-
Notifications
You must be signed in to change notification settings - Fork 37
/
run_wav2vec_clf.py
491 lines (422 loc) · 19.4 KB
/
run_wav2vec_clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
from datasets import load_dataset, load_metric
import numpy as np
import torch
import torchaudio
import transformers
from transformers import (
HfArgumentParser,
TrainingArguments,
EvalPrediction,
AutoConfig,
Wav2Vec2Processor,
Wav2Vec2FeatureExtractor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
from src.collator import DataCollatorCTCWithPadding
from src.trainer import CTCTrainer
logger = logging.getLogger(__name__)
MODEL_MODES = ["wav2vec", "hubert"]
POOLING_MODES = ["mean", "sum", "max"]
DELIMITERS = {"tab": "\t", "comma": ",", "pipe": "|"}
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_mode: str = field(
default="wav2vec",
metadata={
"help": "Specifies the base model and must be from the following: " + ", ".join(MODEL_MODES)
},
)
pooling_mode: str = field(
default="mean",
metadata={
"help": "Specifies the reduction to apply to the output of Wav2Vec2 model and must be from the following: " + ", ".join(
POOLING_MODES)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained feature_extractor name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to test on (a csv or JSON file)."},
)
input_column: Optional[str] = field(
default="path",
metadata={"help": "The name of the column in the datasets containing the audio path."},
)
target_column: Optional[str] = field(
default="emotion",
metadata={"help": "The name of the column in the datasets containing the labels."},
)
delimiter: Optional[str] = field(
default="tab",
metadata={
"help": "Specifies the character delimiting individual cells in the CSV data and must be from the following: " + ", ".join(
DELIMITERS.keys())
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
min_duration_in_seconds: Optional[float] = field(
default=None,
metadata={"help": "Filters out examples less than specified. Defaults to no filtering."},
)
max_duration_in_seconds: Optional[float] = field(
default=None,
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."},
)
def __post_init__(self):
if self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
logger.info(f"last_checkpoint: {last_checkpoint}")
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
train_extension = data_args.train_file.split(".")[-1]
test_extension = data_args.test_file.split(".")[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
data_files["test"] = data_args.test_file
else:
raise ValueError("Need a test file for `do_predict`.")
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}")
if data_args.train_file.endswith(".csv"):
# Loading a dataset from local csv files
datasets = load_dataset(
"csv",
data_files=data_files,
delimiter=DELIMITERS.get(data_args.delimiter, "\t"),
cache_dir=model_args.cache_dir
)
else:
# Loading a dataset from local json files
datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
input_column_name = data_args.input_column
output_column_name = data_args.target_column
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = datasets["train"].features[output_column_name].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
label_list = []
logger.info(f"*** A regression problem ***")
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = datasets["train"].unique(output_column_name)
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
logger.info(f"*** A classification problem with {num_labels} classes ***")
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
label2id={label: i for i, label in enumerate(label_list)},
id2label={i: label for i, label in enumerate(label_list)},
finetuning_task="wav2vec2_clf",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
setattr(config, 'pooling_mode', model_args.pooling_mode)
# tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(model_args.model_name_or_path)
# feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_args.model_name_or_path)
# processor = Wav2Vec2Processor.from_pretrained(
# model_args.processor_name if model_args.processor_name else model_args.model_name_or_path,
# cache_dir=model_args.cache_dir,
# revision=model_args.model_revision,
# use_auth_token=True if model_args.use_auth_token else None,
# )
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
target_sampling_rate = feature_extractor.feature_extractor.sampling_rate
if model_args.model_mode == "wav2vec":
model = Wav2Vec2ForSpeechClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
elif model_args.model_mode == "hubert":
model = HubertForSpeechClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
raise ValueError("--model_mode does not exist in predefined modes: " + ",".join(MODEL_MODES))
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# NOTE: Duration controller for the future `min_duration_in_seconds` `max_duration_in_seconds`
# data_args.min_duration_in_seconds, data_args.max_duration_in_seconds
def speech_file_to_array_fn(path):
speech_array, sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(sampling_rate, target_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def label_to_id(label, label_list):
if len(label_list) > 0:
return label_list.index(label) if label in label_list else -1
return label
def preprocess_function(examples):
speech_list = [speech_file_to_array_fn(path) for path in examples[input_column_name]]
target_list = [label_to_id(label, label_list) for label in examples[output_column_name]]
result = feature_extractor(speech_list, sampling_rate=target_sampling_rate)
result["labels"] = list(target_list)
return result
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(train_dataset)} train")
if training_args.do_eval:
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(eval_dataset)} validation")
if training_args.do_predict:
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = datasets["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(predict_dataset)} test.")
# Metric
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
if is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
# Data collator
data_collator = DataCollatorCTCWithPadding(feature_extractor=feature_extractor, padding=True)
# Initialize our Trainer
trainer = CTCTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=feature_extractor,
)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
logger.info(f"*** Training from: {checkpoint} ***")
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
# save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank):
feature_extractor.save_pretrained(training_args.output_dir)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Final test metrics
if training_args.do_predict:
logger.info("*** Test ***")
predict_dataset.remove_columns_(output_column_name)
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
output_predict_file = os.path.join(training_args.output_dir, f"predict_results.txt")
if trainer.is_world_process_zero():
with open(output_predict_file, "w", encoding="utf-8") as writer:
logger.info(f"***** Predict results *****")
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
if is_regression:
writer.write(f"{index}\t{item:3.3f}\n")
else:
item = label_list[item]
writer.write(f"{index}\t{item}\n")
# NOTE: Pushing to hub for future
# training_args.push_to_hub
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()