Zhongcong Xu
    ·
    Jianfeng Zhang
    ·
    Jun Hao Liew
    ·
    Hanshu Yan
    ·
    Jia-Wei Liu
    ·
    Chenxu Zhang
    ·
    Jiashi Feng
    ·
    Mike Zheng Shou
    
    
        
        
        
    
    National University of Singapore   |    ByteDance
  
       
     | 
    
       
     | 
    
- [2023.12.4] Release inference code and gradio demo. We are working to improve MagicAnimate, stay tuned!
 - [2023.11.23] Release MagicAnimate paper and project page.
 
Download the pretrained base models for StableDiffusion V1.5 and MSE-finetuned VAE.
Download our MagicAnimate checkpoints.
Please follow the huggingface download instructions to download the above models and checkpoints, git lfs is recommended.
Place the based models and checkpoints as follows:
magic-animate
|----pretrained_models
  |----MagicAnimate
    |----appearance_encoder
      |----diffusion_pytorch_model.safetensors
      |----config.json
    |----densepose_controlnet
      |----diffusion_pytorch_model.safetensors
      |----config.json
    |----temporal_attention
      |----temporal_attention.ckpt
  |----sd-vae-ft-mse
    |----config.json
    |----diffusion_pytorch_model.safetensors
  |----stable-diffusion-v1-5
    |----scheduler
       |----scheduler_config.json
    |----text_encoder
       |----config.json
       |----pytorch_model.bin
    |----tokenizer (all)
    |----unet
       |----diffusion_pytorch_model.bin
       |----config.json
    |----v1-5-pruned-emaonly.safetensors
|----...prerequisites: python>=3.8, CUDA>=11.3, and ffmpeg.
Install with conda:
conda env create -f environment.yaml
conda activate manimateor pip:
pip3 install -r requirements.txtRun inference on single GPU:
bash scripts/animate.shRun inference with multiple GPUs:
bash scripts/animate_dist.shTry our online gradio demo quickly.
Launch local gradio demo on single GPU:
python3 -m demo.gradio_animateLaunch local gradio demo if you have multiple GPUs:
python3 -m demo.gradio_animate_distThen open gradio demo in local browser.
We would like to thank AK(@_akhaliq) and huggingface team for the help of setting up oneline gradio demo.
If you find this codebase useful for your research, please use the following entry.
@inproceedings{xu2023magicanimate,
    author    = {Xu, Zhongcong and Zhang, Jianfeng and Liew, Jun Hao and Yan, Hanshu and Liu, Jia-Wei and Zhang, Chenxu and Feng, Jiashi and Shou, Mike Zheng},
    title     = {MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model},
    booktitle = {arXiv},
    year      = {2023}
}
