-
Notifications
You must be signed in to change notification settings - Fork 126
/
train_fastdvdnet.py
212 lines (176 loc) · 7.03 KB
/
train_fastdvdnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Trains a FastDVDnet model.
Copyright (C) 2019, Matias Tassano <matias.tassano@parisdescartes.fr>
This program is free software: you can use, modify and/or
redistribute it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later
version. You should have received a copy of this license along
this program. If not, see <http://www.gnu.org/licenses/>.
"""
import time
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from models import FastDVDnet
from dataset import ValDataset
from dataloaders import train_dali_loader
from utils import svd_orthogonalization, close_logger, init_logging, normalize_augment
from train_common import resume_training, lr_scheduler, log_train_psnr, \
validate_and_log, save_model_checkpoint
def main(**args):
r"""Performs the main training loop
"""
# Load dataset
print('> Loading datasets ...')
dataset_val = ValDataset(valsetdir=args['valset_dir'], gray_mode=False)
loader_train = train_dali_loader(batch_size=args['batch_size'],\
file_root=args['trainset_dir'],\
sequence_length=args['temp_patch_size'],\
crop_size=args['patch_size'],\
epoch_size=args['max_number_patches'],\
random_shuffle=True,\
temp_stride=3)
num_minibatches = int(args['max_number_patches']//args['batch_size'])
ctrl_fr_idx = (args['temp_patch_size'] - 1) // 2
print("\t# of training samples: %d\n" % int(args['max_number_patches']))
# Init loggers
writer, logger = init_logging(args)
# Define GPU devices
device_ids = [0]
torch.backends.cudnn.benchmark = True # CUDNN optimization
# Create model
model = FastDVDnet()
model = nn.DataParallel(model, device_ids=device_ids).cuda()
# Define loss
criterion = nn.MSELoss(reduction='sum')
criterion.cuda()
# Optimizer
optimizer = optim.Adam(model.parameters(), lr=args['lr'])
# Resume training or start anew
start_epoch, training_params = resume_training(args, model, optimizer)
# Training
start_time = time.time()
for epoch in range(start_epoch, args['epochs']):
# Set learning rate
current_lr, reset_orthog = lr_scheduler(epoch, args)
if reset_orthog:
training_params['no_orthog'] = True
# set learning rate in optimizer
for param_group in optimizer.param_groups:
param_group["lr"] = current_lr
print('\nlearning rate %f' % current_lr)
# train
for i, data in enumerate(loader_train, 0):
# Pre-training step
model.train()
# When optimizer = optim.Optimizer(net.parameters()) we only zero the optim's grads
optimizer.zero_grad()
# convert inp to [N, num_frames*C. H, W] in [0., 1.] from [N, num_frames, C. H, W] in [0., 255.]
# extract ground truth (central frame)
img_train, gt_train = normalize_augment(data[0]['data'], ctrl_fr_idx)
N, _, H, W = img_train.size()
# std dev of each sequence
stdn = torch.empty((N, 1, 1, 1)).cuda().uniform_(args['noise_ival'][0], to=args['noise_ival'][1])
# draw noise samples from std dev tensor
noise = torch.zeros_like(img_train)
noise = torch.normal(mean=noise, std=stdn.expand_as(noise))
#define noisy input
imgn_train = img_train + noise
# Send tensors to GPU
gt_train = gt_train.cuda(non_blocking=True)
imgn_train = imgn_train.cuda(non_blocking=True)
noise = noise.cuda(non_blocking=True)
noise_map = stdn.expand((N, 1, H, W)).cuda(non_blocking=True) # one channel per image
# Evaluate model and optimize it
out_train = model(imgn_train, noise_map)
# Compute loss
loss = criterion(gt_train, out_train) / (N*2)
loss.backward()
optimizer.step()
# Results
if training_params['step'] % args['save_every'] == 0:
# Apply regularization by orthogonalizing filters
if not training_params['no_orthog']:
model.apply(svd_orthogonalization)
# Compute training PSNR
log_train_psnr(out_train, \
gt_train, \
loss, \
writer, \
epoch, \
i, \
num_minibatches, \
training_params)
# update step counter
training_params['step'] += 1
# Call to model.eval() to correctly set the BN layers before inference
model.eval()
# Validation and log images
validate_and_log(
model_temp=model, \
dataset_val=dataset_val, \
valnoisestd=args['val_noiseL'], \
temp_psz=args['temp_patch_size'], \
writer=writer, \
epoch=epoch, \
lr=current_lr, \
logger=logger, \
trainimg=img_train
)
# save model and checkpoint
training_params['start_epoch'] = epoch + 1
save_model_checkpoint(model, args, optimizer, training_params, epoch)
# Print elapsed time
elapsed_time = time.time() - start_time
print('Elapsed time {}'.format(time.strftime("%H:%M:%S", time.gmtime(elapsed_time))))
# Close logger file
close_logger(logger)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train the denoiser")
#Training parameters
parser.add_argument("--batch_size", type=int, default=64, \
help="Training batch size")
parser.add_argument("--epochs", "--e", type=int, default=80, \
help="Number of total training epochs")
parser.add_argument("--resume_training", "--r", action='store_true',\
help="resume training from a previous checkpoint")
parser.add_argument("--milestone", nargs=2, type=int, default=[50, 60], \
help="When to decay learning rate; should be lower than 'epochs'")
parser.add_argument("--lr", type=float, default=1e-3, \
help="Initial learning rate")
parser.add_argument("--no_orthog", action='store_true',\
help="Don't perform orthogonalization as regularization")
parser.add_argument("--save_every", type=int, default=10,\
help="Number of training steps to log psnr and perform \
orthogonalization")
parser.add_argument("--save_every_epochs", type=int, default=5,\
help="Number of training epochs to save state")
parser.add_argument("--noise_ival", nargs=2, type=int, default=[5, 55], \
help="Noise training interval")
parser.add_argument("--val_noiseL", type=float, default=25, \
help='noise level used on validation set')
# Preprocessing parameters
parser.add_argument("--patch_size", "--p", type=int, default=96, help="Patch size")
parser.add_argument("--temp_patch_size", "--tp", type=int, default=5, help="Temporal patch size")
parser.add_argument("--max_number_patches", "--m", type=int, default=256000, \
help="Maximum number of patches")
# Dirs
parser.add_argument("--log_dir", type=str, default="logs", \
help='path of log files')
parser.add_argument("--trainset_dir", type=str, default=None, \
help='path of trainset')
parser.add_argument("--valset_dir", type=str, default=None, \
help='path of validation set')
argspar = parser.parse_args()
# Normalize noise between [0, 1]
argspar.val_noiseL /= 255.
argspar.noise_ival[0] /= 255.
argspar.noise_ival[1] /= 255.
print("\n### Training FastDVDnet denoiser model ###")
print("> Parameters:")
for p, v in zip(argspar.__dict__.keys(), argspar.__dict__.values()):
print('\t{}: {}'.format(p, v))
print('\n')
main(**vars(argspar))