forked from PointCloudLibrary/pcl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_recognition_ransac_based_ORROctree.cpp
147 lines (124 loc) · 5.56 KB
/
test_recognition_ransac_based_ORROctree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: $
*
*/
#include <gtest/gtest.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/recognition/ransac_based/model_library.h>
#include <pcl/features/normal_3d.h>
using namespace std;
using namespace pcl;
using namespace pcl::io;
using namespace pcl::recognition;
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloudT;
typedef pcl::PointCloud<pcl::Normal> PointCloudTN;
typedef pcl::PointCloud<PointT>::Ptr PointCloudTPtr;
typedef pcl::PointCloud<pcl::Normal>::Ptr PointCloudTNPtr;
PointCloud<PointXYZ>::Ptr cloud_;
PointCloudTPtr model_cloud(new pcl::PointCloud<PointT>);
PointCloudTNPtr model_cloud_normals (new pcl::PointCloud<pcl::Normal>);
//////////////////////////////////////////////////////////////////////////////////////////////
int
estimateNormals(pcl::PointCloud<PointT>::Ptr cloud, pcl::PointCloud<pcl::Normal>::Ptr cloud_normals) {
// Create the normal estimation class, and pass the input dataset to it
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud (cloud);
// Create an empty kdtree representation, and pass it to the normal estimation object.
// Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
ne.setSearchMethod (tree);
// Use all neighbors in a sphere of radius 1m
// experiments with tensors dataset show that the points are as far apart as 1m from each other
ne.setRadiusSearch (0.03);
// Compute the features
ne.compute (*cloud_normals);
// cloud_normals->points.size () should have the same size as the input cloud->points.size ()*
return cloud_normals->points.size();
}
//////////////////////////////////////////////////////////////////////////////////////////////
TEST (ORROctreeTest, OctreeSphereIntersection)
{
float voxel_size = 0.02f;
float pair_width = 0.05f;
float frac_of_points_for_registration = 0.3f;
std::string object_name = "test_object";
ModelLibrary::Model* new_model = new ModelLibrary::Model (*model_cloud, *model_cloud_normals, voxel_size, object_name, frac_of_points_for_registration);
const ORROctree& octree = new_model->getOctree ();
const vector<ORROctree::Node*> &full_leaves = octree.getFullLeaves ();
list<ORROctree::Node*> inter_leaves;
// Run through all full leaves
for ( vector<ORROctree::Node*>::const_iterator leaf1 = full_leaves.begin () ; leaf1 != full_leaves.end () ; ++leaf1 )
{
const ORROctree::Node::Data* node_data1 = (*leaf1)->getData ();
// Get all full leaves at the right distance to the current leaf
inter_leaves.clear ();
octree.getFullLeavesIntersectedBySphere (node_data1->getPoint (), pair_width, inter_leaves);
// Ensure that inter_leaves does not contain leaf1
for ( list<ORROctree::Node*>::iterator leaf2 = inter_leaves.begin () ; leaf2 != inter_leaves.end () ; ++leaf2 )
{
EXPECT_NE(*leaf1, *leaf2);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//* ---[ */
int
main (int argc, char** argv)
{
if (argc < 2)
{
std::cerr << "No test file given. Please download `bunny.pcd` and pass its path to the test." << std::endl;
return (-1);
}
// Load a standard PCD file from disk
if (pcl::io::loadPCDFile (argv[1], *model_cloud) < 0)
{
std::cerr << "Failed to read test file. Please download `bunny.pcd` and pass its path to the test." << std::endl;
return (-1);
}
if (!estimateNormals(model_cloud, model_cloud_normals) == model_cloud->points.size())
{
std::cerr << "Failed to estimate normals" << std::endl;
return (-1);
}
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */