Skip to content

Latest commit

 

History

History
42 lines (29 loc) · 2.11 KB

File metadata and controls

42 lines (29 loc) · 2.11 KB

Depth Estimation/ Evaluation Metrics

Depth prediction (DP): takes only monocular/ stereo as input Depth completion (DC): takes depth sensor (ex: LiDAR, RADAR) as input component (converting a sparse depth map Dsparse into a dense depth map Ddense)

Metrics DP: Accu, SILog, sqErrorRel, absErrorRel, iRMSE, thresh δ
Metrics DC: Accu, iRMSE, iMAE, RMSE, MAE, thresh δ

https://papers.nips.cc/paper/2014/file/7bccfde7714a1ebadf06c5f4cea752c1-Paper.pdf

https://arxiv.org/pdf/2003.06620.pdf

http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction

Depth prediction

Metric Description Unit
Accuracies
SILog Scale invariant logarithmic error
log(m)*100
sqErrorRel Relative squared error
%
absErrorRel Relative absolute error
%
iRMSE Root mean squared error of the inverse depth
1/km
● thresh δ <1.25
● thresh δ <1.25^2
● thresh δ <1.25^3
δ<threshold error provide a comprehensive comparison among the method
δ<threshold error means the percent of pixels that satisfy δ<threshold, where δ

(Disp)gt: the gth disparity; (Disp)pred: the predicted disparity

Depth completion

Metric (DC) Description Unit
Accuracies
iRMSE Root mean squared error of the inverse depth
1/km
iMAE Mean absolute error of the inverse depth
1/km
RMSE Root mean squared error
mm
MAE Mean absolute error
mm
δi δi: percentage of predicted pixels where the relative error is within 1.25^i

where |.| denotes the cardinality of a set. dˆ and d are prediction and associated groundtruth. Most studies adopt i = 1,2,3