-
Notifications
You must be signed in to change notification settings - Fork 28
/
train.py
76 lines (60 loc) · 2.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import argparse
import collections
import torch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
import ipdb
import os
def main(config):
logger = config.get_logger('train')
# setup data_loader instances
config._config['data_loader']['args']['split'] = 'train'
data_loader = config.initialize('data_loader', module_data)
config._config['data_loader']['args']['split'] = 'val'
valid_data_loader = config.initialize('data_loader', module_data)
# TODO: improve this, safely clone args across config classes
config._config['arch']['args']['label'] = data_loader.dataset.label
config._config['arch']['args']['experts_used'] = data_loader.dataset.experts_used
config._config['arch']['args']['expert_dims'] = data_loader.dataset.expert_dims
# build model architecture, then print to console
model = config.initialize('arch', module_arch)
logger.info(model)
# get function handles of loss and metrics
loss = config.initialize(name="loss", module=module_loss)
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.initialize('optimizer', torch.optim, trainable_params)
lr_scheduler = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer)
trainer = Trainer(model, loss, metrics, optimizer,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler)
trainer.train()
return logger
class TestArg:
def __init__(self, resume):
self.resume = resume
self.device = None
self.config = None
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
#CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
#options = [
# CustomArgs(['--lr', '--learning_rate'], type=float, target=('optimizer', 'args', 'lr')),
# CustomArgs(['--bs', '--batch_size'], type=int, target=('data_loader', 'args', 'batch_size'))
#]
config = ConfigParser(args)
main(config)