Skip to content

Commit 120da9d

Browse files
committed
add longest common subsequence
1 parent d433845 commit 120da9d

File tree

1 file changed

+133
-0
lines changed

1 file changed

+133
-0
lines changed
Lines changed: 133 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,133 @@
1+
# Longest Common Subsequence
2+
3+
- category: [DP_Two_Sequence]
4+
5+
## Source
6+
7+
- lintcode: [(77) Longest Common Subsequence](http://www.lintcode.com/en/problem/longest-common-subsequence/)
8+
9+
```
10+
Given two strings, find the longest common subsequence (LCS).
11+
12+
Your code should return the length of LCS.
13+
14+
Have you met this question in a real interview? Yes
15+
Example
16+
For "ABCD" and "EDCA", the LCS is "A" (or "D", "C"), return 1.
17+
18+
For "ABCD" and "EACB", the LCS is "AC", return 2.
19+
20+
Clarification
21+
What's the definition of Longest Common Subsequence?
22+
23+
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
24+
http://baike.baidu.com/view/2020307.htm
25+
```
26+
27+
## 题解
28+
29+
求最长公共子序列的数目,注意这里的子序列可以不是连续序列,务必问清楚题意。求『最长』类的题目往往与动态规划有点关系,这里是两个字符串,故应为双序列动态规划。
30+
31+
这道题的状态很容易找,不妨先试试以`f[i][j]`表示字符串 A 的前 `i` 位和字符串 B 的前 `j` 位的最长公共子序列数目,那么接下来试试寻找其状态转移方程。从实际例子`ABCD``EDCA`出发,首先初始化`f`的长度为字符串长度加1,那么有`f[0][0] = 0`, `f[0][*] = 0`, `f[*][0] = 0`, 最后应该返回`f[lenA][lenB]`. 即 f 中索引与字符串索引对应(字符串索引从1开始算起),那么在A 的第一个字符与 B 的第一个字符相等时,`f[1][1] = 1 + f[0][0]`, 否则`f[1][1] = max(f[0][1], f[1][0])`
32+
33+
推而广之,也就意味着若`A[i] == B[j]`, 则分别去掉这两个字符后,原 LCS 数目减一,那为什么一定是1而不是0或者2呢?因为不管公共子序列是以哪个字符结尾,在`A[i] == B[j]`时 LCS 最多只能增加1. 而在`A[i] != B[j]`时,由于`A[i]` 或者 `B[j]` 不可能同时出现在最终的 LCS 中,故这个问题可进一步缩小,`f[i][j] = max(f[i - 1][j], f[i][j - 1])`. 需要注意的是这种状态转移方程只依赖最终的 LCS 数目,而不依赖于公共子序列到底是以第几个索引结束。
34+
35+
### Python
36+
37+
```python
38+
class Solution:
39+
"""
40+
@param A, B: Two strings.
41+
@return: The length of longest common subsequence of A and B.
42+
"""
43+
def longestCommonSubsequence(self, A, B):
44+
if not A or not B:
45+
return 0
46+
47+
lenA, lenB = len(A), len(B)
48+
lcs = [[0 for i in xrange(1 + lenA)] for j in xrange(1 + lenB)]
49+
50+
for i in xrange(1, 1 + lenA):
51+
for j in xrange(1, 1 + lenB):
52+
if A[i - 1] == B[j - 1]:
53+
lcs[i][j] = 1 + lcs[i - 1][j - 1]
54+
else:
55+
lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1])
56+
return lcs[lenA][lenB]
57+
```
58+
59+
### C++
60+
61+
```c++
62+
class Solution {
63+
public:
64+
/**
65+
* @param A, B: Two strings.
66+
* @return: The length of longest common subsequence of A and B.
67+
*/
68+
int longestCommonSubsequence(string A, string B) {
69+
if (A.empty()) return 0;
70+
if (B.empty()) return 0;
71+
72+
int lenA = A.size();
73+
int lenB = B.size();
74+
vector<vector<int> > lcs = \
75+
vector<vector<int> >(1 + lenA, vector<int>(1 + lenB));
76+
77+
for (int i = 1; i < 1 + lenA; i++) {
78+
for (int j = 1; j < 1 + lenB; j++) {
79+
if (A[i - 1] == B[j - 1]) {
80+
lcs[i][j] = 1 + lcs[i - 1][j - 1];
81+
} else {
82+
lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1]);
83+
}
84+
}
85+
}
86+
87+
return lcs[lenA][lenB];
88+
}
89+
};
90+
```
91+
92+
### Java
93+
94+
```java
95+
public class Solution {
96+
/**
97+
* @param A, B: Two strings.
98+
* @return: The length of longest common subsequence of A and B.
99+
*/
100+
public int longestCommonSubsequence(String A, String B) {
101+
if (A == null || A.length() == 0) return 0;
102+
if (B == null || B.length() == 0) return 0;
103+
104+
int lenA = A.length();
105+
int lenB = B.length();
106+
int[][] lcs = new int[1 + lenA][1 + lenB];
107+
108+
for (int i = 1; i < 1 + lenA; i++) {
109+
for (int j = 1; j < 1 + lenB; j++) {
110+
if (A.charAt(i - 1) == B.charAt(j - 1)) {
111+
lcs[i][j] = 1 + lcs[i - 1][j - 1];
112+
} else {
113+
lcs[i][j] = Math.max(lcs[i - 1][j], lcs[i][j - 1]);
114+
}
115+
}
116+
}
117+
118+
return lcs[lenA][lenB];
119+
}
120+
}
121+
```
122+
123+
### 源码分析
124+
125+
注意 Python 中的多维数组初始化方式,不可简单使用`[[0] * len(A)] * len(B)]`, 具体原因是因为 Python 中的对象引用方式 [^Stackoverflow]
126+
127+
### 复杂度分析
128+
129+
两重for 循环,时间复杂度为 $$O(lenA \times lenB)$$, 使用了二维数组,空间复杂度也为 $$O(lenA \times lenB)$$.
130+
131+
## Reference
132+
133+
- [^Stackoverflow]: [Python multi-dimensional array initialization without a loop - Stack Overflow](http://stackoverflow.com/questions/3662475/python-multi-dimensional-array-initialization-without-a-loop)

0 commit comments

Comments
 (0)