPkIWjWrdJAD46jB/7aD+Qvgmqj33o39bva33NmHFp/0UmYiDoQohcznIR4RFtQQ8rKyQUQsgMCc1PWJk0UbQfUN/kcJaLDjbhkZWgm9kiM9tgZpvM7I5O1t9mZmvNbLWZPWFmE/wPVQghRFd0K+hmlgfcBywGpgM3mFn6M9YrgVrn3LnAz4F7/A5UCCFE12Rzhj4X2OSc2+KcawAeApakNnDOPemca60h+iwQw6cEdENmQBD1bKaoxy/6RDaCPg7YkTJf5y3LxIeA33W2wsxuMrPlZrZ837592UcphBCiW3y9KWpm7wVqgXs7W++ce8A5V+ucq62s9Kmehopz5a6fwApHgT/FozKRsr19tR9kcS4/91F/i3O1h9ZLW7rqyJpsarnsBKpT5qu8ZR0ws7cBnwcuds7V+xNed6iWS076iUX2kWq5+GjMR1uiK7I5Q38BmGJmE82sELgeWJrawMzOA+4HrnTO7fU/TCGEEN3RraA755qAm4HHgHXAI865NWZ2t5ld6TW7FygDfmZmq8xsaQZzQgghAiKr8rnOuWXAsrRld6ZMv83nuIQQQvSQaD8pGia6MTNAiPp2jnr8oi/EQNDDygoJyk1YRbO68RuKUz9MhpWtE4B9l3HGL6M+mfSpiJhv+3bQmVPxIQaCHga6S597BLhNQqvf4yd+x+yjvUj2ZzSJtqDHIj2uzREqztUTF1G1r+JcIjiiLehCCCHakKALIURMkKBnjW7GDAiiftMt6vGLPhF9QQ/rlW2BEaNaLqFk7ISUFRSI/SBrufiJX3H6tM85ZblkS/QFPQx0lz4HCXKbRHF7K8tFRF7QVZwrJ/0EVYDqNB+BOgjIrIpzieCIuKALIYRoRYIuhBAxQYIuhBAxQYKeLbq7PkCI+naOevyiL8RA0ONWnCssPxEtnHXaK9eiVJwrhFfy+WIy5RV0fhTnar3B6kdxLh2wuiTagh5aLZe41FgJy0/Ea7kEnQmkWi4iIKIt6EIIIdqQoAshREyQoAshREyQoAshREyIvqCHVpyrv4p1BWU3qoWzAvYRaDZQCMW5fLGr4lxRJfqCHgYqLpSDqDhXsKg4VxSJuKCrOFfP/aDiXNk5CMisinOJ4Ii4oAshhGhFgi6EEDFBgi6EEDEhBoIeUlZIWNk0ofkJwUcYr7nz3UeAWRQdYvfLTwD94Vecvu3bquWSLTEQdDEw0Y22juRwfyjLJTSiLegqzpWjflScqwvjKs7VbzbiT7QFXQghRBsSdCGEiAlZCbqZLXgslpkAAAgUSURBVDKzDWa2yczu6GR9kZk97K1/zsxq/A5UCCFE13Qr6GaWB9wHLAamAzeY2fS0Zh8CDjnnJgPfAL7qd6BCCCG6Jj+LNnOBTc65LQBm9hCwBFib0mYJcJc3/XPgW2ZmzoVQSefFH8Krj/lvt/Fkx/m96+C+C/z309LUcf7o7mD81B/rOL/uf2Dncn99pG/ug1v9/y4nD3kT3k2yJ74If/kP/+wf2Q1FZe3z/7UAEtn8TLLg4BaomJKc3vmiP33Ttp96/fHrj0Nhad9snjzYbu+pe+D57/bOTnODF5pn67tvhURez+24FrBEcv/69rx4ZM1cfDvMuMZ3s9nsqeOAHSnzdUD6ntjWxjnXZGaHgRHA/tRGZnYTcBPA+PHjexlyCvM/A6+/3Hc7mZhwIVTNBQwKioPzM2YWTL4MRp4FDccILNe2+K1JH/NugdeeCcbHqLNh2uUw7rzkDzEIysfA2PNg7k1wbI+/tivPhPEXwuS3wYxroaXRX9vnvQ/qj0LJcP/sTpgHtTfCif1J232lchpc8FEYUgVHdvbN1rhamHUDrPxx7/ty5HSYugg2Pnb6CVBUKR4aiFnr7iTazK4FFjnnPuzNvw+4wDl3c0qbV7w2dd78Zq/N/s5sAtTW1rrly30+QxRCiJhjZiucc7WdrcvmpuhOoDplvspb1mkbM8sHhgAHeh6qEEKI3pKNoL8ATDGziWZWCFwPLE1rsxR4vzd9LfDHUMbPhRBCtNHtGLo3Jn4z8BiQBzzonFtjZncDy51zS4H/An5kZpuAgyRFXwghRIhkdfveObcMWJa27M6U6VPAu/wNTQghRE/Qk6JCCBETJOhCCBETJOhCCBETJOhCCBETun2wKDDHZvuA13r58QrSnkLNERRXz8jFuHIxJlBcPSXOcU1wzlV2tqLfBL0vmNnyTE9K9SeKq2fkYly5GBMorp4yUOPSkIsQQsQECboQQsSEqAr6A/0dQAYUV8/IxbhyMSZQXD1lQMYVyTF0IYQQpxPVM3QhhBBpSNCFECImRE7Qu3thtc++qs3sSTNba2ZrzOxWb/ldZrbTzFZ5f5enfOZzXmwbzGxhUHGb2TYze9nzv9xbNtzMHjezjd7/Yd5yM7Nver5Xm9nsFDvv99pvNLP3Z/KXZUxnpvTJKjM7Ymaf6o/+MrMHzWyv9/KV1mW+9Y+ZzfH6f5P32azei5YhrnvNbL3n+1dmNtRbXmNmJ1P67Tvd+c/0HXsRk2/bzJKlt5/zlj9syTLcve2rh1Ni2mZmq8LsK+9zmXSh3/cvnHOR+SNZvnczMAkoBF4Cpgfobwww25suB14l+aLsu4DPdNJ+uhdTETDRizUviLiBbUBF2rJ7gDu86TuAr3rTlwO/I/miyDcBz3nLhwNbvP/DvOlhPm6r14EJ/dFfwHxgNvBKEP0DPO+1Ne+zi/sQ19uBfG/6qylx1aS2S7PTqf9M37EXMfm2zYBHgOu96e8Af9/bvkpb/zXgzjD7ymubSRf6ff+K2hl62wurnXMNQOsLqwPBObfbOfeiN30UWEfy/amZWAI85Jyrd85tBTZ5MYcV9xLgB970D4CrUpb/0CV5FhhqZmOAhcDjzrmDzrlDwOPAIp9iuQzY7Jzr6mngwPrLOfc0ydr86f763D/eusHOuWdd8tf3wxRbPY7LOfd751zryzKfJflWsIx04z/Td+xRTF3Qo23mnVm+leTL47OOqbu4PLvXAT/tyobffeXFlUkX+n3/ipqgd/bC6q4E1jfMrAY4D3jOW3Szd/n0YMqlWqb4gojbAb83sxWWfPk2wCjn3G5v+nVgVD/E1cr1dPyx9Xd/gX/9M86b9js+gA+SPCNrZaKZrTSzp8zsopR4M/nP9B17gx/bbATwRsoBy6++ugjY45zbmLIs9L5K04V+37+iJuj9gpmVAb8APuWcOwJ8GzgDmAXsJnnpFzZvcc7NBhYDnzCz+akrvSN7v+SkemOkVwI/8xblQn91oD/7JxNm9nmgCfixt2g3MN45dx5wG/ATMxucrb0+fsec22Zp3EDHE4bQ+6oTXeiTPT+ImqBn88JqXzGzApIb7cfOuV8COOf2OOeanXMtwHdJXm52FZ/vcTvndnr/9wK/8mLY412utV5q7g07Lo/FwIvOuT1ejP3eXx5+9c9OOg6L9Dk+M/sA8DfAezwxwBvWOOBNryA5Rj21G/+ZvmOP8HGbHSA5xJCftrzXeLauBh5OiTfUvupMF7qwF97+lc1Ae678kXxl3haSN2Nab7ycHaA/Izl+9e9py8ekTH+a5JgiwNl0vGG0heTNIl/jBkqB8pTpv5Ac+76Xjjdl7vGmr6DjTZnnXftNma0kb8gM86aH+9BvDwE39nd/kXajzM/+4fSbVpf3Ia5FwFqgMq1dJZDnTU8i+aPu0n+m79iLmHzbZiSv1FJvin68t32V0l9P9WNfZdKFft+/AhHCIP9I3jF+leQR+PMB+3oLycum1cAq7+9y4EfAy97ypWk7/+e92DaQcmfaz7i9HfYl729Nqz2S45VPABuBP6TsHAbc5/l+GahNsfVBkje2NpEiwn2IrZTkWdmQlGWh9xfJy/HdQCPJMcgP+dk/QC3wiveZb+E9dd3LuDaRHEtt3ce+47W9xtu+q4AXgXd05z/Td+xFTL5tM29/fd77nj8DinrbV97y7wMfS2sbSl91owv9vn/p0X8hhIgJURtDF0IIkQEJuhBCxAQJuhBCxAQJuhBCxAQJuhBCxAQJuhBCxAQJuhBCxIT/D7aXnA/ISeKPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.539]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 9, training avg cost 0.538872\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2deZgcV3W33zO7NNKMttG+jCRrsSTbkpBl2Y53G0s28QIEpA8StmAIcVgccAQkwpgHAuYLEBJ/GBMI4ICNIZgoHyI2NsY2BmHLkjdJ1i5ZkrXv+yx980fVjLp7pmd6Zqqqu2p+7/PMM1XVt885fev2r6tunTplzjmEEELEn5JCByCEECIYJOhCCJEQJOhCCJEQJOhCCJEQJOhCCJEQygrleMiQIa6+vr5Q7oUQIpa88MIL+51zde29VjBBr6+vZ8WKFYVyL4QQscTMtuV6TVMuQgiRECToQgiRECToQgiRECToQgiRECToQgiREDoVdDP7npntNbNXc7xuZvZNM9toZi+b2ezgwxRCCNEZ+Ryhfx+Y38HrC4BJ/t9twLd6HpYQQoiu0mkeunPuaTOr76DJzcAPnVeHd7mZDTCzEc65XQHFmMm2P8Cm33jLpeXwpvdBv3Zz7HvOCz+AIzu85ak3wsiZ4fh59eewd623PPEqGHdJ8D5SKfjjfXDqEJSUwsx3wYAxwft5bRm8scpbnnw9jJ4TrP3GU97naDgJFdVw0YehvCo4+0d2wKr/gFQzDD0XZrw1ONs7XoD1/+MtT78Fhk0Pxu6Kf4ejb0D1EJh7G5j1zN6WZ2DL01DRF+Z+yPvfXV5+GPZvgOEzYNrN3bOx/jHY8bz3/Zt6Y/dj6QUEcWPRKGB72voOf1sbQTez2/CO4hk7dmz3vO14Dp7+KuDXce87GC78QPdsdcSpw/DfHz27vu81eOcDwfsBWPo30HDcW972LLxvWfA+9q+DRz99dt1K4Io7g/ez7JNwdKe3/MYqePfPgrX/+h/g8bvOro96E4y/LDj7L/4YfvuP3nJF/2AF/el7zgr6kR1wawAnsycOwP//+Nn1ydfDwPqe2Xz8c7DzBW952Hkw6dru23rkQ+BS0Gdg9wX9V3fCoS3Qf6QEvRMivSjqnLvfOTfHOTenrq6bR9WXfgzuOgyf2uQbTQUXYDotdhfcA8NmhOcHvKPBSz4K46/wlsPyAfCOBzLXw/Az+z0w+kJwIfhI+fvhui94/4P20dIvl/xNOLZHzvYENyjbLXbGXHTWR09JNUP10Ez73aXle5PqwfenJYYwxlPCCELQdwLp5+6j/W1CCCEiJAhBXwr8hZ/tMg84Etr8uRBCiJx0OoduZg8CVwJDzGwH8DmgHMA5dx+wDLgB2AicBN4XVrBCCCFyk0+Wy6JOXnfAXwcWkRBCiG4R/ztFnYvGblh+POM5lsPyEZGfUPos7P0SZvwh2A67j3ti3wU0rlveGup3MBnEX9BF76SnudaJI+D+UP/GkhgLelQDzqLxZRbNlygyH2H7ian9sPom8P0qQY8jMRZ0IYQQ6UjQhRAiIUjQhRAiISRA0KPKCgkRF3ZmSDt2I/ETgo82cUeVfRSEuTD6Juw+DijLpUfjzWX9F7lIgKBHhQZTryC2qXH+RczYxi+CIL6CHlVaVWTpWxFl00TiJ4KMndjaD6lvgraptMVYEl9BjxKN7SIkzJ2iHa4+iCcSdCGESAgSdCGESAgSdCGESAjxF/S4p/l5xnMsh+UjIj8qzhW+7VDSOINON8xe7qoZF0AsvYP4C7ronSgLIwtluQgJep4krDhXJCl/MS2eBeHGr+JcIkQk6EIIkRAk6EIIkRAk6EIIkRASIOgqztVlH5H5UXGuTHNxKc4VkH0V54qcBAh6VGgw9QrinhoX9/hFj4ivoKs4VxH7UXGuDgyrOJcIjfgKepRocBchKs4VLuqDOCJBF0KIhCBBF0KIhCBBF0KIhBB/QY8qzS9UVJyrW/bbWQ3WVZyKcwU5563iXHElxoIeZfYJ4Q8m1XLpho8wCEMg0wi9lktA41TXRGNJjAU9SjS6exXKakJjPp5I0IUQIiFI0IUQIiHkJehmNt/M1pnZRjNb3M7rY83sSTNbZWYvm9kNwYcqhBCiIzoVdDMrBe4FFgDTgEVmNi2r2d8DDzvnZgELgf8XdKC5UXGuLvuI0k/o9lWcK3CCilPFuSInnyP0ucBG59xm51wD8BBwc1YbB9T4y7XAG8GFWCxoMPUKYpsaF1E2lihq8hH0UcD2tPUd/rZ07gLebWY7gGXA37RnyMxuM7MVZrZi37593Qg3w1jP3l9sflScq4su4mpfxblEeAR1UXQR8H3n3GjgBuABM2tj2zl3v3NujnNuTl1dXUCuI0CDuwhRca5wUR/EkXwEfScwJm19tL8tnQ8ADwM45/4AVAFDgghQCCFEfuQj6M8Dk8xsvJlV4F30XJrV5nXgGgAzOxdP0Hs4pyKEEKIrdCrozrkm4HbgUWAtXjbLajO728xu8pv9LfBBM3sJeBB4r3MRXZ2Ja7ZGprMcy2H5iMhPJLVcQtxPsarlEiSq5RJXyvJp5JxbhnexM33bkrTlNcClwYYmhMgfzXmLWN8pquJcRetHxblyE5viXPqBiCMxFvQo0eAuPkLcJxIzNObjiQRdCCESggRdCCESggRdCCESQgIEXcW58vPRgc9A/YScgqniXNlG/f8BznmrOFdsia+gR17LJezBpFouXXMRkv0W4YlrLZegfqh1YTiWxFfQhRBCZCBBzwcdrRQhKs4VLuqDOCJBF0KIhCBBF0KIhBB/QVdxrm74iMiPinOFb7tXFefqQSi9hPgLuhACzXkLiLWgqzhX0fqJ6nOEgopzZdoLxFiAtkRHxFjQhRBCpCNBzwsdYRQfqrYYLgH2gfozMiToQgiREBIg6Amo5ZLhNqKsnUhqxqiWS6a5MGu5BIhqucSWBAi6EELTggLiLOgqzlXEfmKcSaPiXJn2gjEWoC3REfEVdCGEEBlI0PNBV+mLEBXnChdlucQRCboQQiQECboQQiSE+At63ItzRZaGp+JchSeEvmm1E+S0RrEW54rTvi4MMRb0iGu5hO4mqlouRJSBEtMsl7MOQjIbdi2XYrSnOfSoiLGgR4yODnoJcd/PcY9f9AQJuhBCJAQJel7olLH4UHGucFHaYhyRoAshRELIS9DNbL6ZrTOzjWa2OEebd5jZGjNbbWY/DjbMjoh5ca42RbOi8hNFdlDci3O1569IbJ01GoJJFeeKK2WdNTCzUuBe4DpgB/C8mS11zq1JazMJ+DRwqXPukJkNDStgIYQQ7ZPPEfpcYKNzbrNzrgF4CLg5q80HgXudc4cAnHN7gw2zHSIvzhW6I1ScqysuYmw/zOJcRWlPc+hRkY+gjwK2p63v8LelMxmYbGbPmtlyM5vfniEzu83MVpjZin379nUv4oKh071eQdzTU+Mev+gRQV0ULQMmAVcCi4DvmNmA7EbOufudc3Occ3Pq6uoCch0BukpfhKg4V7goyyWO5CPoO4Exaeuj/W3p7ACWOucanXNbgPV4Ai+EECIi8hH054FJZjbezCqAhcDSrDa/wDs6x8yG4E3BbA4wztzEvZZLIWqshErCarkEaj/MWi5BoloucaVTQXfONQG3A48Ca4GHnXOrzexuM7vJb/YocMDM1gBPAp9yzh0IK2ghRDaa1hB5pC0COOeWAcuyti1JW3bAHf5fRKg4V9H6UXGuDszGpThX0RoTHaA7RfNFp3siFmic9mYk6EIIkRAk6HmhU8biI2Y3/sQOpS3GEQm6EEIkhAQIeszT/ApSNCsqPwkozhWk/VD7JsCj4DBSKlWcKxLiK+iJrOUSlZ+Ismlkvz3D4XS/arkI4izoQgghMpCg541O93oFcU9PjXv8okdI0PNBV+l7GdrfynKJJxJ0IYRICPEXdBXnKl4/Ks6VbSx4uyrOJdKIv6ALIdA0kYBYC3rC0gkNFefqso9QHYRkNi7FuZS2GEfyqrYo0OleryHu+znu8QfLsxv38x/LtxU6jDYsmjuWyycH/9Q2CboQIrH858od/HrNHibUVRc6lAyOnGoMxa4EPS90ylh8qDhXuCQnbXF4bRWPfeKKgsYQFTGeQ29BtVyK149quWSaCqNvwu7jALJTekwParn0shmoBAi6EEJnkbnpTSdc8RX0RBbnisJXFH6iyqQJ036IhsOIXVku7dLLDtBjLOhCCCEykKALkU7c01PjHn/AOOewXjQdJUEXQoiEIEHPh950VSU2hLlPtL+DTVsMzlRXcfSur2/8BT20rEUV5+qxnyj6UMW5/IUgVSuM4lw9sNWatajppM6IsaAnrZZLBJkhrX4i8KFaLjnMqpZL1PSiA3TdKdoZZ5qbaTzTRHVVOacamjCMirISnHOUlXq/hzsPn6K81KjrVwnAa7uPMXZQX8pKjYrSEnYcOsVzWw4yvLaK6SNrqO1TTspBicGGPceYHOHneXXnESY2pli3/TBL/3sNE+qq2X7wJPMmDubc4TW8tvso33t2K2+bPYphNVV86mcvMaKmD1efO5Q9R09TYsZ3f7eFmWMGMGpgHz69YCr/8sRGKspKeGD5Nl6rbObMqUa27TzC8LIz/NuytVwwegC7j55mwpBqZoyqZd3uYzy+dg8XTxzM4OoKPvKjlZwztB/XnDsM5xzOwdcfX8/Q/pV87NpJzBk3iM888grnj65l+1Or+GZFhB0WAo78RKahKUVFWcfHXE2pFGV4t5LX5vLnHOYL9Oo3jjBtRA1mxtpdR2lOOaYM70+5P5b3HD3N4JRj/5HTDAe2HjjBgW2HOHiigXkTBrH94Cn2HD3NuSNq+Lv/fJl5EwYzqLoc5+CbT2zgnReO5S0XjODfntnMmaMH+VoXPm8Y9LaDegl6Dlq+IN/67SYuPnwEh7FwyaOB+6mgkfVV8Miqndw6PHDzbfjisrXcV97MqtcP8b3NW1q3f/vpzRntnl6/r3V5+8FTPLf1YMbrL24/zIvbD/PLl3e18fHgc9uZYmdI2Snuz7Kbzvd/v7V1ee+xM/x+04GM17ceOMknfvJS6/ozG/Zzk69vHQlYzwhXAVZtP0zp6SPsc8YHFv+yx/Ym2k6eqIQnXtvLW0vhpn/9HS+7tvukKzxVcYoDlDO8BL7x+AZ+8djvc7dNGyfg/RB//fH1ANRwHKrgxJlm+vUoop5hvWgSPcZTLuHynd95Yrd1/8lI/G3YczwSP0nhZENzoUPoMo3NKY6FVJSpmGlKpQrmu5cdoEvQc5H+xXMJmIXbvP9EoUMIlJKSEIduSLt77a6j4RgOgSDHfKG/P/H/9uZP7KZcTjU0s/qNIzy9bhd3AP/02Gv8y696fuoKMHpgH3YcOgVAve2FykDMdoilHUOcbGimtKmZ8pTj4MkG+lWWUVVeSirlMIOmlKOsxDjZ0IwDDp1ooLKsBAwG9a2grLSExuYUx083MbC6Aucch082UtOnnM/8/GUeimDu2XIsB4fXXweOn2EYsP/4GV5+bQ/VFWWcP3oADU0pjpxq5OjpRiYN68e63cc4frqJw6caGTOwL4dPNTBzzADK/Wsbdf0qqSwv4dmN+5k1diCp42cY5GDnoVOMAVZtP8iavWe4dOIQykqNqvJS1u0+xoyRtazfe4zaPuU8vX4fM8cM4ERDMzPHDKC0xHjj8CkGV1dQVV7KqtcPc87QfjSnzu5rK+Jjx/TYehJn9v5PpVKUlJYC3pRZWYnXn9sPnqRPRSm1fcox8/p+/JBqzjSlON3YTI1LUYJ3hjNp8S+5YHQtf3rBSJ7ZsJ+Bfcv5xYtvUFFWwgWja3l+6yEASkustb8rO7kOkSRiJ+jv+ffneG7LQUpp5o6qYG23iHmheHLdXibbSa77zLLAbc9L2Jj+5yc28O0KWPJfr7IsFdwM7efK3uCtpY08+Nzr3FkO7/z2chooD8T2IyH+oBbvz8NZJn52Ga4bkwIvVzZRY5Dyr3C+tOMIL+04ktGmoSnVKuZAxo/nmabCTflETV69a2bzzWydmW00s8UdtHubmTkzmxNciJnMn+5dOYzqNC66bHSL5DNF4ccRxf6Jp/3w+j9Ym8FOuYio6FTQzawUuBdYAEwDFpnZtHba9Qc+Bvwx6CDT6VNRGqZ5IYSILfkcoc8FNjrnNjvnGoCHgJvbafcF4CvA6QDja0NLvmzUFPOcpxAtaJz2bvJRx1HA9rT1Hf62VsxsNjDGOdfh1Ukzu83MVpjZin379nXUNCflpb3pmrUQQuRPjw93zawE+Brwt521dc7d75yb45ybU1fXvSdeZx+hhyXv6Xadi+5HJKwjrGy74R3JhZvJ0WIzjAomLaTPHwf5GYLKHsllMyiM9P7tSZZLy76yVrvdjaensfQW8hH0ncCYtPXR/rYW+gMzgN+a2VZgHrA0rAujhZpyEaKYKXSutygO8lHH54FJZjbezCqAhcDSlhedc0ecc0Occ/XOuXpgOXCTc25FGAG3TLlEmX0SjR+I4hYI56LIconGRxztu5COM4OuWZKkG4t6E50KunOuCbgdeBRYCzzsnFttZneb2U1hB5hNhY7QhRCiXfK6scg5twxYlrVtSY62V/Y8rNyU96K7vkT0xH2eVsfCvZvYqWNpiYasEEK0R+wEvRByHu9jtmQS5rys5nx1p2hciZ+gZ9U2jirNLyyiSyfs2G8YdsNKqcvlr/hJ75tgCKWIgAUTZ1Bj2yJLGYg/8RP0QgcgRBGiswoBMRT0Y6ebgCgHcFRpi9EcazrCPwWOykcc7Yd1rFncgl7MsSWL2Al6c297SKAQQuRJ7AS9UEku6cfPE4ZU86VbzytMICGw6Us3sGBG5gNNZ44ZEKiP1Z+/nv9z0diMbcX44IFCzMkvXjA1MFst8f/u764KzCbAPW8/v3W5pip2j1HoNRTfN6oToj5AHzu4T5ttv/nklW3EaeuXb+zQzpK3tKk4XBAGVXtPWZg1diAAf3LOEEpLjL+6cmJrm7V3z+dj107KeN8lEwcDMLi6gmcXX53TfnlpCW+dPRqAAX08XxWlJVRXlvG+S+pb271y15v53J9Oz3jvNVOH8ldXTuQt54/gVx+7rJufMH5cP/3sj+mbxg0MxObogX1bl989b2wHLdsyoG8FVWWZZaqnDOvfuvzMnZn7/8opdUwd3h9ReGL3U5vKUvT0K/JB0nKks/DCsZS82I9hfUv48VUX0ZD29JMf/eVF7D12mhvOGwHAzz9yCateP4wBC+eO4fiZJk6eaWZA33Jq+5QzckAVx0438dt1+zh2pokVWw/ytVsuSCukEB4tn+ddF41j4MoKBo2qYf37F7Tm9Z8/egCvfWE+VeXeF/mqKUN57QvzAe9IOju7aNOXbqAplcI57+kwjc0p+laUYV9yjKipom7KUMqO72L9pxbgfN+ThvVn9eevp7rSG3aL5o7h1lmjSDlH34rSNj5e+8J8SkuM46ebMPP8PPGT1bA9veBT8Ps/3WKwxbnOMrR/BRyEby6axbCas886/OH753LZPU9y8EQDAO+9pJ5bZo1i2Su7mD12AB/+j5VZNr34Lps0BLbAx6+dTGqUV0bpi7fOoDnlWDR3LDNG1rL6jaMMq6nkxvNHUtunnMbmFL/ftJ8H/rCNla8fBrzSGtUVJcyoGwCvw5dunc7nznszNVXlLP/0NQyrqcTM2PrlG9l95DTDa88+NqyxOcWhEw0cOtnIsdONjKk8Cd/u+b46m+Wi6dbOiL2gh40ZjKytguZGLpk4JOO1S8/JXJ89diCzx549wupbUeaVLvOZP8MT/j+bk1brrOFEJILewqXnDMZ8TajImvJoEfNc6+mUlhilJblfL/N/KLJ9tIg5eCmoHT2wpMX/wOr0Z7fF/wLbzDEDoKqGrXeePatLP8Nb+Q/Xtf8e2jkT3LMGvgUjB3hnkldMroMxQwHvx7uFhXPbP0q/ddZobp01OnPj1++k1P9xrSwrpbLKewRfuni3t15eWsLQmiqG1vjbT/SeR78VC7Gbckm1jpGkZblEk6lQUlLi/UqFiRmhPcLNZZZkDYswi3OF0jdB79MA7em4OjriJ+gRH6Erqaa4SMV8f2SfsQgRJLEbXVF/oWOuH4lDP7BC5CZ2gu4K9Y2WkhQFLuSf2NAnvUIfRhqnvZn4CXrWevoXcHhNFW+bnXWBp4eMqK0i1K95dtZOVLVpwvqByrAbgo/WOXSPuD2Crqz1mbhB2Q2vj3tsP+t6R6EeQXdhfTCpoHEgdoJ+7bnDeNdF7V+xX/6Za/jirTO6ZK9+cN8OXy9Tud6iom9F+IlZ/UO8cSboG7bOonGaix9/cF6hQ4iM2Al6RVkJX7z1PL7xzpkAvOV8LxXwMzd4d9ulP9Ho2cVX8+Qnr2Rcmmh/8LLxLF4wlQ9dMYH73j07584e2NdL1Qo9I8TnwvGD282seDDwwRheBkqGj5D67UZ/f7f3GUYNaHsTWHeoKC1p91hwSL/KdrbmT3VFGVXlZeH0TVFnuQQbW+t3sx2G9Ktos603PYc4dnnoLdwyaxT8F0ys65eRm1tSYm1ydZ/6VMe3Qbd7l+e+dXBvIKHmxdTh/Vm5LXNbS1xzxw/iuS0HGV5Txe6jp5kyrD/r9hzLaPvueWM5d0QN8yYM5pp/eqqN/VED+sDJ0MKPjI4eQdinopSPXjOJbz6xIWeblz73Zi74/GM5X19w3nDY1v5rP/3wxVz1f3+b873P3HkVV3z1yZwX7uuHdHw22Bt48IPzWPSd5W22l5can79pBp955JU2r/WpKIVG77v91KeuZGj/Kg6ebGj9Ad+07zgThlRjZjQ2p3jj8CmaUo6t+09w1ZShoX+mYiK2gp40Rg/sy5mRNYxt6Ms1tUP52zdPaX3t4Q9dDMCRU42s3HaIq6Z6g7SxOcWkz/6Ku2+ezl9cXN/a/hvvnEnKudZb8AHY9CQ8EMlHiZShNZUMbqzgwIkGnHPccd1k7rhuMvWLf9na5u6bp7Pkv1YDUNunnMsmDeGZDftbX8/4Qf/lb3L6Gj+kmq1fvpGP/OgFlr2yu83rw2ureMecMTz0/Pb2bX/7nu58xERx8cTBrX0ybcn/cLKhmY9efQ53+OM9XdBb++6L3j8Dxg2uBmBUxdmzsYl1/VqXy0tLWtukb+8tSNDzJvzsinPq+sEbxnffe2G7bWr7lLeKOXiDt72zi1tmjQorzKLh+unDYQP8/Y3TWDhsHtd+7emM13/9icu57utPM25wX/7i4npmjx3IjkOnMtr84P1zvTsr0/Ev5F0zdRhs8ura1C/5bUaT2y6f2Cro772knkVzxzIlq5bJP771PBbluDszVGKUjfXzj1zCsld2c8d1kwsdSmLoPZNLIlGki+Wgam9ue35axchJw/qz9cs3tk63zRhV2/r67VedQ5/yUi4YXZvT/kUTBrUuP/aJy/nnhTNb12eOGcA7/fINt10+IUPMr5zi/UCcNyq37d7Kyn+4NmN96vCaNmL+0w97Z6O6Aat7xP8IPYr0u1AvjGbHH+6jFSL1E4qLrIRF5xhUXcGLS66jpir3xbJ0LpowmLV+4bH2SdvfzjF5WH8mD8s8Ar/7lun8+cXjWmuotDB/xgjW3H19jmyc9L4JqHNCGf+O9P7tmZ2zn7p/Zedyc2H9INbePT/zK9cSQ4zOPgpF/AVdCLySr1FSWVbKjBxH4VGkVraleNMW+1eWQUP+7Tsq2CY6JubnNVEM4oi+KBZeql/kfkIsznXWR7jmQ3MQVt8Ucdpi/6pof2x7MzEXdCGEEC1I0IUQIiFI0PNFF2R6CXHfz3GPX/SEBAh6FFkh0RXniqZoVlR+wiwcFXSRqzQyUyyCsxtK34TVxwH0b8vntZ5mzLis/yIXCRB0IUQxZ7mI6Ii3oEeVFRIJURTNispPVJk0cbQfUt8UcZaLfmyiIy9BN7P5ZrbOzDaa2eJ2Xr/DzNaY2ctm9oSZjWvPjhBCiPDoVNDNrBSv7uACYBqwyMymZTVbBcxxzp0P/AxQFSIhhIiYfI7Q5wIbnXObnXMNwEPAzekNnHNPOudairMuB4J9bFBRoAsyvYK4ZzPFPX7RI/IR9FHA9rT1Hf62XHwA+FV7L5jZbWa2wsxW7Nu3L/8ohRBCdEqgF0XN7N3AHOCr7b3unLvfOTfHOTenrq6uvSZdR8W5itdPaIWjIJjiUbnILM4VHGEW5wpyjAZbnOtsaN20pbOOvMmnitBOYEza+mh/WwZmdi3wWeAK59yZYMLrDNVyKUo/icg+Ui2XAI0FaEt0RD5H6M8Dk8xsvJlVAAuBpekNzGwW8G3gJufc3uDDFEII0RmdCrpzrgm4HXgUWAs87JxbbWZ3m9lNfrOvAv2An5rZi2a2NIc5IYQQIZFX4Wbn3DJgWda2JWnL17Z5kxBCiEiJ952iUaILM72EuO/nuMcvekICBD2qrJCw3ERVNKsTv5E4DcJkVNk6Idh3OVeCMhqQyYCKiAU2tsPOnEoOCRD0KNBV+uIjxH0SWf2eIAk65gDtxbI/40m8BT0R6XGtjlBxrq64iKt9FecS4RFvQRdCCNGKBF0IIRKCBD1vdDGmVxD3i25xj1/0iPgLelSPbAuNBNVyiSRjJ6KsoFDsh1nLJUiCijOgMeeU5ZIv8Rf0KNBV+iIkzH0Sx/2tLBcRe0FXca6i9BNWAao2PkJ1EJJZFecS4RFzQRdCCNGCBF0IIRKCBF0IIRKCBD1fdHW9lxD3/Rz3+EVPSICgJ604V1R+Ylo4q80j1+JUnCuCR/IFYjLtEXRBFOdqucAaRHEu/WB1SLwFPbJaLkmpsRKVn5jXcgk7E0i1XERIxFvQhRBCtCJBF0KIhCBBF0KIhCBBF0KIhBB/QY+sOFehinWFZTeuhbNC9hFqNlAExbkCsaviXHEl/oIeBSouVISoOFe4qDhXHIm5oKs4V9f9oOJc+TkIyayKc4nwiLmgCyGEaEGCLoQQCUGCLoQQCSEBgh5RVkhU2TSR+YnARxSPuQvcR4hZFBmxB+UnhP4IKs7AxrZqueRLAgRd9E50oS2TIu4PZblERrwFXcW5itSPinN1YFzFuQpmI/nEW9CFEEK0IkEXQoiEkJegm9l8M1tnZhvNbHE7r1ea2U/81/9oZiuakY0AAAf6SURBVPVBByqEEKJjOhV0MysF7gUWANOARWY2LavZB4BDzrlzgK8DXwk6UCGEEB1TlkebucBG59xmADN7CLgZWJPW5mbgLn/5Z8C/mpk5F0ElnZU/hPWPBm+38VTm+t61cO9FwftJNWWuH9sVjp8zxzPX1/437FwRrI/s3X1wS/Cf5dQhf8G/SPbEF+D3/xKc/aO7oLLf2fXvXgcl+XxN8uDgZhgyyVveuTKYvmkdp35//OIjUFHdM5unDp6199Q98Nx3umenucEPzbf1nauhpLTrdlwKrMQbX9+6NBlZM1fcCTPeFrjZfEbqKGB72voOIHsktrZxzjWZ2RFgMLA/vZGZ3QbcBjB27NhuhpzG5Z+E3a/03E4uxl0Co+cCBuVV4fkZMRPOuQaGngsNxwkt17bqas/HpR+Fbc+G42PYdJh6A4ya5X0Rw6D/CBg5C+beBsf3BGu7bgqMvQTOuRZmvB1SjcHanvXncOYY9B0UnN1xl8Kc98HJ/Z7tnlI3FS76ENSOhqM7e2Zr1ByYuQhW/aj7fTl0GkyeDxsebXsAFFeqBoRi1jo7iDaztwPznXN/6a//OXCRc+72tDav+m12+Oub/Db727MJMGfOHLdiRcBHiEIIkXDM7AXn3Jz2XsvnouhOYEza+mh/W7ttzKwMqAUOdD1UIYQQ3SUfQX8emGRm482sAlgILM1qsxR4j7/8duA3kcyfCyGEaKXTOXR/Tvx24FGgFPiec261md0NrHDOLQW+CzxgZhuBg3iiL4QQIkLyunzvnFsGLMvatiRt+TTwZ8GGJoQQoivoTlEhhEgIEnQhhEgIEnQhhEgIEnQhhEgInd5YFJpjs33Atm6+fQhZd6EWCYqraxRjXMUYEyiurpLkuMY55+rae6Fggt4TzGxFrjulConi6hrFGFcxxgSKq6v01rg05SKEEAlBgi6EEAkhroJ+f6EDyIHi6hrFGFcxxgSKq6v0yrhiOYcuhBCiLXE9QhdCCJGFBF0IIRJC7AS9swdWB+xrjJk9aWZrzGy1mX3M336Xme00sxf9vxvS3vNpP7Z1ZnZ9WHGb2VYze8X3v8LfNsjMfm1mG/z/A/3tZmbf9H2/bGaz0+y8x2+/wczek8tfnjFNSeuTF83sqJl9vBD9ZWbfM7O9/sNXWrYF1j9m9ia//zf6783ruWg54vqqmb3m+37EzAb42+vN7FRav93Xmf9cn7EbMQW2z8wrvf1Hf/tPzCvD3d2++klaTFvN7MUo+8p/Xy5dKPj4wjkXmz+88r2bgAlABfASMC1EfyOA2f5yf2A93oOy7wI+2U77aX5MlcB4P9bSMOIGtgJDsrbdAyz2lxcDX/GXbwB+hfegyHnAH/3tg4DN/v+B/vLAAPfVbmBcIfoLuByYDbwaRv8Az/ltzX/vgh7E9WagzF/+Slpc9entsuy06z/XZ+xGTIHtM+BhYKG/fB/wV93tq6zX/wlYEmVf+W1z6ULBx1fcjtBbH1jtnGsAWh5YHQrOuV3OuZX+8jFgLd7zU3NxM/CQc+6Mc24LsNGPOaq4bwZ+4C//ALglbfsPncdyYICZjQCuB37tnDvonDsE/BqYH1As1wCbnHMd3Q0cWn85557Gq82f7a/H/eO/VuOcW+68b98P02x1OS7n3GPOuZaHZS7HeypYTjrxn+szdimmDujSPvOPLK/Ge3h83jF1Fpdv9x3Agx3ZCLqv/Lhy6ULBx1fcBL29B1Z3JLCBYWb1wCzgj/6m2/3Tp++lnarlii+MuB3wmJm9YN7DtwGGOed2+cu7gWEFiKuFhWR+2QrdXxBc/4zyl4OOD+D9eEdkLYw3s1Vm9pSZXZYWby7/uT5jdwhinw0GDqf9YAXVV5cBe5xzG9K2Rd5XWbpQ8PEVN0EvCGbWD/hP4OPOuaPAt4CJwExgF96pX9T8iXNuNrAA+Gszuzz9Rf+XvSA5qf4c6U3AT/1NxdBfGRSyf3JhZp8FmoAf+Zt2AWOdc7OAO4Afm1lNvvZ6+BmLbp9lsYjMA4bI+6odXeiRvSCIm6Dn88DqQDGzcryd9iPn3M8BnHN7nHPNzrkU8B28082O4gs8bufcTv//XuARP4Y9/ulay6nm3qjj8lkArHTO7fFjLHh/+QTVPzvJnBbpcXxm9l7gLcC7fDHAn9Y44C+/gDdHPbkT/7k+Y5cIcJ8dwJtiKMva3m18W28FfpIWb6R91Z4udGAvuvGVz0R7sfzhPTJvM97FmJYLL9ND9Gd481ffyNo+Im35E3hzigDTybxgtBnvYlGgcQPVQP+05d/jzX1/lcyLMvf4yzeSeVHmOXf2oswWvAsyA/3lQQH020PA+wrdX2RdKAuyf2h70eqGHsQ1H1gD1GW1qwNK/eUJeF/qDv3n+ozdiCmwfYZ3ppZ+UfQj3e2rtP56qoB9lUsXCj6+QhHCMP/wrhivx/sF/mzIvv4E77TpZeBF/+8G4AHgFX/70qzB/1k/tnWkXZkOMm5/wL7k/61usYc3X/kEsAF4PG1wGHCv7/sVYE6arffjXdjaSJoI9yC2aryjstq0bZH3F97p+C6gEW8O8gNB9g8wB3jVf8+/4t913c24NuLNpbaMsfv8tm/z9++LwErgTzvzn+szdiOmwPaZP16f8z/nT4HK7vaVv/37wIez2kbSV53oQsHHl279F0KIhBC3OXQhhBA5kKALIURCkKALIURCkKALIURCkKALIURCkKALIURCkKALIURC+F+etoyFYhc0zwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "minibatch loop: 100%|██████████| 681/681 [05:42<00:00, 1.99it/s, cost=0.54] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch 10, training avg cost 0.538868\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZxcVZn/8c/TXb1k6azdWcjWgSSQBUwgJtGwKWAWlIgwCgMOMmhGZ1AcXH5xVGRgdEZ4OfobB0UcHZVRER2X6C+ICwqjDEtCICEJISEBspGELJ2tO72d3x91u1O9VHd1172369z+vl+vvHKr6vZzTp17++lb9556rjnnEBER/xX1dQdERCQcSugiIgmhhC4ikhBK6CIiCaGELiKSEKm+ariystJVV1f3VfMiIl5as2bN6865qs5e67OEXl1dzerVq/uqeRERL5nZK9le0ykXEZGEUEIXEUkIJXQRkYRQQhcRSQgldBGRhOg2oZvZt81sn5k9n+V1M7N/M7OtZrbOzM4Nv5siItKdXI7QvwMs7uL1JcDU4N9y4Ov5d0tERHqq23nozrnHzKy6i1WWAd9z6Tq8T5jZMDMb65zbE1If23rlf+GlR9LLxSVw3o0wuNM59vlb812o2ZlePutyOG12NO08/1PYtym9fMZbYNKbw2+juRmevBdqD0FRMcy+DoZNCL+dF1bB7rXp5WmLYPzccOM31KbfR/0JKB0E8z8IJeXhxa/ZCWv/C5qbYNR0mPWu8GLvXAMv/jq9PPOdMHpmOHFX/ycc2Q2DKmHecjDLL972/4Htj0HpQJj3N+n/e2vdg/D6FhgzC2Ys612MF38DO59O//6ddXnv+9IPhPHFonHAjozHO4PnOiR0M1tO+iieiRMn9q61nU/BY3cDQR33gSPhjTf1LlZXag/DLz9y6vH+F+A994ffDsDKD0P9sfTyK3+GG1eF38brm+HhT516bEVw0SfDb2fVx+HIrvTy7rVw/U/Cjf/q/8Lvbj/1eNx5MPmC8OI/+wP44z+nl0srwk3oj911KqHX7IQrQ/gwe/wA/Oqjpx5PWwTDq/OL+bvPwa416eXRZ8PUS3sf62d/A64ZBgzvfUJ/6JNwaDtUnKaE3o1YL4o65+5zzs11zs2tqurlUfXCW+D2w/CJl4KgzeF1MFNL3CV3wehZ0bUD6aPBN38EJl+UXo6qDYB339/2cRTtnHsDjH8juAjaaA62w2V3pv8Pu42WcXnzh6OJfdq56YQbVuyWOBPmn2ojX81NMGhU2/i91fJ705zH709LH6LYnxImjIS+C8j87D4+eE5ERGIURkJfCfxVMNtlAVAT2flzERHJqttz6Gb2Q+BioNLMdgKfA0oAnHP3AquApcBW4ARwY1SdFRGR7HKZ5XJtN6874O9C65GIiPSK/98UdS6euFG1kw6eZTmqNmJqJ5Ixi3q7RNn/CGJHPcb5xHch7dctPxrp72Ay+J/QpX/Kd6514oQ8HhpfL3mc0OPa4Syetszi+SWKrY2o2/E0flRjE/p2VUL3kccJXUREMimhi4gkhBK6iEhCJCChxzUrJEIu6pkhncSNpZ0I2ujQ77hmH4URLoqxiXqMQ5rlktf+5tr9L9kkIKHHRTtTv+Dt1LjgIqa3/Zcw+JvQ45pWFdv0rZhm08TSTgwzdryNH9HYhB1T0xa95G9Cj5P27QIU5UbRBtcY+EkJXUQkIZTQRUQSQgldRCQh/E/ovk/zSwfPshxVGzG1o+Jc0ceOZBpn2NMN2y/3NIwLoS/9g/8JXfonzcJoR7NcRAk9RwkrzhXLlD9Pi2dBtP1XcS6JkBK6iEhCKKGLiCSEErqISEIkIKGrOFeP24itHRXnahvOl+JcIcVXca7YJSChx0U7U7/g+9Q43/svefE3oas4VwG3o+JcXQRWcS6JjL8JPU7auQuQinNFS2PgIyV0EZGEUEIXEUkIJXQRkYTwP6HHNc0vUirO1av4nTwMtymfinOFec5bxbl85XFCj3P2CdHvTKrl0os2ohBFgswQeS2XkPZTXRP1kscJPU7au/sVzWpC+7yflNBFRBJCCV1EJCFySuhmttjMNpvZVjNb0cnrE83sD2a21szWmdnS8LsqIiJd6Tahm1kxcA+wBJgBXGtmM9qt9hngQefcHOAa4GthdzQ7FefqcRtxthN5fBXnCl1Y/VRxrtjlcoQ+D9jqnNvmnKsHHgCWtVvHAUOC5aHA7vC6WCi0M/UL3k6Ni2k2lhS0XBL6OGBHxuOdwXOZbgeuN7OdwCrgw50FMrPlZrbazFbv37+/F91tEyy/ny+0dlScq4dN+BpfxbkkOmFdFL0W+I5zbjywFLjfzDrEds7d55yb65ybW1VVFVLTMdDOXYBUnCtaGgMf5ZLQdwETMh6PD57LdBPwIIBz7n+BcqAyjA6KiEhucknoTwNTzWyymZWSvui5st06rwKXAJjZdNIJPc9zKiIi0hPdJnTnXCNwM/AwsIn0bJYNZnaHmV0RrPYx4ANm9hzwQ+B9zsV0dcbX2RptG8uyHFUbMbUTSy2XCLeTV7VcwqRaLr5K5bKSc24V6Yudmc/dlrG8EVgYbtdEJHc65y1ef1NUxbkKth0V58rOm+Jc+gPhI48Tepy0cxeeCLeJkhna5/2khC4ikhBK6CIiCaGELiKSEAlI6CrOlVsbXbQZajsRT8FUca72QYP/QzznreJc3vI3ocdeyyXqnUm1XHrWRETxWxKPr7VcwvpDrQvDXvI3oYuISBtK6LnQ0UoBUnGuaGkMfKSELiKSEEroIiIJ4X9CV3GuXrQRUzsqzhV97H5VnCuPrvQT/id0EUHnvAW8TugqzlWw7cT1PiKh4lxt44USLMRY0hWPE7qIiGRSQs+JjjAKj6otRivEMdB4xkYJXUQkIRKQ0BNQy6VNszHN2omlZoxqubQNF2UtlxCplou3EpDQRUSnBQV8TugqzlXA7Xg8k0bFudrGCydYiLGkK/4mdBERaUMJPRe6Sl+AVJwrWprl4iMldBGRhFBCFxFJCP8Tuu/FuWKbhqfiXH0vgrFpjRPmaY1CLc7l07buGx4n9JhruUTeTFy1XIhpBoqns1xONRBR2KhruRRiPJ1Dj4vHCT1mOjroJ3zfzr73X/KhhC4ikhBK6DnRR8bCo+Jc0dK0RR8poYuIJEROCd3MFpvZZjPbamYrsqzzbjPbaGYbzOwH4XazK54X5+pQNCuuduKYHeR7ca7O2iuQWKeCRhBSxbl8lepuBTMrBu4BLgN2Ak+b2Urn3MaMdaYCnwIWOucOmdmoqDosIiKdy+UIfR6w1Tm3zTlXDzwALGu3zgeAe5xzhwCcc/vC7WYnYi/OFXlDqDhXT5rwOH6UxbkKMp7Ooccll4Q+DtiR8Xhn8FymacA0M/uzmT1hZos7C2Rmy81stZmt3r9/f+963Gf0ca9f8H16qu/9l7yEdVE0BUwFLgauBb5pZsPar+Scu885N9c5N7eqqiqkpmOgq/QFSMW5oqVZLj7KJaHvAiZkPB4fPJdpJ7DSOdfgnNsOvEg6wYuISExySehPA1PNbLKZlQLXACvbrfNz0kfnmFkl6VMw20LsZ3a+13LpixorkUpYLZdQ40dZyyVMquXiq24TunOuEbgZeBjYBDzonNtgZneY2RXBag8DB8xsI/AH4BPOuQNRdVpE2tNpDclh2iKAc24VsKrdc7dlLDvg1uBfTFScq2DbUXGuLsL6UpyrYINJF/RN0Vzp4554Qftpf6aELiKSEEroOdFHxsLj2Rd/vKNpiz5SQhcRSYgEJHTPp/n1SdGsuNpJQHGuMONHOjYhHgVHMaVSxbli4W9CT2Qtl7jaiWk2jeJ3Fjia4VctF8HnhC4iIm0ooedMH/f6Bd+np/ref8mLEnoudJW+n9H21iwXPymhi4gkhP8JXcW5CrcdFedqHyz8uCrOJRn8T+gigk4TCXid0BM2ndBQca4etxFpAxGF9aU4l6Yt+iinaouCPu71G75vZ9/7H641rxzkW3/aXnC/vtfOm8iF08K/a5sSuogk1i+f28Ovn3+NKaMG93VX2qipbYgkrhJ6TvSRsfCoOFe0kjNtsaK8hN/8/UV92oe4eHwOvYVquRRuO6rl0jZUFGMT9RiHMDslb72v5eKc6+u/J7FKQEIXEX2K7Jyjf42Mvwk9kcW54mgrjnbimkkTZfwIA0fRd81y6ZRzYP3oEN3fhC4i0o1m53SELtJvFdr8tp7yvf8hc/T5NdlYKaGLSGKl/771n4yuhJ6L/vQn3htRbhNt73CnLYYXquc0y8Uvkc1aVHGuvNuJYwxVnCtYCDNrRVGcK49YrbMWezNtsX/9efY4oSetlksMM0Na24mhDdVyyRJWtVzilJ7l0mfNx07fFO3GyaYmGk42Mri8lBf3HqWiPMXYoQOob2xmy76jDCkvYciAEoaUp2hqdhQXGQ1NjiN1DVQOLmsTq6GpGQNSxUX8fO0upo4ezBnDSyiP8f08v6uGKY3NHKqp4913PcI1b5zItNEVNDU388H/eoa7rjqHgWXFfPm3L3Lnslls2XeMVLExdVQFB46dZPzwgTQ7x7GTjfx87S4uOrOKm3+wlrPHDWXxrDF8yDmO1zWy87UjTB7YzHvvfZyFUyqZPWEYx082seKn6/js22dQObiUr/xuC/94xUye31UDwJyJw9l7pI7qykEcPlHPS/uPc6S2gcFlKVb8dD2fe8cMpu7dz/kxjlcUopgbXVPbwFBg37GTDDzZyKDSYo6dbGRASTGp4tyO2361bjdLZ42lCHitpo4xwO827WXzwa0snFLJht01XDi1iie3H6SiPJ06Jo0ciHNQPXIQOw6d4PldNRQXGbc88Cz/ec1U3hLy++wph8P60TG6EnoWR+oaGAJ849FtzD9Ug8O45suPhd5OKQ28WA67DtcyLvToHX1+1SbuLWni18/vYUdjLXc/vLnN65/873Wty3/5H092G+/Ha3YCsH5XDet31XBTWTPff/JVzrQ6Th45ytP1h3j65UNt2/jJqTau/NrjOff9H3+5kSuKdnJ+afANwJx/sieiPYWzdsdhiutq2O+Mm1b8v7zjnWG7+H0Z/P6FfbyrGN7/nadZ5w7m00MeLT3BAVKMKYJfrdvDz5s3d9hPcnHLA2tZVw6Nza7PEk1/O0L3+JRLtFqS0Lb9x2Np7w+b98fSTlL4ODmvoamZoxEVZSpk9U3Nfda2vikqAJSmTg1NHF9NiLqFnYdORNxCvCL99l9EoTftORpN4AiEu8/39Tn0/pPSvTvlUlvfxIbdNTy2eQ+3Al/6zQt89aH8P7q2V217+GNZ9+vly4JjzSKD2oYmBjhHfWMzr9XUUVGe4sDx9HnrkuIituw7ypmjK3h+1xGmj62guMg4UttIfVMzxUXGiEGlrXGbmh1Hahswg0FlKR58ege3Rv922vzqRnlKZP/RekYBNbX1lNQ3svtwLbsP11E9chBlJUU8unk/E0cOpKGpmbPHDWXD7iMMLktR29DEvOoR1Dc1U5Yq4khdI2teOcioinJONjYz+tAJxpH+AzgBOHziJHuO11FT20BdQxNzq0fw3cdf5qJpVdQ1NDHjtCGs31lDUZFx/GQj50+ppL6pmYGlKXYfrmX1K4c4vXIQR+saKW8+daRqBfwZI7Nv+fSzZfufuoNcM3UN8PKB40yuHERZqoia2gaGlJfQ7Bx7auqYMGIgAHUNTdQ1NFHf2EwV6WtP9U1NvP3Lj/Li3mOUFhe1OfIfUp6ivKSY+aePZPXLB9lTU9f6WnlJ/zlu9S6h3/CfT/HU9oMU08StcV5NjNiOg7U8cngf0+wYl33modDjLyg6CKXdr+eLz/7ieb5RCp/66XpW/WRQaHE/l9rLu4ob+OFTO/hkCcz7wu+pp6TDer05p/yzCMe/cP88pE+5DDI4/R9W4XpxUmBdWSNDLP2H4cW9x1pjZjpS18iRukZ++dzuDj9f19B3p3ziltPomtliM9tsZlvNbEUX611lZs7M5obXxbYWzxwDxHMaJN1OPBwWy3uKox1HHNvHz/jRjX+4McPsYyH/sUmabhO6mRUD9wBLgBnAtWY2o5P1KoBbgO6nRuRhQGlxlOFFRLyVyxH6PGCrc26bc64eeABY1sl6dwJfBOo6eS00JTnOqQ1bIZ/zFGmh/bR/yyU7jgN2ZDzeGTzXyszOBSY457q8Omlmy81stZmt3r+/d9P0Sor7zxVrEZGeyPtw18yKgH8FPtbdus65+5xzc51zc6uqenfH6/ZH6FGl98y4zsX3RySqI6z2caM7kgtnhkQ2LTGjqGDSIvP8cZjvIazZI9lihsXIHN98Zrm0bCtrjdvb/uTbl/4il4S+C5iQ8Xh88FyLCmAW8EczexlYAKyM6sJoX51yESlk/es2DpJNLtnxaWCqmU02s1LgGmBly4vOuRrnXKVzrto5Vw08AVzhnFsdRYdbTrnEOfsknnYgji9gOBfHLJd42vAxvovoODPsopPhznLRH5u4dJvQnXONwM3Aw8Am4EHn3AYzu8PMroi6g+2V6ghdRKRTOX2xyDm3CljV7rnbsqx7cf7dyq4kpYQu0fH9PK2Ohfs377JjcZF2WRGRzniX0Psinft9zJZMUZ6X1TlffVPUV/4l9HaV0+Ka5heV+KYTdt1uFHGjmlKXrb3Clzk24YikiICF08+w9m2LbcqA//xL6H3dAZECpE8VAh4m9KN1jUCcO3Bc0xbjOdZ0RP8ROK42fIwf1bFmYSf0Qu5bsniX0JviuJO8iIiHvEvofTXJxa9ztdJbvm9n3/sv+fEuoRfCAfq86hFZX/vvD70pxp703BmjBgNQHFxcfvijF/K1687tdN1/ftfZvOMNp2WNtXDKSACuaLfOuGED2jz+zOXT+cH753ca466rz2lzp6VsJowY0O06Eo2bzp+c87qXnDWKLZ9fwpVz4rjlubTn3R2Lmttl9Mwr8mFqOdJZcPpIJh4bROUA4wuzz2bp2WMYOqCENa8c4s9bD7Te4q2qooyhA0o4b9II/umds/jCqk08dMsFPLh6B/+z5XXuvvoNPP7S61x13ni+/seXuPWyaXz/iVeYPjKVLkgcsZb3c/W54xn+RCnXzZzI1YsWU15SzJljKtj2haXUNjRRmiqiqTm9blmqiPfMncCdy2YyqCxFc3B7vLJUMc3OUZYq4mRjM+Ulxdz9F+dQbEbx541ls8fR9NphUsea2HDjIgaVpXezbV9Ymr4VW2m6DefSY/euOePYf+wkoyrKW287Nrg8RX0Qu76xmQGlxRw/2cgvvrsBdmcWfAp/+2dGDLc41ylVFaUMPFbMc597G0v+7/+wdd+xNus+8rGLeOuXHgXg+gUT+a8nXgVovfXa0rPHsGr9a639e8OEobAH/nL+RO5fsoiDx+q541cbqaooY+ZpQzh8op4PXTyFZff8ievnT2Lk4DL+4Wfred+bq7lk+ihSRUbl4DKO1jWS+qoxa8ww2AO3vWM6QxZMZ8WSs9h5qJZUkVFRnqKoyGhqchyta2TssHJeOXCCwWUpRgwqpaS4iC+/ZzZ1i8bCV/LfVqdmuRTA0VyB8z6hRy1VbIwfPgCaGvjL+RNbn59bPYK5WY7Ur18wiesXTALgE4vO4hOL0s+fOaYCgP+z+CwA3rdwMtQfj7D3HZkFicWgvOTUzUKKiqw18WY8jRkMG3jqCLos1fYGIy0x2j+fCs6NtcRsaWPowI63c0sVFzF26IDW9QcF93JtKcTWclOTQWUpUgkonzx7wjAoH8LG9y4G4He3XtTpei//y+Wty//0zrM7D7Z3I3wdzhozBPbAX5w3AcpSDC5L8R83dKyP96sPX9C6fNmM0R1eHzawFIaUQ2l6uw0tLwEzSoqNyZUdb/U3PPh0NSX45Jcpc/+SeHh3yuXUfXbj+cUuiumO4fHcti04+oz6PZkR2S3cXNuSrFGJsjhXJGMT9jYNMZ6Oq+PjX0KP+yS6/weEbZjnb6hZ2UEkKw8TerztxXWEHhvP304hXBQXKVTeJXQX8290a/5TJikILuIP8J7/vUMnOPo3/xJ6u8dR/wJaUXTng4EOfyhiq00T1R+oNnEjaKP1HHqar7egC29sohvjvOO3u96hW9BFz7uEfun00VyXMdskaqmElev1/d0MLPVuYlZMfN+yEgbvEnppqojPX3k2X3nPbAAunFrJ6CFlrLv9bXz+ylkMaDdVauSgUj522TTWfvay1ucumFrZuvzBi85g3LAB3LlsJgBffs8b2vz8gtMricMbJ4+Mpx6HFRHD55rIZtJcfs7YU21EKLpaLhGNTUHPcolmW2U71tp4xyJ++IEFkbRZ6Lw93HnnnHHwC5gzcThP3nApANfNn8R18ydl/ZnMeb2ZVixJzwt/75uqAbhyznjYvxnugcrB3X+LMQxnjangmVfSyxNHDOQzl09n+f1rOqw3dEAJF0yt5ItXncPMzz3cuv6rB08AcN38iTzywj6unDOOr/3xpQ4/P3V0x/nCPunuFoSzxg0hVVTEszsOA+lt+5YzR7HoK4+x4PQRHDrewOa9R/n7S6dx4PhJZowdwoqfrs+5/UkjB3JG1WAeeWEfAC/cuZizPvtrJo0cyL++ezZXff1xblxYTUlxES+/fpzfbNzb+zfbT8yeMKx1e7X41YfP5+1f/VOb54qKjPW3v42K8hK2v36cCcMHsONQLSMGlVLf2Mz+oycZMiDFwNIUbzpjJC//y+U88+ohJo4YGOfb6VPeJvSkGT98ICdPG8Kk+oE8dstbAPj+++dTXTmow1fpW2T7A9Xik4vP4qntB/nR0zuofeEFaIbBCTtl8aGLz+CDsy7g4z9+jvHDB3DfX6W/TLPj4Am+9aftLL/gdIqKrMux6i6hnzN+KOt21vCLv1vIGyYMY8fBEzzywj7GDRtAeUlxm9iZy8+8eqhDQh82oIT+euHykumj+PWmg/zx4xdT3cmXlLpjQEV5+otpLV9yyvyyU1VFWYefOXfi8N511lPJ+u2OVPSzK6ZUDYbdpz5HLpyS/+meeZNHMG/yCHjpINyfd7iCsWjmGNgC08cOgdOGsOqWC9q8PmHEQG6/YmaP4xqOoQNKuGTcaHgJPnTxFJZfMotm51rP37ckjo8vmtZlrDeMH8Y7Z5/Gnpo6rjpvPMN+W0LlmCHQVNPjfuWsgGdj3XvdeTRailSON3r/4QcWUFVRRuk3iqAp4s4lhBK6eOnaeRNhSzixbnv7DM6fWsnrx04yfc1DpF425p8+Al6Cj7x1SttaCNDhqDyb4iLjK9fMOfXEmoFQWgy14fTbR7kmc4A3nZEu/kaRKaHnyP+EHsf0u0i/XNS+/9HeWiHWdiJpot2ExRC2/18H1QSnja6ATaW0ueAa6v6VOTYhxY1k/3eEM75tp5j2eodo6UMBf/ooFN7NchGRzhTutMWKMv+PG33heUKPYyeO6RfFopvqF3s7ERbnOtVGtOEjayCqsSngaYsV5fHMFBPvE7qIiLRQQhcRSQgl9Fzpgkw/4ft29r3/ko8EJPQ4ZoXEV5wrnqJZcbUTZeGolm0SQRttzh+HGD+SsYlqjEMY35b3a/nOmHHt/pdsEpDQRaSQZ7lIfPxO6HHNColFDDNDYmsnrpk0Psbvf8W59McmPjkldDNbbGabzWyrma3o5PVbzWyjma0zs9+bWfYKWSIiEoluE7qZFQP3AEuAGcC1Zjaj3WprgbnOuXOAnwB3hd1RERHpWi5H6POArc65bc65euABYFnmCs65PzjnTgQPnwDGh9vNQqALMv2C77OZfO+/5CWXhD4O2JHxeGfwXDY3AQ919oKZLTez1Wa2ev/+/bn3UkREuhXqRVEzux6YC9zd2evOufucc3Odc3OrqqrCaVTFuQq3ncgKR0GYxbk68rE4V5j7aLjFuTLutN7LMPrUkatcqubsAiZkPB4fPNeGmV0KfBq4yDl3MpzudUe1XAqynUTMPlItlxCDhRhLupLLEfrTwFQzm2xmpcA1wMrMFcxsDvAN4Arn3L7wuykiIt3pNqE75xqBm4GHgU3Ag865DWZ2h5ldEax2NzAY+LGZPWtmK7OEExGRiORUqNg5twpY1e652zKWLw25XyIi0kN+f1M0Trow00/4vp1977/kIwEJPa5ZIVE1E1fRrG7ajaXRMELGNVsngvgu64OwgoYUMqQiYqHt21HPnEqOBCT0OOgqfeGJcJvEVr8nTGH3OcR4Xo6nn/xO6ImYHtfaECrO1ZMmfI2v4lwSHb8TuoiItFJCFxFJCCX0nOliTL/g+0U33/svefE/ocd1y7bIJKiWSywzdmKaFRRJ/ChruYQprH6GtM85zXLJlf8JPQ66Sl+AotwmPm5vzXIR7xO6inMVZDtRFaDq0EakDUQUVsW5JDqeJ3QREWmhhC4ikhBK6CIiCaGEnitdXe8nfN/Ovvdf8pGAhJ604lxxteNp4awOt1zzqThXDLfkCyVkxi3owijO1XKBNYziXPqD1SW/E3pstVySUmMlrnY8r+US9Uwg1XKRiPid0EVEpJUSuohIQiihi4gkhBK6iEhC+J/QYyvO1VfFuqKK62vhrIjbiHQ2UAzFuUKJq+JcvvI/ocdBxYUKkIpzRUvFuXzkeUJXca6et4OKc+XWQERhVZxLouN5QhcRkRZK6CIiCaGELiKSEAlI6DHNColrNk1s7cTQRhy3uQu9jQhnUbTpe1jtRDAeYfUztH1btVxylYCELv2TLrS1VcDjoVkusfE7oas4V4G2o+JcXQRXca4+i5F8fid0ERFppYQuIpIQOSV0M1tsZpvNbKuZrejk9TIz+1Hw+pNmVh12R0VEpGvdJnQzKwbuAZYAM4BrzWxGu9VuAg4556YAXwa+GHZHRUSka6kc1pkHbHXObQMwsweAZcDGjHWWAbcHyz8B/t3MzLkYKuk88z148eHw4zbUtn28bxPcMz/8dpob2z4+uieadk4ea/t40y9h1+pw22i/uQ9uD/+91B4KFoKLZL+/Ex7/anjxj+yBssGnHn/rMijK5dckBwe3QeXU9PKuZ8IZm9b9NBiPn/8tlA7KL2btwVPxHr0Lnvpm7+I01QddC2J9861QVNzzOK4ZrCi9f319YTJmzVz0SZh1Vehhc9lTx4wrKNEAAAckSURBVAE7Mh7vBNrvia3rOOcazawGGAm8nrmSmS0HlgNMnDixl13OcOHH4bX1+cfJZtKbYfw8wKCkPLp2xs6GKZfAqOlQf4zI5tqWvzXdxsKPwCt/jqaN0TPhrKUwbk76FzEKFWPhtDkwbzkc2xtu7KozYeKbYcqlMOtqaG4IN/ac98LJozBwRHhxJy2EuTfCidfTsfNVdRbM/xsYOh6O7Mov1ri5MPtaWPv93o/lqBkwbTFsebjjAZCvyodFEta6O4g2s6uBxc659weP3wvMd87dnLHO88E6O4PHLwXrvN5ZTIC5c+e61atDPkIUEUk4M1vjnJvb2Wu5XBTdBUzIeDw+eK7TdcwsBQwFDvS8qyIi0lu5JPSngalmNtnMSoFrgJXt1lkJ3BAsXw08Esv5cxERadXtOfTgnPjNwMNAMfBt59wGM7sDWO2cWwl8C7jfzLYCB0knfRERiVFOl++dc6uAVe2euy1juQ74i3C7JiIiPaFvioqIJIQSuohIQiihi4gkhBK6iEhCdPvFosgaNtsPvNLLH6+k3bdQC4T61TOF2K9C7BOoXz2V5H5Ncs5VdfZCnyX0fJjZ6mzflOpL6lfPFGK/CrFPoH71VH/tl065iIgkhBK6iEhC+JrQ7+vrDmShfvVMIfarEPsE6ldP9ct+eXkOXUREOvL1CF1ERNpRQhcRSQjvEnp3N6wOua0JZvYHM9toZhvM7Jbg+dvNbJeZPRv8W5rxM58K+rbZzBZF1W8ze9nM1gftrw6eG2FmvzWzLcH/w4Pnzcz+LWh7nZmdmxHnhmD9LWZ2Q7b2cuzTmRlj8qyZHTGzj/bFeJnZt81sX3DzlZbnQhsfMzsvGP+twc/mdF+0LP2628xeCNr+mZkNC56vNrPajHG7t7v2s73HXvQptG1m6dLbTwbP/8jSZbh7O1Y/yujTy2b2bJxjFfxctrzQ5/sXzjlv/pEu3/sScDpQCjwHzIiwvbHAucFyBfAi6Rtl3w58vJP1ZwR9KgMmB30tjqLfwMtAZbvn7gJWBMsrgC8Gy0uBh0jfKHIB8GTw/AhgW/D/8GB5eIjb6jVgUl+MF3AhcC7wfBTjAzwVrGvBzy7Jo19vA1LB8hcz+lWduV67OJ22n+099qJPoW0z4EHgmmD5XuBDvR2rdq9/CbgtzrEK1s2WF/p8//LtCL31htXOuXqg5YbVkXDO7XHOPRMsHwU2kb5/ajbLgAeccyedc9uBrUGf4+r3MuC7wfJ3gXdmPP89l/YEMMzMxgKLgN865w465w4BvwUWh9SXS4CXnHNdfRs4svFyzj1GujZ/+/byHp/gtSHOuSdc+rfvexmxetwv59xvnHMtN8t8gvRdwbLqpv1s77FHfepCj7ZZcGT5VtI3j8+5T931K4j7buCHXcUIe6yCfmXLC32+f/mW0Du7YXVXCTY0ZlYNzAGeDJ66Ofj49O2Mj2rZ+hdFvx3wGzNbY+mbbwOMds7tCZZfA0b3Qb9aXEPbX7a+Hi8Ib3zGBcth9w/gr0kfkbWYbGZrzexRM7sgo7/Z2s/2HnsjjG02Ejic8QcrrLG6ANjrnNuS8VzsY9UuL/T5/uVbQu8TZjYY+G/go865I8DXgTOA2cAe0h/94na+c+5cYAnwd2Z2YeaLwV/2PpmTGpwjvQL4cfBUIYxXG305PtmY2aeBRuD7wVN7gInOuTnArcAPzGxIrvHyfI8Ft83auZa2Bwyxj1UneSGveGHwLaHncsPqUJlZCemN9n3n3E8BnHN7nXNNzrlm4JukP2521b/Q++2c2xX8vw/4WdCHvcHHtZaPmvvi7ldgCfCMc25v0Mc+H69AWOOzi7anRfLun5m9D3g7cF2QDAhOaxwIlteQPkc9rZv2s73HHglxmx0gfYoh1e75XgtivQv4UUZ/Yx2rzvJCF/Hi279yOdFeKP9I3zJvG+mLMS0XXmZG2J6RPn/1lXbPj81Y/nvS5xQBZtL2gtE20heLQu03MAioyFh+nPS577tpe1HmrmD5ctpelHnKnboos530BZnhwfKIEMbtAeDGvh4v2l0oC3N86HjRamke/VoMbASq2q1XBRQHy6eT/qXusv1s77EXfQptm5H+pJZ5UfRveztWGeP1aB+OVba80Of7VySJMMp/pK8Yv0j6L/CnI27rfNIfm9YBzwb/lgL3A+uD51e22/k/HfRtMxlXpsPsd7DDPhf829ASj/T5yt8DW4DfZewcBtwTtL0emJsR669JX9jaSkYSzqNvg0gflQ3NeC728SL9cXwP0ED6HORNYY4PMBd4PviZfyf41nUv+7WV9LnUln3s3mDdq4Lt+yzwDPCO7trP9h570afQtlmwvz4VvM8fA2W9Havg+e8AH2y3bixj1U1e6PP9S1/9FxFJCN/OoYuISBZK6CIiCaGELiKSEEroIiIJoYQuIpIQSugiIgmhhC4ikhD/H/3zgjeDBrhTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAD8CAYAAACSAEGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WZClyXXf9zuZ3373W2t3V2+zz2AAcAbLAKABwhRok7RM2rRIUVIoQgxGwGGFbDP0YCn84vCbFH4QSdmizAjJFBkKkpZs2aICMiIIkRKJZQgQg+Gs6O7pvbu61lt3/7bM9EPerp4BpwcDAiCrwToRFXXr1r15vy/Pzcyz/M//iHOOY3lwRP1ZX8CxfGtyrLAHTI4V9oDJscIeMDlW2AMmxwp7wOS7ojAR+WER+bqIXBKRv/vd+Iw/ryLfaT9MRDRwAfgh4CbwZeCvOOde/Y5+0J9T+W6ssA8Dl5xzl51zJfAbwI9/Fz7nz6UE34UxTwE33vT3TeC5d3pDFGQujbrgnP8RARGcgDhwItQNhRioMwinoGqHiQSxoCqLjRRSOVRlDsd1WoFzuFDBmzYSsQ4xDifgQv++OlOIvfs+UJV/HQ6cFhDQuYG6hiDw4ypBHGCtv14l/j0ii4EcTiuqpkKXYAMIcgfWYSOFE0A4/Fw9LUGEeTWkNHN5u7n6bijsXYmIfBr4NECcdnn6R/82VkOdKlTtsNrffNUQTCzMvn9CNYtQBwHxvsJpP06dOnQJYoVs09G4Y6gTRd4TVA11KtgIbAi68IoAiIZeg/NVoeg6yhVDcifABg4xgo0dUgGLaYv3hdYNQ9Xw1ycGTCSEM4uu7inWLV5/Vwl779Hkq4ZwbU65l5DcCQgnULWgalls7EjuaHQFzRsWp+HVf/Pz952374bCbgGn3/T3xuK5t4hz7peBXwZoq75r/d5lqErMcESwtoqbzUEJrqxAa+w/HAMgH3waefUyaI0rS1xVgzWoVgvV7UBd46yF0mvGDAbopT5mbx8AvbaKPRii0gRnLHY8fuuFifhVfleUBmvQjz0MwzFuPAERJMtweY5of6rYeY5oDVqDtUgUAZD9q4H//8efIfjqK/DwaeT2DmZ3D5Vl2Nns8KP02ioYgx7n953c74bREeCNjr+AV9SXgb/qnHvlfu9pS989J3/hO3odD7I87z7HyO3/6WyJzrlaRP4W8FlAA//0nZQFUK802PnJjyIGqpZgIqgzRzATbAj52ZK///F/wR9OzxOK4V+98T6qMmC1N2Z/knGqN2RWhey8sEa8L+Bgvu73JBeAjSxSKVxmoBKCiSaYCnXqqDuGqJ/znhObXBksURm/157qDNkct9DiCLRlb69J9mpC1XKoUjCpQ1UQjoRw4hDrzz7cve1QHOx9pOKvfeB5ElVxYbrK5y89jC00Safg7NI+ShyXd5aoa03yYubP6V/50n3n6rtyhjnnPgN85l2/XkPRE2zgH9cN688OBXXDEWYVGkdtFcvxmJXWlFjXFCbgqbU73Jp0aEYlVccgtUYZwWQW3S1xuzGqVRFEBlNrzFxjT1ZUd2JsCAisdcc82trh9qRDIy5pxzmzKmKjM0SJYy0Z8wfVGfJejNP+7CFwSOG/UCb2xg/CoXEjFpyCIK35kfaLXK1WmJmIh07ucnVrCa0t3XiOwqG1Zbk9ZaedgvPGyf3kz8zoeLMEc8faV0qqpsYpqDJ1aFE5BcOHG/zj1R/g1qBDElUM7rRRU42sFlwfrAGwN1F0bwrxwBLOLdNVjQsydOGwOiFfEpIp4Py4wQzqFEBzQy2zudehHkUEQ83tzPpV1DJIqXglMURbIWtfteR9hc4FG/ovWDx0hFODGIc4kNriAn+uOYHNLOUfnv0UtycdblxfJtoKCOeCyuEP3pvgrBDshtxOmqy8DuIcm/N3mKvvujbehVRN4eYnQ1wAda8G45C0hkkIzYqnz93mH53/l7xa9ljSUz577r1sVy0eTbfYrVqEYpjZiP/3ynsZXm8jTkhOjxCB3CjSuKShHM24IK8DhtOUfOqNgtWVEX/t5Nf5aPMivzt6EuBwvHPJLptllzPxHp8fPMKXmo/jGhVoB0aQwMEwJJjqhfuxuKHFShMDj378Kv/rmd8iFMVnz6/zynyD37nzGO0457/Z+B1uVX12qxZDk/Iv1HMgUP27+8/Vd9zo+JPIsdHxVnkno+M4+PuAybHCHjA5VtgDJscKe8DkSFiJEgYEy2sQhrj5HIy99784wjUzpDaYpRZ6fwJlhSsrzO4ueqkPZYUZjQjOnsZNplDVsLoESuE2t5GNdWSWU5/oof7oEqrfw7UbsDOAqgStqR/30bTg5StIlvprGY+RZhNXVdQPnSC4vIlkKW4yw02nyKl13O0tVKvpQ2V1jSjlQ2PWIXFEffMW5pPPEl+8g13ponaHuPkc6bRxSYTkJVS1v56tXRCF7N9fLcdW4hGUP9XQ1J9EXCvDfPBZVGUpuyEm9ukQVTuchryr2f2gJbuhqdruMPwj1oehwrGPKnTfMETDGhMrqpamSoWgcFSp4AIIJw4bCOIc4cw/rmOh6ArzdUey7SMXKLAagjmoEqYbjtZV6L5R+rEbClWDDYV43weZlVlcl3GHB40TYfBYzPBxfx/hUJHdcegclIHROSE+gKLnP6f/uk8Nud/+4n3n6niFHUE59sO+h+RIbIk0Uuyz3wdaqLIAVXmjI5jVlJ2IsqOZLyuwYBIf8onGDhP5raVO/Va29vwMG2nEOqYnI/+6kaHOFOluyXgjpk6EeOwIZpaqoTCRUPSEqgHpjiOY+x3HxIKJ/eeUTSGcQftKjlhHvhyRXZ8y32gQDUofQzQWG2r0vMKGGllkm/OViN2nA4olS/sNRTR0tG4WzNYixmcUyY6jToU6g+WX/FjuC/ffEo+EwqS2RLcPcHGIdDOCgxnUBgZD9KlVoMngcUWyA9mWJZpan4rJFOHUkvc0yjhUaQj3pthGTLKvCUclxVJMdqcg2B6RpkukN0ZU/QxV1GRFTbHWwCQhYoV0339RTCRkNyvyfkA0NFgdEE4t4Z0h9XKLeL9CTeaEk5jo9oGHAgQarRQoQReLtLZz2HCJ7I6mdwE6//4S+fvP4JTf7YIpdK4WHDwcE40huTUBeAvM4RvlSCjMBQrTb+IChaot+ak2qnaw0cVqj+eI933qZfioIt0SkoFjdFYRjYRgDlUkuEBRdzPEOb8SVmKiYc1kIyFuhdhQmJ1rYwNB55pwonHK57NMLARTw8HDEbpwmChEjGP3fSHRyBHOBdtt+GtNNfZ0j2hvhllqQW1xocLGAVL71JAqar/ClkOqhlD0hc4rPQ4eCsl27cJwcuw9leAUmAjQ/h7uKvTt5EgoTCqD3hv7VWUtcdFG5iViLMzmJP0OVvdp/z8voPs9Rh89S+PGjMZmQHR1F5cXuPEEOX0Smfn0uh4kmE5KcHuf8KCDTOYwnECvjW2n/vOqGr3cIX0jx/Qa6HFOcktTrjYIZhV6lJNttYgGuU+fTOaovQPC1SVsFiOzAqkM1AYpK1DK+4Ba4QKN1Ib2pGC2vEQ0hvlGi96FkvjmAezsM/yhx+m8sMX8oT4uENR47t/3Jj/0j83VkbASW6fch575m9hIY0Oh7HhUUjixFF1N1RD2Pmh8clAgPNAEY49YqjOHzgVdQOeyId0tsVpR9APyjiKaOupYqBoe1GMjIdm3hFNHnQizNUWdQdG3RANF3XAesFOCnnkAT505uq9D93JB2QmwgXcndOlXsqocwbTGKcFp7zZIZXFasfn9KUXfYVZL1G5IMBPal31K6eA9NVIq9FyID4SlV2qkdrzwe7/IeHTzbZfZ0VDYsVn/Fjk267+H5GicYWmCfugxAKp+RnCQMz/TIpzW1InGJIrbn1A0rypU5XGIuvQgmDrxZrnOHb0LJcGkBCWIcdTNkPlySDizlC1NNPK4wiB3hJMaVRimpxLioeHOcxHZbZ/mL7oeONq7UDNd1x5WMHf0XvKWbN0IFyBSv/UFoxypDE57AI9UNS4MkKrGZjHXfqxDvlbTvBIQjRyt6zUmUcxWFMnAMjmpCSeOpVemOBH42ufvO1dHQmE2VOQnW9RNf8P5akwws9SJps40875CVWBiGD/kCEeKaHgP+JLdsSgD4zMRzdsezFk1ve+mc2+mly3v48VDS5UpxGrK1QhdOnafjnDKj1W2vU8kFvaeCqjajuy2kBxYZmfbHhVcOMqOV2Q4s1TtEPChNBv4L8tdfONsLSRfq/1eJiwwKiE4mK17X82GUHaF2YkUXd7DhLydHJ9hR1COfPBXkhj16BNIVcPuvkfVthuwO4B+B3YPmH7kPLqwRP/ua/DMk+ibO1QPrSOf/xqz//I5Wq/sIkWJyxJvwtc1rtfGXriMPrGOi0MYDJF2i/z8MvHmCGqDu72FnD2FefUC+qnHsG9cQ2UZZjhCve9xZFbA/gHVE6eJbu5jmxkuDVGzcoG5Fw8aqmowC4dXBAK/W5jXLjL9S8/RfmmP6WN9ooOK6NImBAFuNsPs7aN7PeYffpj0+tC7CNd///5zdbzCjp4cW4nfQ3IktkSaKe5970dVBhtqv9WwKAWqHbMTMVUqxCPLwSOacOxIBt7BDXJH0VJkO4Z0c0rdilGld7LLbkQ8KJicyahjoXtxSr6cABDMDXWqfUhqZpmvBHQuzSi7EePT3pqLJpa8qwlnljoRGpsV4aigbkWL6hpQxiKlBeWNDKm9wyzGIg4mZzJ2nlUku4KqQOeOdM9SNv1aUbUHy+rS0b44xokgr93fSjwSK0yMQ88rH0NT96wsX5/laL9+wMHjsPUhhSo9rDvdrahjIZxY+q9MsJEwOddEFQaxjmI5pmxr6kZI41bO0vPb7D3dQNXOuwupJtme035xm2BuiCaWze9vMFsJ6F0oaNwpybsaE7FQDISD3H+hRNCVRReG4CAHJahZhSqN/6mtV1hR0f7c6/Rec8zXHFUTwpk/gtL9mvmqEM4t0cQyPaGpOzE2C49+LNFpwWQhLlRUzQCnhDoRkr0amyr2n0qpNwrCazHT05bWVcX+EzFlG2wUwLkmRU9o3fAmthjHvK/JdmvmKyFVFlE/kx1mnG0Q+JRMHDD60BrjMwoTQ+uaY3pKqJoJ+ZLPOAdzGDyuadxylCspZVujKkfZDImmliDVBHODzUKwDhbpHRcGKKXY+umnGD0MpmFQpcaE3sWoM03Rc+y+J0CXkG47qkaALuxhTdrbyZFRWLHkc1XioI5l4TtFhDNHviw0WjmTU4qoUTLSGekdxex8hbwRYlKwoaPoKMQG6NKBwHgjQBfetxIDZUuYbAQku97pnp5IqVPv35U9y34bwrEw3fDVmShhdsqi54LUQjTVWC0ULUVQOPKuRqeKeOQhDSZWi4pKv4rEQL4iBGfHnO6NuJqscBD4eGLdcFRdgxhBTxVlB6Kpos6Uj1XeR46EwlRe03xlGxdobDtFHUwpN3qEuzNcqIlGGVthl6wEVUV0dn3Ja+u6pmo4mrdq5ssB7Ssznw/LIkwzQhZOqKoMalIyebRD+pXcT2rtz52iH1M1NeMNhS4g3bMEucUpQeeW0dkAVcHSyxP03gTbyZDaYhoRelIgeXVozoux9woCawNhAKwy2WqyudGkfwuyHYsJ/ZY+ORn5xOmeJdmvCYcFGOdLc+8jR0JhVStk9z86gVN+NaiqRZ0KYhLEwfCJmr/y0d/nq4PTPNbe5v+7+BR1qYmziqrSjJSlmY24+nqfxs2MYOaYnParyobOR9zbCWouqDJDF0I09NUrJnNUpwuWl8bMioiDQYqKDatLI3bGGXWt0dqy91xM56UmdQqqXlx3MyPZg3DsDQfwNWG4BSgHGDwp/NiPfImtokVpA55/6RGCoaLuK7qrAyqjGWw3IIbOV9uIhfraMcztgZIjH+koTzS48bMfw4VgEkedWVzokFJB4Fg+t89vPv1/cMM0GduEX9/+CEosZ9IB+1UDhWM9HvJrr30Yd7nht7zzU6o8IGmUiDji0C+Lsg6YDhNUYLGlJswqPnjmOp/oXeB6scRm0WE1HlNbhUGxWzR5tn2df37lgwxfX8J0al9uVCnQDj3SRAcKqX1GXAyH5UZOwfInNvnFx36D90Yhn5vH/KNbP8ilvWVOdYZ8aOkat/IuANcnPa69eBKphfLn71+BeWRXmF5bxWxtv+3r1dNPIDc34cQq5vVLby0ifwdRWYYrSxCFq8pv+vrg7Gns7j52OvVPfGPB+rsU/fgjmK9fIjh3BnPrDipNMKMRenkJs7tHcO4M9fVbYP3Z9U4r7JsqTET+KfAXgW3n3NOL5/rAbwLngKvATznnBiIiwC8APwrMgL/hnPvqN7uhTrLuPnr+Z5Dp3McQywrbbaDmFTYK0IMxN35ig2zbGwPB3BLOFoZBYZkvBUQTS+PCvo8nRqH/SQKkMlS99O7NgoVgXGCTAD0uqJYzqkZA2daEU0vRUcRDiw083USQW0ykiA9q4tsTHzNUgkzmmNUOalJ4o0MEqQ0u0N6BtguOjpMd6jRg/4mQcOzI9gyNSyOK9QbiINqbMz/VAAvZ5QFS1Xzh5q8xzO/8iUNTvwL88Dc893eBzznnHgU+t/gb4EeARxc/nwZ+6V2Mf4+IZBEwJQxQwwVyKlAU55c9r0VDqFMIJ/aQxMQGgqodVbYoU01jP2FF6QEzzZhgWnmr0DhMrKhbMXp3TN1OMKEivTXxhkJpad4sifdLTCREY4OJPDkL1iHW+hxXI6Y+1Ucqg23G3hp0DttI/WOtveKUIvr6bSYnAlo3DfHIonPH/HQLGyucFjY/3iWYGsJxheQL5b/DGnpXW6KInAP+zZtW2NeBTzrnNkXkBPC7zrnHReR/Xzz+9W983TuN/+YtUYIAV9ff9JreLLrdxkymh1vK297D3XHftK1JGPmtccHF8WZRjca9rfDN48Qxrij++LiHb/zjY32r8t0I/q69SQl3gLXF47ejLTr1dgOIyKdF5Csi8pWKexPwrSoLwIxG33SSDsd90xf08Bx7m/e+nbKAtyjrLeMevvHbU9Y3k2/bSnTOORH5lk/itzDhtE4586FnAXyBQlNjAyE6qCk7AVWm2P5kRbQZHiKkdO4Dv3UimMT7Rr0LFTq3mFhRdDRVUwinDl36ADFAcuDPqXBqicYelbX/lEdHRQPBaQhmPvpRtRzJnkcVx3uO3qWcohcuqBmEcGJwSlDGoQuD1O6QX0qsj5ZMziTc+YQl7s+RV1u0rrjFfcLspNC46ZidEEziOPGFGl0Y+PJ3Hvm7JSIn3rQl3jXn3hVt0R+TaU700lVQGjedEhmDOncad3OTdGUJe2ebpc9kTD/2CPFugX75MrKxjnntIrrX8/REa6uHdEWuKEi1xo7HBKc3qG/cpHN6A7TC3tkmKwpvmV25RgR0ux0IAqr3nCH8o6tIswFVhVvqIqMprpliXrtIsL5GMJ4gaQKioNeG/QNcUSJB4CP2d0UEyorexYTeZwrMwRD1vidQgwluNsOdXsf+E89IuLK4B9VqIVoh8+KPz9HdYf+EZ9j/Auw55/7egsCy75z7H0TkPwP+Ft5KfA74Refch7/Z+MeO81vl23KcReTXgU8CyyJyE/ifgL8H/J8i8rPANeCnFi//DF5Zl/Bm/c+8mwuUJEaffZh6peW3mMpQ9GKya0NMM2a2kbH9rCc0aV13JAPDvK9pblYMz4ck+57wJNu2pFs5qjSU/YT49oTpw22iYe2zAIu7jYY1OKgzn2LZf7pF2fYFEb0L/gyarmmCuaNxp2Z0LqB7sSTenTM73STeL31GIdMEM0O4O8GFekHpJ8iCjg/ApiHXf7hNNPJw7JWvFYiD+UqILhyTU5p01+IUtK7lPh754v3zYUfCce7Ea+5j638Vl8beHG9m3qRXgtMaKUrMxcvUP/gBxmcieq9OCG7sYJe6uFCTn8iId3NcoAje2EREcP0OTvlzq+4mBJOSqpcQjAr0YIrNEu+nlTVyewd7dp35iQbh1Csz3J1hX34d99H3E+xPqVZbRFe2PS9iHCLGYvpN9PbQl76Wlb9mgDjy23OgcVFIvdKi7IaMTwW0r1XE23P0zgHl+VVstLjGTNN8eQsXBnzx6q/c1w87GgpLTriPnvnrHpsOsKC0c3GIFBXFiTYHj0beGIi8gaGMI5w6ZiuKpZdn5CsxyW7pI+i1xaYh+tYu1fk1bKQpuwGqdCQ7OXpzH7vcQYqKut9gejJmclLT3LTEBzWz1WABV/PGh6ph+cv7h5lw2dzDnluH2oIW9N7Yk2kuiDlxzq8UY7CtBnd+oE+ybxeJUEd2O2d0PqVq+EKO5q2S5Oqex9WXlXecy+2jG0vE1LC9h7RbYAyuNlAUSBQijYzw89dZ2zxD3W8gn/8a6v1PwuWb1N/3CK3fu460W8gXrhI8dA57ZxunNbrdgjRBf+0iQatJOBzhjIWnH/Wm/cVrcGIVPS3pfnmf1nIbdTD1KKqPPEm0PUUNRuSPnyD+ykXYWEeNcx+FmU7hhdeQIEAaGYQhFB7AetcPc9Z5ZNSdbU6UFebCGwQbp3yB+8Mn6L4+xiYhdSMg3pp4XP7mtv+yvsMiOhIrrNXdcM9+7L/DxL6YwIQ+kRmNDLOVgLwvjJ6uQBzJ9QhVQbLnqDNP0FUs+Xto3BA61ypMpJgvK0wsi9Ih/ztfEpq3fD4KgWhsyXuK6SkhHtwlC+OQ7dSkjnAkHoyaQveSoWyqQ9IyJ3eJxuxb6pp9vs0nUQ8eDhk+XSGpQW1HNG4oXyTYEWbrDl2A1EIwg95F79O9+Du/wPjg7YshjsQKU4Uhu7CDS2Ns5ON/aMFFAemVOXsfXkFeCokHDl1asu2S+XKI7PmIuLoMJhRaVyaovELyivBc77CipOyExIOSfDkiXVCl3cWLqDNNnFIkB17pzRs5B4/6THT/9YI61ZQtTfeFHR+fTEPqZkh8bd+fXdP5vTPXeiyHU+J/hwF5b4XoCwHztZDWdUv3s68x+sHHSAag54rexZKiG5BtemMJ41DFO0RsjsoKe/8P/vfYQKgyhS79qgjmlrLlK/Z3PmzBCC62xNsaVQl6DnXDswiku76ENh5agtzHGOfLinjon68yfybVDV/Al+4b8o72K7QvTDcs4UgIZn51W+3PLhP7JGgwE9afL6ja3qm32q/uaGoXlqHnAb67Ou+mWepE2PqIYFdKwmsxwUxIdzxy6s5zCgGiA+/8dy/4Qr9X/u3PM9m/cXSNjmM/7K1yDCT9HpJjhT1gcqywB0yOhJUoSUxw4gy2nSGVwbQS6lZEtDWFQFF1E/aeTjCxP8yXXvX8wLNlRTTxPBpBDu3Lc6Jru9h+i7qboOY1xXKCqh1FNyDdLj09UjsknNUEgzmzM23yvqboCNHYw7/jA2/sxCNv9gdzR7Zdk9wcUXdTXKjQo5KqnxDtznxytKrvJWKtLyqXqqZe77LzTIOiK+gSOlcMTrwDbSLlsw0xJANL6/WhLxK8eP/qlSOhMBtpZo+v4pRgUoWeW6qWxkQtbCSMTwWMzzps5GjcUGw/EyHWpz/yud8kghziYUTdWEeMo+gFVFniowu17zChqpA6udu6AUZnepjId4cwieeOsiEUHV8RefCw9qmbUhAbUDV63o2oHdWpmGDuqJotgukCl7goMBTrO1ughK0PRhRLFicOVYsH7DjIl72VWTUd0UgoWxoxHf/eG/q+c3UkFCbGV+ED6NJDneNBQdUMQSl6l0rqZkTR9wRfvQslk1MRbAHO+YpJA/FBhZTeF6paAUHuaN6Yg4j3wbZyZidTwlHtQ1szRfN2jYlj6hpWX8iZrfkvQzg1uJse5z/ZCGhfnnmfrhcRjmriPYdJPEybu0jfRT8WgKCymFjTuh6QL4POhaWX3WJsSzQW8p7nGWlsGpyCdLvA3a3gvN9cHZv1R0+OzfrvITlW2AMmxwp7wORIGB2232DyQx/xTXJiH8tzylPgOQWzk46zH77JnVGL6TBFBiFS+/gc4wDXrCHXdF8K0IU/2Oer3goT5+N7TnnWT/C0RKry0fb5CYcqQb9nxGynQTDSmPUCN9ek10Pmp2vECMkdTXbHLcqK7h0vyb6vtIR7TXLuNq1zCu583LF6fg/rhMGwgbudoOeeIbU+UYI4nFGE2yHtS4v7/pd/ys1yvlXRc0Pn5X1wjmqpgZ5WVP2EcFRStSKS/ZBrboN4IHDGEB0o0m2HfjWiagk21JgYOlcqoqHvchfOEpJB7fu5yF0CFkW6a2nczDFZQJ0qWreE6aomrzuEiaNxW+BawuS0I9l3ZHc0dUOIDxy9V0bYJPTX2QoxiSLZKQgGM598vdtdsKz84zDAyRL7gxWqtiXZ0rRu+FLcybpmXsbEB34OoqGjc6VArEPnR50c7NhKfIscW4nfQ3IktkSyBPXYk7hA+eQlC86pqd9a5icypquabM/nsJq3SkzqowHh2BeY21jIbs4wjZDgIMfGAS7U6GmJVIbZ2TbZxT1cGpGfaJLeHPsqynHO7FwXVXlnu3FzRr6cEB2UTM6kpDsVNlKHQFFVGZwINtFI7VkD9LQ4RE1RW+9Ah/76yqWU8UZE5405042EzmtDXKiZnmmQ7JWE2xOc1sxPt4hGvrCdl48415QLFdPzLawWyqbnXvJVjjFOQZ15bsE9gKBmbxySbitmG4ZwGGNih9RCPGjTumFRqxHzJbUINWXEA8d8VZCn1glmgMB8pecTpo0WRRfmp2vUXNDzJuI8V5UuBKkjzzBaBfRfWfD/zn3oqegKycCi6pRg7kE2uHtJTKeF2bJi/1nD+C8atB4z/ErPJz7HcPOHQvR0CbGCiR3LLwSIBXPpqIemakeyXaAqi8kC9KgkP5mhc4sq/Te/bIW+wLwDa1+pma4KjVteuXnf4ySWXp4tqCNAmehwfBMK7a+U5EshVSYkB+YQal22FI0tmIwD0h1L1fRkYo07fqXkXbWYYEeyV9G8UVO1wgVUQRFvzxfEX/faAt9tF2wjjZOY9GaAXGvhBBq3HeHUMlvRnPkMzJc834cNhM4lD1/Qxf2NjiOhsDpT7L4vwwWeSc2EKapmcSMwe6zgP3/vl7k0XuFUNuR3H30UgCiuiAJDI6wxVgxVPWcAACAASURBVHHl/BLZlmdzy1cdUkPZN+ipwjQWWxaOaKCR2gea66YlWJnzxIlt3thdoioDOq05BDXTMmQyi+m25mzvN2l+NaVqxoeryGlHOI4IJ/faAnuOEX/tTuDgvZaf/NgX2Mzb7OZNXr+xjpsFqMac1o8fsBwV7M8zxpOUst3yO8rrDwib22H5DxxWJ775uW8qf8IKyfuJ7nYwB8N3/sgwAmffWsWySLPIoh/LtypHvsbZdjPyj3sIftVUlA259y1VMD0ltD68w96giZ0H6ANPxWDPzXHbCbZdow4Cuq97KnMTCrNVBcqDaMBH83Xut9R0xyu1aghVC89nGPp6ZRs6XOgO65QRkEKRbila1y1V5qtnTOyvLxo7ook5XGE2FFTpx3cB3P64Ijo74UR3xOUbK4SbEboQqqbDnchxtcLlmngroHvBI67sbz2ANc5/nuXYD/sekiOxJdLKqD7yAZ+JXQp9k4HFwW5Czztlf2KP/VtdiCwyDgimPlbnQocqBJ0L7auOdG9B79DU5D3xOPwaio74DHFLaGxagrnz2yYwWxfyEzXRnkaVHumbLzuCuW8d4gTifWHla4uODwrKlkbVHvWraufbjyy2ReDQWpycjNh/D9RrJZSK5qXwkEtq8nAFAun1kKrpWP8Di9XgPnvc3eiBkiNvdEgUoc895FkExLezsEmIPphBGDB5tMPuewP6rxnGpzQrL+bUqSYalpS9CBsKdaJItyviLd/Br15uEVzeZPbsWWzs8fq6cjQvDrFRgGmE6GmFaYTkqzF519M9+B4uDpMowlFNdFAweqTpx76+j2sknuKhrKlWGgSDOWpv5NkD7nZ0CLQH4ijF+H1rjE8H5Euesa3/WkE4mJMvaB+CSUXdDIkGBVJUvgPFpWMK2QdKjo2O7yF5NyWzp4FfxVM7OOCXnXO/8J1kw6lXGuz9+Ed9DE7u9e7SBVQNmJ2r+IkP/iG/feNxPrh+g9+78jDWKsKoJgprijKgGMck1yPigfe5qhbM1yzBxHMTusi3ow+mgkkd2aaiTqBuOOTslFNLQ7ZHTWa7Ga21CbNZTBgajBGaWcFwlNH5fELV8JA48LMRjSGYuUNO+rukKHfjinsfMPylj3wZgM9ef4LJMEXt+Phk+9EB03mMs0KcVKj/4Hmn6l/7NvywBUvACefcV0WkBfwh8F8AfwPYf1Nhes8593dE5EeB/5Z7hem/4Jx77p0+43hLfKt8W0bHgkBlc/F4LCKv4clSfhxfrA7wz4DfBf7O4vlfdf6b8CUR6d6liLjfZ0iaoB55AnEO04iwkUbnNSb1tcSqslz7kdZhIV/vQoGJlU97zA02UiSbM9CyIEkWbBRQtzydrBiPIQxHJeGVLWbv20CMI7kxpFppMjuZUHR85B18I7l0t/ZR/aWAbLtGlZZo2yORTepN82Bv6imLWon/nKLC3a1vAx+iur3N9n/1BNMNoXPR0rxVYiPPOpr3Nb2XR0zPNXFKaF72JM28/h1KryzoH54BnudbZ8O5r8Lqhmb/md4h9sJEHoWrar/6x+dh+b1b7A0bLPXGvHFzCZRDxKBCi90NcWlGdiUk3fUYjbKzQPMuttl8xZJuNSh/7DyqhGRXMM+s+jYaHUfy2JC9g5RgJ8I0LNTaB5+bNY2lGfVLHVpXI0ziQ1qqBhs0iEa+F4zcrcF7c0jLOg5+aolzH79GVkXcOL3EVhWgJ4pwosg3SrY/leJyQCzLz3c8ZuTadyC9IiJN4P8Cfs45NxK5t2L/JGw4IvJpPIEYUdYjKDyrTZX5cXXhz4WiK5jM8HBnD4DSaLACRlDNCmcFWSrACuJ8DxST+JhhnXluX1UI8a6i7PheY/Ee2MhnApyGul+ThDVF4jEgKCA2uFohoSXPQ1S8OKe0jyWq2iHGU5sHubvXb4W7xYCLtsOPzNkat3h8eZtbcRe76BdmIkeQ1dSFhsiiY0OdhN903t6VwkQkxCvrnzvn/u/F098WG843UhclexU6N5TdkDpRxIOaOtNkO0K2pXjh1lMo47/JSdPnlSanA7pfd0w2FO2rFnGWbLPARorWTUWdqEUvaJ9yiQc1o7MR2a5BjGO2EtDcrNgpItyXlugsoiuqBFUrBk8I4TQg3neHvL/T0xmq8gqykQ/0hiMfAREHLvCtPWzkG5fWv52AJDz/sSbZGxHhFDpX/Ba7Nc9YfsMyXVeEE0frVrXIan8bUO2F1ffP8AbGz73p+e8YG86x0fFW+XYjHd8P/HXgJRH52uK5/5HvIBuOhCHBmXOeVCsvsZ0mLtbo7SGEAWapxXw9RReW6XrI0hfuwMGI0Q88Quf5mwyf2yDZr1ClJby1j2ukvu7YGG8IaIXtZL7ge5rf43IKNE4rxu9dpfXKLgfPrNC4lYMWylaIOEd6c4LkFeWJNuHuDBSeiOX0Oqqs741V+RimS6LD/mEA259Yo3cpx2pF2Q1I7+S+PAkYP9QgyC2qcGSXB7g4AAty4ffuP1fHkY6jJ0c+lkgjRR5/DwQKJyy45i029L8nZzJ2nlEeBNMS4pGP5pdNIRla4kHN8FxE+5rPTEd7OWIM+cnWovlpzfRkTDT21LBiHfF+gY01JvaNUscbvt+KB9w48r6iectQdBVWC90LM0wWEB7kmKbHi5hYg3WHXWhttOjQZ51HgNWWshuz/1RM0Yfe6xZdOMKpoWpqomHN4LGI9tUap4V4UD4YqCkpK/T+CDcc4c6c8O12JzNUvwNA+6UZwbzPdD0g3bfE+zXx5ggZjLDrS+TrDfqv+UrI4Pa+Z9MpS8JmjCpq1M0dOgc9bBahpgWUFTKZ4TotouGY+s4W2WMPMz/fI/2DN2B1ieh8j+R3XyJ74iEAyn5K+Psvo0+dQF3dhOU+UeV7NTMYIkGAEsHlBdJs4GYzJAwJv7JFX32QwSO+P3S2OUdfuUO4vYN+5Dwr0yZqUmLasefJCnwrxvvO1fGWePTkyG+JEkfo8494niURbBKgZiU2izzociNl60OKpT9yzFcUva9XvmmNcT7BmQrZtiE6KNF57cnBIu3rm0tLOCo9sDSQwyaoyW55iJEv25qy6eFxzdv1Ye+T2bKm/+qMwZMZOFj9nVuYlQ5FPybenWOaEcFgjuSVZ9ROogWxtPZGSBRSrDUZnYswkW+8kwwN8aAi3Jmy+cllyg40Nh1VJqz//r5P3bx21Guck4DJk33vaCaCW1R+2ACCwoM3m08M2D8bkSQVt9e76FyoM3fIOLP3fkV6J6P/ukHVjskJ7duBONB5RL7kHV7wZbdlM6Fq+r9VCYNP5rj9mPGZgKprCcaKdFu48uOZD0orRzI84Rv5xMJsLaRqQDKIF51vF2WztfNlr4vfsxXN4FNzOq0Zu3st5CCkfTHFhinzNYeJHXVTMIklOej6wo3rx608Hig58ltivdpg+yc/ho2hbPmIgVrAJ5zA/PGC//oD/4GxSfji7nl2Jw0C7YN3zglp5F+8/UdrRAOPpJ2vW2xqkUoQI9hWDYWHvumpIhwryo5/TffEiIf7u1zcW6GqNad7vgZoZ9rAWEW/MePqpTWabwRUi+tzAib2DADhmEPr8m4c8S7/1PgTc37m6S/SDyb86633c2lrmeogAe147KFNaqeYlhG7B02iVzMAql8+6jC3xkn3kac+jRQG046ps4B4d06xnKJzw3QjYfNTNa3XIlrXDbNV7dmvp47ZupDdcYQzR+vqHJXX2HTRNK4REI4qyn5EnSqSvYqiF6JzS3prwvxUk7yvma/43NjyS77Rdjjz2HkTQzxyDB5X9F81NG7M/FmoPU3g3fZRd0UW/BwuUKh5hQsUN360jxiYnbK0Liuatz1MvHGrYPuDnjUu3fEo5aWXJzgtPP/iLzGa3j665GCdcMV9dPmnPFkkYNsZajQD8MDKVsbsbIPG1QlSVEwe6+GU0Lg+4eCJFr1//QqyvoJZahLc2j8spjPdJnrnwHdbSBNPItlIcEqhtwe4ThOcIz/dwUTe54u355iGD8JOTyVEY4PTQnZjghrNvBm/aNXhL9b69sJ5/qZmBgrRyneImM2ZfOJRGldGTB7uYCKhdWWKnhS4KKBuxaDAakV8awjG8MXrv3pfCtkjsSUSBNDv4Kra8+iOc2wrxSmFizVqUrL9rCZ8rMvSSxXB1JAvhwyeaiPOsfOXnybdt7S/uontNX1b+27qCZ/LJvONFuHEcyc67cmVE+0rN/O1GBMpxqcVnSuGyfe1cYG3FoPckvc0dSYE05R4VmDbKTbUqLxetPYw/gvSynyyWSlY+GdSVJSPrTN4NGD/iT5rXy4ouwF1M8JkIXVDUzY1JhLikSFKQpDoHqPO28iRWGHHRsdb5cgbHRIE6G4fV1aoThtXVZitbYL1NQ97K0uK958nvnmAjKeYU8voW7vkT50iubSNWe2ib+54NmvA7uxhp1P0Uh+qGjMaEayvYXb3cM8+ibzwdSQMkHMbPvrxxi3cmXVkmuOSGLU7gDjCthqowQiX59iHTqEu3fRNDdptpN/1q2me4xZnF2W18CX9lujq2reb2jhF/tg60ZdeQ1pN3Ill5OYW0myQP7RC8upNqvPrBJc3EaWQnSNu1re6G+59n/o5cD6bqwtHnagFzxNMTgv6AwcEypLFJXdeXUWXQrVUIzNNMPetMLJbiuyOQxlH0RGqphCNHHlfCKce0CPWswjoBWupjWB20mKXy8Nq/jqzxLua/JSnGpBaiPYVSy950jAbeICQDXyb32jiUb82vIf6vQvC2f5AQOvDO1S15mC3iRoGBHNZFCo6XGyJ9nz74aU/AgRe+61/wGTvmJH0z0S+sRvSu5GjvyVGIcHqSexo7LfE6QxXFKiVJeprNwjOneHaT29w4vNzguEcNcmp1jvoUcH8bAsxkF4fInmJG0/hbj3ZyhIMhmAs0utAWWHWe97Ke+0Kam2Feq2DHhdMH+oQjXzISEZT6o0l9O4YqQ2zJzxcJf3yG0gUeSPJOdx87v+OI4/6tfYQ8Ysxnna93yE/26Vs+a7sndfGqBt3QGuqx04xPhuz9O9vUp1eQn/tIpKlyOD+mI7jFXYE5Rj5+z0kxwp7wORYYQ+YHCvsAZNjhT1gcqywB0yOFfaAydFwnIMA3V9B4gjbbaEOxpgTfdRo7gGZWtj8gR7B1Hmm7FulZ+IeF5T9lOS1W5DEuDTGXbuFardAKexKFzUYY/pt1Kzw3f8aKbMzbRovXPcxwkfPoG/vMX3/KbI3BpQn28Sv3wbAlSX1E2coOyHp9TGysw+dFgTaI7bW+qjdoY93zuegPeyNukbiyKda+l2G37fC4HHP8dj7ekH8xjZuPIaTa+Qbbd+lfWLJXtkErZCbRzyW2G6ech9+5m++Jc+UrySHpUQmVozOee9/vuJo3BTE+d5bderjcrr0HYPSrdKnUFLNbDUgGRrqxOMdfSbY/47GPmBbJ36TmZ70vFVSe8yHqv2YdSpUDc9uuv78HBcIeT8kmFnqhiI6qD2Fu/L4fTEey69qi9OK+VrMzvu1p1CaK5rXhXDs45117GOZdSaYCE58MUec48tf+d8YjW8dxxIfFDmOdHwPyZE4w2yvwew/fm5Rr+UpGu6y5+kK6gTy/3TEbDdDtyrUtRRV+RaIuvTtMFxqaL0e0rxt0aVjdFofkj0n+x77gfNpkWgB9a4zFlloGD1qULkimAlV22ITS7wdIA7KjiUcC90L99ozlm2/AKKxL0XSlW+zeBd2BwuerDXN+GNzlntjBuOM4MUmwQzKtm9F4kLn23sYaNx0KAPmHbimjoTCVGE8hHmUU641CffnmCyiWI6J9wqmpxLGF9skM8HpkOZ1R1B4UGk4dhRdRbrrUUrNGzlSGdItzexEjA2EaGQIZx4jH+SWcGxQlaXONPPlgDoRei8p6lQIp46ipwimCqch3bUUHV+4135jjskCgmlF3QixgRBMa499nC4yBNYespFKbYn3M6pmSj5PMacdq68ZqkzoXTQMHg0J5h5tZSLoXpwjxqHz+7dUPBIKk9oSbA5Aa8I9j5F3kSK7MaFYTum8uMvk1BrhxJenhlNL5w83mb5njezqiOlDHYKpIRyXqKt3oN/BdFKaVybUrZg69VaYEwjm5nDCk1sTwkmCKmrG5xsEmx6A2rtQ+6KFccXw4ZTlF2eU3YhglBNeHWJXusS7Y1wjQQ2n9/o3hwEuDJC8OkyzJBfHtNY32H9SaNwSTCSkewYbCp0rNSZWOAXZjiW6ue9bA9dHnOASrTD9NijI1zPCUe3RvyLYWFGe7BDMHUXP97GsGgo+cIIqU8yW++jSMVvR6DKklW0gpWV2MllMTk12eUBxqkPRD6hamnCsSW9PyDdaqMqy/2SK0367VJXvblQ1AALCKUzOpBRdIZxl1KfbxDszqo2eh7pFb5rC2r4F6gZQn+pQNgVVC3WK757U1bSuzrj+nzRRNcT7julagCpXfcXo5hGnkHXa4+lNGqAqR93wja8Rn3Yv+iEHjztcaAmmiv7LjslJjQ1ZFH8LOnc07ngi5boVEswtNvQNRvc/tIzVQrZTMzkVULQCXNCiThU28BjHgycdrTd8ia0B4qFv6l2nnjek/3VDnQaUbY3UCTo3zNaSRc2zQSoLofJAUnX3EHPsPp0wesIQ73gl1Il3Q/LvaxDMoG76Rqomemfq2LtyJBQmlSHcGqJbqWenrozfFqxFz1PKbky6HdK8YZmteZ+oc6X2NcSpQlWOcOyhb+mtCcHBnKqXonOLUxCNhXRzzt57myy/MEbvjTFLLQ82bUaYKKL/omBDR2PLHHaoDeZ+C25sVozOhqz9zg5JFnvwqBa6L88XWeaFa+R8q2GU8lWYWnHyc3Pa17vMVh3z5XvUErp07D8ZsPyiAYGyoQh3Z75qtLr/GXbshx1B+bb8MBFJROQPRORFEXlFRP7nxfPnReR5EbkkIr8pItHi+Xjx96XF/899J2/mz7u8my2xAH7QOTdZ0D/8voj8W+BvA//AOfcbIvKPgZ8Ffmnxe+Cce0REfhr4+8BffsdPyBLkPU97WHYc+O1wcQ6YWFP0Am59yiFWoBZaV/3Zkm06JqeFbMstqBqg9/oEqQz5Wkbd0OjcUnQ1dezp9+KhRRf2sBxIz2rufDSj6Dm6X/cwOxuCje811MlXHCsvOFpXpszXU4LZooWicT5ENioPqdD9RTtvfBjH5NEO+09o5huG9KYmmEH3ck3RUYzOqf+/vTONkew6z/PznXO3ureW3rtneoYzXEWKFLWQ2qIglmPJO2xncZDEcALHiIMAAQzkR+wgQGAECeD8ih3EPxLAQZwgseAEMeI4jhLbkm0YliKRkiWK0nAZcmZ6eqZ7eqnqqq6qu51z8uPc7pkhOcOhSHp6hH6BRlXduvfW7frqnPudb3lfggl0L/nzpes5qra3bZl9S1OiiKTAHwN/H/hfwIpzrhaRjwO/4Jz7PhH5P83zL4hIgGfJWXS3+aA3mxKDU6vUl19H9fEdi7dd5iYiGk8K9hDwK8B5YOCcO2jGPaAnghuoixpj7gHzwPZrznnIhJMEXfSDD/rSsSzxzd1KUJMSFwXsr6Rc+qcnCbcDkh0vaR9MfWA23rMUPe/dta8Y0rURAPlKho384je5VmBagQ/8Ks98HQ5rUL4taO/+GJP4KIWqveutC8jnhLjvIxjKwPwzfapF37DhlI+cRDsT7yRU9WF5m1jnswzWUq7OcPXjCXXmiPtCZ82iS+94DO/zX//B/7L4Fd8AIs+8zaZ055wBPiAiM8BvAo/eyXFvcs6bmHCK0zOH6qy6shQzIcE0ouxoyo5CjzztkIl8NfABBXmdCq0di4l8BP+A6bNq60Pu4MmJhDrxihBlWx/2b9UtQRkf8Uc1U5z1mmAmFqKhpziS2lMplUuZFydIFEFu/bIgaqNz06hBNKoQTcRejGPwUEy+aHGRIxzpJuTmqd6DsZ90VA0BjqobNuIKt3Yt3pJb75wbiMjngY8DMyISNKPsRnqiA+qiy82U2AMvm3IrSGmI1wa4KIRAYSNNqzDYWNOaGrK1GjFtbOAXz/Geo7NWMLwvJtz3vPE2FML9mmBniliLns8wLU0wrlGTimo2QRkLFtJX+thui6oTIdaRbJXsPZBQtYXupYrRakC2aUhzg64sdaL9InlYoHNNa+IjGXU3Idyd+H6w0fS60IFrRlgY0JoL6X7WsPVkRHvdxznTjYI0EHYfTZh/bsJ4NUEP3PV7o731bepOvMTFZmQhIi3g08C3gM8Df7XZ7W8D/6N5/lvNa5r3P3e7+xfg/8ndAWpngBrso4qaYG2bcGNEeO6yzzVpWPrDq5Q9/FR0ZUi6VTPzrSGqsFQt5X/dVY1MclRRE+3mANg0JN4YUWUBrbURxWoPqQzxuhe6VpUh3arJNgzJ5RGd9dqPmkAR7BW0Lgx8jmswJrw6QKYlMi0JRgUyniJXd3D7E98MkRc+rzcaw7Ud0v/+/9h9T8TsyzVVJrS2PReH1Q2j94mEuF9jQyE+f4344g5SVrf8qu5khJ0Afq25jyngN5xzvy0i3wQ+IyL/HPgq8KvN/r8K/CcReRnYBf76m35CoLH3n0RNSqqFFDWtMWcWqdsheqlDMCooesIrP3nSU+cNDHvvX6DMhOF9PbprtW9Atw6XhNh2jG0FTBci0o0CPS6ZnO0Rb+eMH+w20YmI6f0dwlFNMRtSpT7JOXhyhmhoMVlAOLbU7YjBB3vMvDSlXuriQoXVyo9WQNIIp4VgmOMsoA+Evf2jWlmks25Y/y5F70VQ05rxKU8wluxeD2OVbUX5wCJYcJu3ZnW7E4LLr+M5El+7/RXgdaRfzrkc+PE3O+9Nxwh+GtGCKgwqr6i7CSbyo8YFQtX2rNTjVZgsaqKRJd2yTBc0+ycC6lQ8n9NCSjDykXOnwCQaGyUEE0O+1KJse/ZsnEMXnnO+/Y0tLv74CXQB89+sKGY8V2Lr5W0GTy1jEth+f8rSs/sE1/ap5zL0Xk65nBFvT7CtEKc1RN5ILlCovMYFiumpNuMlxfIXHU45dp5s073ghcPDqWN0SjF3zlDMCvq50ks23gZHIoEpDqSscaHGJAGmYfhMLw0JhyXjExGqhtaOIxwJncsViKdfOGgE17lfV4XDEpX7KSXue84Nq4WwP0VVlnDi0KWl6kaEI9+Vufk9K8R9x+yLjdPrIN6t2PoLK1SZkPR9nFL3J5TLHVwgmE6MKgwmi5CyPuzElNqiphU0j9FeRTEr9B9VZFdLWrsWXVmifb8eNC0oZjzFHxZUUd/2HnYkYolOCS4OobYE44p8ISGYGmySonKDCYXx/TX5oqK1CXtnvTd1EAFPdl2z4BXvYYUxdSugThVV6g1mY3XIM+UEnw/LAoZnAtpXDNtPBARTH6DdPyWEJ2Kyq5b9VUU+L/ReMdTzmSeydA4XKepWQLjncHHoZwnAhZ7GVjDYQDO6L/YKF7FjfCKiagt5L/FR+zlBlTA+ocg2rCeUKX2m4lY4jiUeQRz9/rAwJFhc8aViJ5ehrLC91K+LpiW2k3gqo1bI5sd6LH517HvD7usQ7xaMT7XonNtD1jeRXgeqGrs44+8lDQWSGk6R2mB6GWKuh5ZcoDBZhEkC4s19v+/eBBeF5KuePDnIDeHWxJe5ddu4LPGe4v7ER+ujEIrS940duPbGQBQyeXSZshfgFLQvThFjEetQa9eYfvAM03lNsmsIRxXRhS1fQnf51vex4xF2BHFcNfUdhCMxJdYLGTs/5pUh6lQOK5qCKSAwesDw9z75OT6/9QgPdHb4wpWz5GWIUtYLk5caEaivpHRe9QnN6ZJPSAKYlsNkFil8VZTOhWAMpgVl15E9PKAVVfRHKcYouu0paVQxKUMmeUQ3y9lam6X3fEA54+OMdepjj8HEq5wD1ynQHV44tYLtD1m+/+NfYzEa8fzwBM++cBY1CrC9ms7cGC2O4bCFLTSdb0VIDfV/PuJVU0HhmH0x9+5y5Ad9MRMQ7ZvmtebXTnyU8mKbF9JVuucCwgBv2Azi3EscnnymAlfjAiHpa6qWT6nUseC0LxcIJw4TOeI9hw1guqiwm7PszjVxxJFQSso0gtkXLdITRisdFtYc6VaNiYUyUyR7hqKjaV8p0dOG6LLBodKsdYzOpHz2i+9n5syA4Uuz9C4o4oHDhiFOe+mOdiqYFnQv+nurLt5GaOrPBM75X2RuQLzAQDi2mEgRjmqyq5bpIMEmjnDver2h003OSvsI+2jV3/SDsafgS/YsVvsAr6o4FC7oXvJrnXDiSK9Z4r7zhGSlEO35kjMbO8YrimLGF/4c0OsFU0uyZxAD4dQe/sAOxVKdA9uUnDvH6h/luNjS3+z6kvLCUWU+E1BlwviEr3PsXLQk2xWtjeK267Bjp+MI4t5yOt5g0SgffPzm18GtZ3KVJK/fKPKG51Vpil6YB6XR3S4qTQ/f090uAMHqyTu98jfE5C/dWidIz8+95fMdiXvYTXiDEa9evcyNdUS300a2eX5H5wSwkwlMfNLQDIc3vXfwul6/8iYXfHt0/uRVblUDZXZ23/L5jt4IewO8mfj1UYbZvPbmO70FHIkRZmcyxp/+qI8pKig7/kYvBsKJpf+IJvxwHyWOogrIr2S42EJkoVbeXR8p4h2vIItAPqcOxdeqNpQzjmRbCCYHxTM+k1x1heF7auZWB/Qvzvr0RmyRUuHaNTIJIKtJzsdklz2vvXccBBsJ8cASjm8ewXLDiB6tBgQ/sM3efoI1GnUpOVRCkkf2KTdTXOCQUrH0JR8It79z1BlJj52Om3BvOR3HuC2OxJRImiCPPo5NAhAwSYAyFj32vLnXPtRGrI9eRHsw+3LFdC5Al75f6wCdywWq8FVL49UWre2S8UpM2fGi2wj0Xp4ghSE/mRLuVbhQsfN4gtSOcOLXW+MTimTbUfYaOnMlLDw/PeT3rbPAp1mUr2sM+1NsFFxXCJSmICdQrH1vYHwLiwAAGD9JREFUFxND+5LDJOI5f0PfXlt2hHTLUPQ08dCQrk99euhrf3LLr+pIGEyMRU0K9N4YM5uhh4WvYqp9r9WJ391g8NQS2aalToSip8k2K6wWqo6mfWFMvtwi7OeowT4oRbsymFZI59UxLlDUaUC0k2OTgHo2IdyrCPtTKEoWqp5vJ5r4+vz55wrirQnTk23KnibZLgm3xl4usawR28LGmnB76hOXtUFPCx/tEPHUss3i98yvXqN44jSDhyLaVw3iHOnVkqoT0H1xQt2LiXcr6lQjZU0wsW+vCOfPCjLJceOJT4NUNVLUzfaC4vQso1MKcb6JL9mpKXqaZDunbPtq4ez8gGo2waUJrhHwRgsooU4DwmGJaUfYWCPWEV0ZYFsh1Qmfhtm736dA/EgOfUXUfk2yWzM8GzF4cg65vAnOoUpD2M99hnl/guRFU952Q/dJWUFVM/7IWQYPRT4stu8b5MVYsueusvXhLoMHY0ysvMEO+srsrbtYjp2O20DCCHfAvfg2oBfmMdu3rfS7CUc+gek6KeUnnkYXlqoTHKbyVemwsSA1XPoxC1ZIXw2JB75S1vcoQ9AEf9MrjvYVH/ytW748IJh6XZNw4jCxUKUQTiAeGqqWosp8H1qVerrZ8Skv+eFHG8y+WLP5tCYYC4tfrw5pIupEfF1G7mWzgqlvU1LVDVIeCmys2Hwq9HSxoae5bW05TAxVR9i/z5Je8ZQTC1+vfVL1j79wy+/q6I0wpcEaVJpiJ5PDx+DMaajN9chDs9/tcDBCDkfKQXjqDv7ng2NuHB0qSV4XSTngqn/d4xuMzjsdsUd+hN2Exgi2CRkdPNYX195wv9vh4Ms5/JLewo/z4Jgbp7I3CnsdhMle9/gGhnknptcj43Qc485wbLB7DMcGu0N8O6mQdwPHBrtDfDupkHcDxwa7x3AkvETRCtXKkHaG3dnF1TV6pocZ7BGcOY1Zv3pT0lI/9jBs7WK2d9DdLmY4vC4FBahOBzU/e6jBcnhct4vMz2LW1lGdDq4sEa1heQH6e7hp0540HhOcWsVlLWwa4776vD9vliFhgBnuI0pQ7cxTPiivLotuCFGc88+NQVZXcFc2seMxqtPB7u+j5+eQMMTuDZFTJ5DxlHr9ip92RW4rNHAkDEYQoJYXse0E1esgVY3tZQQ7HcqzC5j3LJNcHDB+ZI5oWDGdDWlbR/HRB0iuTFCVIT/VIdnwxpGyxsQh9dkFwu0Jan9CcXYBGRW+EvijT6AvXMPdtwIXGzLLlUWKk22i3Rw9Lhg9MkvnK1dwsynBA2d9NfF8Fxso9GCMnclg0rjptfF8YO5AB9P48Fig2Xl6gWSwwP4JTfdSTbw5IZ9PSC7sUj90Ar1fMn1knnYcXa9KHh11gssjGpq6WzjyC+d6IWP3Rz/un7c8S6fVTYN4BONThh/5xLOMqoSpCfnaxknySUS7kzPNQ8LQoLWl/PoM8Y4Q5I790/5YmjiqSS06V+ipULctwb5C5748zjw2ptOeUlQh42sZrYUJ+SQiSUvKMqCT5Qw2Osx+NaBqC1XXoae+KzQce2lHVeFplIwvu8P57HH/MfihT32Zti7408Epnn/hFHoYYOYrspkp40GLMC0JAkv4x11fa3mbQtLjEXYE8Y5knEVEi8hXReS3m9fHTDh3AW/Frf9ZfDP6Af4lngnnIaCPZ8CBG5hwgH/V7HeMdwh3SqxyCvgh4F8A/1BEBPiLwN9sdvk14Bfw1EU/2jwH+G/AvxERuR2TgJ3JmH73R3Diy5dVDUVPSHYtkyVN2YXTn77IpIoYlyG7V3qoqfbazKU6pGyd+XpAMPVspZNlXzXltFfSO2DUtjFEg+tUrzaE0cM17eV99q9lSKlQZUOb1G0CzNoRXQ2Z+4ZP1XjKP3+/TfqeykHnDhv60gAxHNLJbr8v4OSn1uiEOV99+Qx6N0CVgo0dpm1QaY0bRriWYekPfF+Y/a233wzxS8A/AjrN63neSSacsEv7pT2fyu/EhFv72DRGX+vTemSF6ULIq+l9BBNh9kXDKlC2hWwDxic8b2Jr25Jd2AMtuECRXQ2oW5q6pYgHNTZUXst5q6CcjQj3a/S0ppiPmX1RmCz0SGtfVifOcyWmW4oyU9QptHYs3W/2Md2EqhvhlBBvXqfLO6ANdFojZYVLQiSvyM5Z1ienWZuDlRcsYiAa+pxdlWrigWOypADF7Ll9bKBQxdugkBWRHwauOeeeFZFP3ol17wQ3MeHInDPPvwD4OfrgcmtAr1+hDbT/683HZ81jdOM5b3ium7/4hm0H+95YzB2/wTaA9DWP3HBdB/2RB51Fb4aVX371DbcffObBdTUi6+DeoHq5wZ2MsE8APyIiP9h8Rhf4Zd5BJpxj3Dne1Olwzv1j59wp59xZPEnK55xzP8E7yYRzjDvG21k4/xzvEBOOnc0Y/sDHfAdmw4lrYl+PYUOwgfDBn3iOrbyNdcK3XlwFKxBadFrjjGDHIeGupveyX3Dnc0I54zskbdA4HBHonIZW1jsFZRempwzLD2yzsTHji60ig9mOcW0DtRB2SqphxNxXfL2JLny9Rt0S0i2LCYVw6g5DUzZsaju00H9E4Z4Y8YHVdS7szbF5aY5gr+H/7Rp0r8Rux8hcSedLLcRA/ZnjhfM9heNS7e8gHBvsHsOxwe4xHIlo/YFYjlOQz3q++DoVsJ4GYnzacfapy1zYnKfbmdB/dZZwT1HNWaQUbMtCYOl9PUJVjmjoKHqKsufFdA50waqOZzMN971gTj7vCZmnKxa9mFOPQ5K1kHylRmrBxRY11Y3IjtB7ER89Ca5nE1QN8dA2HFbe2bDhAQUfXP6044GHNyjqgGuDNu5SRrgnFAsWvTLFOkHWWtQ9w9KfeGfknYh0vKvQ05r2S3uItXSdQ6YF9coMemcfO5PhvixUv7dM++GIhWcty3u77L1vHqf8F5Ts1KjKEvSHOKVwSeA5CHs+oqFKQ9WNSM5vMXnPEuGoQg8LipWMqJ9Td2LKXoQuHDasiXcKivkYp4T2S7uM3jNLdnnsScUmFbYdeaYAY1F5fV3O3l33FJ3WoIX7yg7xOc21v7zC0iuG3jPrjB9b9pXCUQjWMVlx6FLRvjT2/9PbiXT8WcAp37hgWzFVJ0IXnsquXuqCdaiy5uJPGsJXYOd9GarKMDFkG4bBgwEmFiaLiqTfovfSBD2tqDveWGUvBBeSz2lGp1bpXiqouhFVJyTcrykWWgzPhEyXhHgAcd8yWUypW4JJoMrmmCwr8tk288/tM72vQ7RXUc6FqNr5NqW9HGzTeekcTinf1WIc7W9scP6nTlG3LVWmscFJxDiqjkZVjsHDmqVnCvKFEJM0bUzHbG73Fo58xvngFyVhhDPG19Y/8agPrE5y3HCf4kMPoHNDvhDR+doGdmsHCQNYXkTKCjPfQW/0qS+ve1oIrVGdtj9/WflCmzCAyxuY0Qi9tAhlhen3QWmCkyuYxRn03pj6lQu+jqOssNs7SBJjH74Pef48kmVImoB11GuXUVmGnUyQwEcYRSs/PYpgpzn6gfsQ6xh+YBmrYeaL69RrlwlOrWLnOp6B9EvPEayexPYHfnrNj0fYPYUjP8KklSCPP46NAsT4rsuDtlSdG8puyODhkOyqYecJTe/8QWjIH69KqNpC72JN68oUGwfUWeDTKbslxUx4mDPzHp8jGhSYJKDONDYUdh4LSDc9O0AwcbT6lrLtxdiqzLcidV+devVYEWys0ZMKGp56KWt/7zI+1YJSYC1bT3uCFhOL56TX0L7inYoq9dRI4dh7xUvPjP1s85V3SMrj3cLxCLsZx6Gp7yAcG+wew7HB7jEcCafDzqRMP/kRVOkXlHUihxL0qvbMAdH3bLO90UW3DHYQIYVgZ2pkrNEThUktvXOabNPf0PfOelGcdNNRzPiISNnz542GXlHIxN6hKGcdVc+ipgqTGcQJUnonAQe25Yg3Nb3zjSiP9Tk1gHDifB2IdZhIeR3LhpnUaeHqn9PUqwVnTuxw8co84VpMNBSvTX2yRoygx77AtfuKl7y3v32cD7uncOx0fAfhSEyJrpNSfewpL2ufqEY6XhOOvd6XMo7+IxqT+Jr2aI9DrS4T+1S/OGivG4LcHkbMJ4uB11DZqil7Gqub9H3tyK5WlN0Ap6HoKIYPQjAR0g1Hnfj6fjGeTkIXfmqeeanEJNqvDWcCdO4OaWlVZQ81w8CXNajaUfYCtt/nrz0cCcm2Ix5ep1waPAzpVaHswfy3mob2z91LtA/HOPqRjgNiFafFS71riAY145MR0b4fMVc+oQkmQrFsyC5ogqkvrCm7EPeh7EHnkiUZGIKJYXgmRtVepHQ6r6kyL84dTtxNDoMuLcPTAftnoXXVF9jk80J73esuq2aUiYX2miVoGK9N5PfVuR9ZOjdeaNU2Kk21wwbCZDlk68NeMNzEnlgl2XVMF+WwIrlz0ZHP+UgNDtznj0fYPYVjp+M7CMcGu8dwJO5hdFLqjzzlayFEKLs3NHeLeA2vOUe2DsMHIRx5Bdiqg8/0Wl9nsfzlCqfxYtuzwaGnZiIhn1WHHlz7qkGVjulCQN2C0f2+2DQa+HuWGDCR73wRA7oCVUBn3RBMrb/PivcEW9teXE7nBhNr7y025GY2UGx+2KvMmtTzCHfPK6I9R9URxqccwdjLHNsQFp6r/aL7+B52b+HIe4mkCfLexw/1S5xWnvGzP8W0Y8peSP8Rr8onTZVS0jf0HwrpXaiZzmucwOyLOeHOmKqRBD4omQ7GNSbWBPsl49MpwdQSb+eYLKTsBeQ9H8ZqbRv2HgiI+45o7MNNVUsR5I5wVHt6wHZANChRtaXsRUSDAqktNtKH8h1SW5xSoIXdxzueZu+0Y/abkG1UmJbvXasyxWRZITXMvlgS9RtW0z99m8Lb7zakrFHnL4N4g0m37d3jyYRgfpbgXJ/4d3YZ/5WPEu3VRIMCvTNCzBKtL5+n9eDqobI6V7cIN7fRD6zivvwc6slHUaMpIeACTW9ti3pjE/X+xwiu9tFrl0mffuKQUVRMSnbuGvWrF6k+9RR6akm/uQFaQVESZi0YDJF2RnIpR8IQN56gAZyFMPJJzYYzZPaZXXS3i6tr7BMPEmwNcWGAa0Wo0ZTeXBu9vg1B4AXvnLutLPDxlHgEceSnREli1MOPItZSLrfR09pPM02pQLSTc+mHe4RDmDnvlYlMrGht5lTdiLrlR2Z2eYIUFTaNsIFieH+L7gXfHKf3S/pPdJn7Wh+bRn7qaZya0ZkEq4XZc/sM3pMRTnx4Kp9VdC/Wh1Nr9qrvEi0XUlRhCAY5Ng0R60sEpFG3JdBQ1RBohu+dY7qg2H26ZvkPNOmWr6E0kWL7fRHLz+aMVyJaOzXhsPTlBs8d8RKBzswp94Hv+lnA1zmo2nm95aGlSoXRfQpxUHUc5UpF65XI9y5HXhK46lmCiSJd933R4dQxnfURkwPpKhP7yIIYyDZ8X/J4RSEGilnPvaFKwWn/fZQzlvZFTb7okAqSHSG95lm9fWrGny8aNekV4w5TKuJ8FbCNhPGSYnQ/JI/sUZYB+rk2uvRtUCaG6bIj3hVfjbzn0JXjG5/9JfZ3147wCNubkPzPLwHX20izG97vfRvnTN98lzva5+0iBRbf4jHKjW/53pEwmOum5J/8CFI7posBre2afFajKygzoW4Jw0cswUioM4cuhdaGV08XCyZxiBWSa17MLZgaposhRVcakTU/yqqOHxXxwHf628ivpWzkK7Dq1BH3hbLnqFNHsq2oW/74aAi9V6rDNeIBSbNTQjD18U6n8GwFTSWVU8J4WbPzlAHtUBNNtKfILrvDa5muWOJthS7wujGA/d9HvLZeFTXtr67jshbpeQdakZ53niSs06KabWGjhHjgF8G9V0qUcV4efuwDuKpyxBv7/ovSQrSjoLa4Vkgxn3jSr/0C0/Uq7FJUuFCTL6fUqWL/hGb1D6eMziT0XnUk1wrGpxJMJKTXapyG1vo+2bmpJwqb6yCTApkWEIW+3PygIPaAv76qiU/Pky9ktC9b5r+wQXlyhnI2YlppwolFF5rWliWcWjrPXoEwQI9v7SUeCYM5rbALvcZhiLGRb2ZAQZ1o6lQzfKSm83JAnUE+H9O65qU9OmuW4ZmQuO+o0y7p5QlOCVU3opwJDiUKB4+2iYct4p2K4SMJ7fXy8L4zWtXowrH1wZRo6KhaUDzUIp8Tkl3H9pMh8a6jtS6MH13EhkKyVVCc7hD3PaObKmovQpDXmCjwdfbWki/FINB/rzBePUl6tZF1vFiw+eGEuXM1w/sC9luKaLDkIyVXb02/d0exRBG5ICLPicifisgzzbY5EfldEXmpeZxttouI/OuGuujrIvKhNz2/A5zDZjEu1NhYYyOFiTXRXolYR3YxYHLSUrUdC9+oCaeOeOAousoTscwIqnCHyg11W/tmBevTHNlGhZ5aJidiWls1wbjCRgob+T7lfEHIrvrQkzKQbtV+6rQQ7zp6r5ReGwZobeaowk+9B10skteHsvdiTKPrqUi2SqYrltlvOUzoE69B4di7P8bEsPVkQDRyBFOfBMW6m+SsXou3MsK+2zl3IznKzwO/75z7RRH5+eb1zwE/ADzc/H0Uz45za11BvGdVzbWwDSmKDQQTC7p02PmYvbM+M9x5VTF4X832EwHxwDFe9SI0xZwvrqkzRbGYNh0kgg2EnSdSgqlXsq0TP2WF+zA6kxIU3r3OZz2bznjZZ7frRCjbQj7vWW/CfSjmgibWCflCcri0UC1NuF9jw4P4ZwQiOO0/a3g2Rpam7D7eItoDq4W664uA6gzCoRcujQcOE2svxhrcehzdkVsvIheAp280mIi8AHzSOXdVRE4Af+Cce4+I/Nvm+a+/dr9bnf944Xwz3ol8mAP+r4g821AOASzfYIQNYLl5fkhd1OBGWqNDiMjPiMgzIvJMRXGHl3GMO50S/7xzbl1EloDfFZFzN77pnHMi8pZW4DdSF/XCJafnFpGs5aezMIAo9NSsEx+pGHz8FHG/ZnQ6Ipw44oEPxk5WImY++y3fDlRUyMQbX2rjW5DWt7HLc6i9MeWpOYJRgdrew6UJ9Pdgtod56RV2/45Xau++WlLMhbQvTQjWthl+5DQmEtqXc4IX1qCukXYbl7Vgp+9bm0RwtfGtRoAz1pcL1DUszTN4cp6yK8w9P2HwcMriH67jwoDJQ/OEkxo1rVF5hdoZQqCRK+Ebf2l8G5EOEfkFYB/4uxxPie8K3lYsUUQyQDnnRs3z7wX+Gdcpin6R11MX/QMR+Qze2di7nbEAyFrIe5uIuQOTBjf1+ppWwJVPxHQvOPqPQfdlf5iqoU49jWvZEboXa5LtHKkt0xMprctjpqcyJgsaG0H3Ys1kKSDpG5yGYN9QzIUEU8vuYwHtNUs+14S0LMyeKxifjBifFDqXLJ0LUx8K6/p2WZz37IJRgdOCTUKc4Ft+8VmIfCXj0vcFRENFsuUTpdmmpegJxaxfPLfXHOm1mtb6CBcF8PzbS68sA7/pKRIJgP/inPusiHwZ+A0R+WngIvDXmv1/B/hB4GVgAvzUm36CO3CHHSb11HZVFqBDhdXC3gMh1aMT6o0WOJguCUF+XTJqvOpItv2XV7VDdOFjftVcQt1S1C3fgzV4KGT2XNH8CDTB1DBqR1z7kMa0LKAIxlBlUGeOyUpEerUpG3c+gmESTZAb6sT3KKui9v1g1qL3i+tN6VEAzrF3f4ibK6lsSJ0Is+cgGhnymYCy52hf8j+6vftDdJmhyluLvcERCf6KyAh44W5fxx1igddwP74LOOOce8MQ5JGIdAAvOOeevtsXcScQkWfu5rUeV03dYzg22D2Go2Kwf3e3L+At4K5e65FwOo5x5zgqI+wYd4i7bjAR+X4ReaFJx/z8Xb6Wfy8i10TkGzdse8fSSO8E7qrBREQDv4JPybwX+Bsi8t67eEn/Afj+12w7SCM9DPx+8xpuTiP9DD6N9K7jbo+wjwAvO+decc6VwGfwyhJ3Bc65P8ITS9+IH8UrX9A8/tgN2/+j8/ginhb+xLt9jXfbYHeUirnLeFtppHcad9tg9xQa/v276lbfbYMdqEgc4EaFiaOCzYOprnm81my/K9d+tw32ZeDhRosswosS/NZdvqbX4kali9emkf5W4y1+jDtJI70TcM7d1T98KuZF4DzwT+7ytfw6cBWo8Pekn8YrM/0+8BLwe8Bcs6/gPdzzwHP4mpd3/RqPIx33GO72lHiMt4hjg91jODbYPYZjg91jODbYPYZjg91jODbYPYZjg91j+P97ZD2vY5SrVAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ @@ -554,9 +990,9 @@ "import time\n", "\n", "LOSS = []\n", - "maxlen = 60000\n", + "maxlen = 50000\n", "\n", - "for e in range(epoch):\n", + "for count in range(epoch):\n", " pbar = tqdm(\n", " range(0, len(X), batch_size), desc = 'minibatch loop')\n", " train_cost = []\n", @@ -572,13 +1008,54 @@ " feed_dict = {model.X: batch_x},\n", " )\n", " break\n", - " except:\n", + " except Exception as e:\n", + " print(e)\n", " time.sleep(1)\n", " train_cost.append(cost)\n", " pbar.set_postfix(cost = cost)\n", " train_cost = np.mean(train_cost)\n", " LOSS.append(train_cost)\n", - " print('epoch %d, training avg cost %f'%(e + 1, train_cost))" + " print('epoch %d, training avg cost %f'%(count + 1, train_cost))\n", + " \n", + " p, l, t = sess.run([tf.nn.sigmoid(model.predictions), model.labels, model.targets], feed_dict = {model.X: X[:1]})\n", + " plt.plot(p)\n", + " plt.plot(l)\n", + " plt.show()\n", + " \n", + " plt.imshow(t[0].T)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "batch_x = X[-2:]\n", + "batch_x = tf.keras.preprocessing.sequence.pad_sequences(\n", + " batch_x, dtype = 'float32', padding = 'post'\n", + ")\n", + "logits, targets, neg = sess.run([model.logits, model.targets, model.negatives], feed_dict = {model.X: batch_x})\n", + "logits.shape, targets.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "plt.figure(figsize = (15, 5))\n", + "\n", + "plt.subplot(1,3,1)\n", + "plt.imshow(targets[0].T)\n", + "plt.subplot(1,3,2)\n", + "plt.imshow(logits[0].T)\n", + "plt.subplot(1,3,3)\n", + "plt.plot(X[-2])" ] }, { @@ -587,10 +1064,10 @@ "metadata": {}, "outputs": [], "source": [ - "logits = sess.run(model.logits,\n", - " feed_dict = {model.X: batch_x},\n", - " )\n", - "logits.shape" + "p, l = sess.run([tf.nn.sigmoid(model.predictions), model.labels], feed_dict = {model.X: X[:1]})\n", + "plt.plot(p)\n", + "plt.plot(l)\n", + "plt.show()" ] }, {