|
| 1 | +# Longest Common Subsequence |
| 2 | + |
| 3 | +- category: [DP_Two_Sequence] |
| 4 | + |
| 5 | +## Source |
| 6 | + |
| 7 | +- lintcode: [(77) Longest Common Subsequence](http://www.lintcode.com/en/problem/longest-common-subsequence/) |
| 8 | + |
| 9 | +``` |
| 10 | +Given two strings, find the longest common subsequence (LCS). |
| 11 | +
|
| 12 | +Your code should return the length of LCS. |
| 13 | +
|
| 14 | +Have you met this question in a real interview? Yes |
| 15 | +Example |
| 16 | +For "ABCD" and "EDCA", the LCS is "A" (or "D", "C"), return 1. |
| 17 | +
|
| 18 | +For "ABCD" and "EACB", the LCS is "AC", return 2. |
| 19 | +
|
| 20 | +Clarification |
| 21 | +What's the definition of Longest Common Subsequence? |
| 22 | +
|
| 23 | +https://en.wikipedia.org/wiki/Longest_common_subsequence_problem |
| 24 | +http://baike.baidu.com/view/2020307.htm |
| 25 | +``` |
| 26 | + |
| 27 | +## 题解 |
| 28 | + |
| 29 | +求最长公共子序列的数目,注意这里的子序列可以不是连续序列,务必问清楚题意。求『最长』类的题目往往与动态规划有点关系,这里是两个字符串,故应为双序列动态规划。 |
| 30 | + |
| 31 | +这道题的状态很容易找,不妨先试试以`f[i][j]`表示字符串 A 的前 `i` 位和字符串 B 的前 `j` 位的最长公共子序列数目,那么接下来试试寻找其状态转移方程。从实际例子`ABCD`和`EDCA`出发,首先初始化`f`的长度为字符串长度加1,那么有`f[0][0] = 0`, `f[0][*] = 0`, `f[*][0] = 0`, 最后应该返回`f[lenA][lenB]`. 即 f 中索引与字符串索引对应(字符串索引从1开始算起),那么在A 的第一个字符与 B 的第一个字符相等时,`f[1][1] = 1 + f[0][0]`, 否则`f[1][1] = max(f[0][1], f[1][0])`。 |
| 32 | + |
| 33 | +推而广之,也就意味着若`A[i] == B[j]`, 则分别去掉这两个字符后,原 LCS 数目减一,那为什么一定是1而不是0或者2呢?因为不管公共子序列是以哪个字符结尾,在`A[i] == B[j]`时 LCS 最多只能增加1. 而在`A[i] != B[j]`时,由于`A[i]` 或者 `B[j]` 不可能同时出现在最终的 LCS 中,故这个问题可进一步缩小,`f[i][j] = max(f[i - 1][j], f[i][j - 1])`. 需要注意的是这种状态转移方程只依赖最终的 LCS 数目,而不依赖于公共子序列到底是以第几个索引结束。 |
| 34 | + |
| 35 | +### Python |
| 36 | + |
| 37 | +```python |
| 38 | +class Solution: |
| 39 | + """ |
| 40 | + @param A, B: Two strings. |
| 41 | + @return: The length of longest common subsequence of A and B. |
| 42 | + """ |
| 43 | + def longestCommonSubsequence(self, A, B): |
| 44 | + if not A or not B: |
| 45 | + return 0 |
| 46 | + |
| 47 | + lenA, lenB = len(A), len(B) |
| 48 | + lcs = [[0 for i in xrange(1 + lenA)] for j in xrange(1 + lenB)] |
| 49 | + |
| 50 | + for i in xrange(1, 1 + lenA): |
| 51 | + for j in xrange(1, 1 + lenB): |
| 52 | + if A[i - 1] == B[j - 1]: |
| 53 | + lcs[i][j] = 1 + lcs[i - 1][j - 1] |
| 54 | + else: |
| 55 | + lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1]) |
| 56 | + return lcs[lenA][lenB] |
| 57 | +``` |
| 58 | + |
| 59 | +### C++ |
| 60 | + |
| 61 | +```c++ |
| 62 | +class Solution { |
| 63 | +public: |
| 64 | + /** |
| 65 | + * @param A, B: Two strings. |
| 66 | + * @return: The length of longest common subsequence of A and B. |
| 67 | + */ |
| 68 | + int longestCommonSubsequence(string A, string B) { |
| 69 | + if (A.empty()) return 0; |
| 70 | + if (B.empty()) return 0; |
| 71 | + |
| 72 | + int lenA = A.size(); |
| 73 | + int lenB = B.size(); |
| 74 | + vector<vector<int> > lcs = \ |
| 75 | + vector<vector<int> >(1 + lenA, vector<int>(1 + lenB)); |
| 76 | + |
| 77 | + for (int i = 1; i < 1 + lenA; i++) { |
| 78 | + for (int j = 1; j < 1 + lenB; j++) { |
| 79 | + if (A[i - 1] == B[j - 1]) { |
| 80 | + lcs[i][j] = 1 + lcs[i - 1][j - 1]; |
| 81 | + } else { |
| 82 | + lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1]); |
| 83 | + } |
| 84 | + } |
| 85 | + } |
| 86 | + |
| 87 | + return lcs[lenA][lenB]; |
| 88 | + } |
| 89 | +}; |
| 90 | +``` |
| 91 | + |
| 92 | +### Java |
| 93 | + |
| 94 | +```java |
| 95 | + public class Solution { |
| 96 | + /** |
| 97 | + * @param A, B: Two strings. |
| 98 | + * @return: The length of longest common subsequence of A and B. |
| 99 | + */ |
| 100 | + public int longestCommonSubsequence(String A, String B) { |
| 101 | + if (A == null || A.length() == 0) return 0; |
| 102 | + if (B == null || B.length() == 0) return 0; |
| 103 | + |
| 104 | + int lenA = A.length(); |
| 105 | + int lenB = B.length(); |
| 106 | + int[][] lcs = new int[1 + lenA][1 + lenB]; |
| 107 | + |
| 108 | + for (int i = 1; i < 1 + lenA; i++) { |
| 109 | + for (int j = 1; j < 1 + lenB; j++) { |
| 110 | + if (A.charAt(i - 1) == B.charAt(j - 1)) { |
| 111 | + lcs[i][j] = 1 + lcs[i - 1][j - 1]; |
| 112 | + } else { |
| 113 | + lcs[i][j] = Math.max(lcs[i - 1][j], lcs[i][j - 1]); |
| 114 | + } |
| 115 | + } |
| 116 | + } |
| 117 | + |
| 118 | + return lcs[lenA][lenB]; |
| 119 | + } |
| 120 | +} |
| 121 | +``` |
| 122 | + |
| 123 | +### 源码分析 |
| 124 | + |
| 125 | +注意 Python 中的多维数组初始化方式,不可简单使用`[[0] * len(A)] * len(B)]`, 具体原因是因为 Python 中的对象引用方式 [^Stackoverflow]。 |
| 126 | + |
| 127 | +### 复杂度分析 |
| 128 | + |
| 129 | +两重for 循环,时间复杂度为 $$O(lenA \times lenB)$$, 使用了二维数组,空间复杂度也为 $$O(lenA \times lenB)$$. |
| 130 | + |
| 131 | +## Reference |
| 132 | + |
| 133 | +- [^Stackoverflow]: [Python multi-dimensional array initialization without a loop - Stack Overflow](http://stackoverflow.com/questions/3662475/python-multi-dimensional-array-initialization-without-a-loop) |
0 commit comments