|
| 1 | +# Previous Permuation |
| 2 | + |
| 3 | +## Source |
| 4 | + |
| 5 | +- lintcode: [(51) Previous Permuation](http://www.lintcode.com/en/problem/previous-permuation/) |
| 6 | + |
| 7 | +``` |
| 8 | +Given a list of integers, which denote a permutation. |
| 9 | +
|
| 10 | +Find the previous permutation in ascending order. |
| 11 | +
|
| 12 | +Example |
| 13 | +For [1,3,2,3], the previous permutation is [1,2,3,3] |
| 14 | +
|
| 15 | +For [1,2,3,4], the previous permutation is [4,3,2,1] |
| 16 | +
|
| 17 | +Note |
| 18 | +The list may contains duplicate integers. |
| 19 | +``` |
| 20 | + |
| 21 | +## 题解 |
| 22 | + |
| 23 | +和前一题 [Next Permutation](http://algorithm.yuanbin.me/exhaustive_search/next_permutation.html) 非常类似,这里找上一个排列,仍然使用字典序算法,大致步骤如下: |
| 24 | + |
| 25 | +1. 从后往前寻找索引满足 `a[k] > a[k + 1]`, 如果此条件不满足,则说明已遍历到最后一个。 |
| 26 | +2. 从后往前遍历,找到第一个比`a[k]`小的数`a[l]`, 即`a[k] > a[l]`. |
| 27 | +3. 交换`a[k]`与`a[l]`. |
| 28 | +4. 反转`k + 1 ~ n`之间的元素。 |
| 29 | + |
| 30 | +为何不从前往后呢?因为只有从后往前才能保证得到的是相邻的排列,可以举个实际例子自行分析。 |
| 31 | + |
| 32 | +### Python |
| 33 | + |
| 34 | +```python |
| 35 | +class Solution: |
| 36 | + # @param num : a list of integer |
| 37 | + # @return : a list of integer |
| 38 | + def previousPermuation(self, num): |
| 39 | + if num is None or len(num) <= 1: |
| 40 | + return num |
| 41 | + # step1: find nums[i] > nums[i + 1], Loop backwards |
| 42 | + i = 0 |
| 43 | + for i in xrange(len(num) - 2, -1, -1): |
| 44 | + if num[i] > num[i + 1]: |
| 45 | + break |
| 46 | + elif i == 0: |
| 47 | + # reverse nums if reach maximum |
| 48 | + num = num[::-1] |
| 49 | + return num |
| 50 | + # step2: find nums[i] > nums[j], Loop backwards |
| 51 | + j = 0 |
| 52 | + for j in xrange(len(num) - 1, i, -1): |
| 53 | + if num[i] > num[j]: |
| 54 | + break |
| 55 | + # step3: swap betwenn nums[i] and nums[j] |
| 56 | + num[i], num[j] = num[j], num[i] |
| 57 | + # step4: reverse between [i + 1, n - 1] |
| 58 | + num[i + 1:len(num)] = num[len(num) - 1:i:-1] |
| 59 | + |
| 60 | + return num |
| 61 | +``` |
| 62 | + |
| 63 | +### C++ |
| 64 | + |
| 65 | +```c++ |
| 66 | +class Solution { |
| 67 | +public: |
| 68 | + /** |
| 69 | + * @param nums: An array of integers |
| 70 | + * @return: An array of integers that's previous permuation |
| 71 | + */ |
| 72 | + vector<int> previousPermuation(vector<int> &nums) { |
| 73 | + if (nums.empty() || nums.size() <= 1) { |
| 74 | + return nums; |
| 75 | + } |
| 76 | + // step1: find nums[i] > nums[i + 1] |
| 77 | + int i = 0; |
| 78 | + for (i = nums.size() - 2; i >= 0; --i) { |
| 79 | + if (nums[i] > nums[i + 1]) { |
| 80 | + break; |
| 81 | + } else if (0 == i) { |
| 82 | + // reverse nums if reach minimum |
| 83 | + reverse(nums, 0, nums.size() - 1); |
| 84 | + return nums; |
| 85 | + } |
| 86 | + } |
| 87 | + // step2: find nums[i] > nums[j] |
| 88 | + int j = 0; |
| 89 | + for (j = nums.size() - 1; j > i; --j) { |
| 90 | + if (nums[i] > nums[j]) break; |
| 91 | + } |
| 92 | + // step3: swap betwenn nums[i] and nums[j] |
| 93 | + int temp = nums[i]; |
| 94 | + nums[i] = nums[j]; |
| 95 | + nums[j] = temp; |
| 96 | + // step4: reverse between [i + 1, n - 1] |
| 97 | + reverse(nums, i + 1, nums.size() - 1); |
| 98 | + |
| 99 | + return nums; |
| 100 | + } |
| 101 | + |
| 102 | +private: |
| 103 | + void reverse(vector<int>& nums, int start, int end) { |
| 104 | + for (int i = start, j = end; i < j; ++i, --j) { |
| 105 | + int temp = nums[i]; |
| 106 | + nums[i] = nums[j]; |
| 107 | + nums[j] = temp; |
| 108 | + } |
| 109 | + } |
| 110 | +}; |
| 111 | +``` |
| 112 | +
|
| 113 | +### Java |
| 114 | +
|
| 115 | +```java |
| 116 | +public class Solution { |
| 117 | + /** |
| 118 | + * @param nums: A list of integers |
| 119 | + * @return: A list of integers that's previous permuation |
| 120 | + */ |
| 121 | + public ArrayList<Integer> previousPermuation(ArrayList<Integer> nums) { |
| 122 | + if (nums == null || nums.size() <= 1) { |
| 123 | + return nums; |
| 124 | + } |
| 125 | + // step1: find nums[i] > nums[i + 1] |
| 126 | + int i = 0; |
| 127 | + for (i = nums.size() - 2; i >= 0; i--) { |
| 128 | + if (nums.get(i) > nums.get(i + 1)) { |
| 129 | + break; |
| 130 | + } else if (i == 0) { |
| 131 | + // reverse nums if reach minimum |
| 132 | + reverse(nums, 0, nums.size() - 1); |
| 133 | + return nums; |
| 134 | + } |
| 135 | + } |
| 136 | + // step2: find nums[i] > nums[j] |
| 137 | + int j = 0; |
| 138 | + for (j = nums.size() - 1; j > i; j--) { |
| 139 | + if (nums.get(i) > nums.get(j)) { |
| 140 | + break; |
| 141 | + } |
| 142 | + } |
| 143 | + // step3: swap betwenn nums[i] and nums[j] |
| 144 | + Collections.swap(nums, i, j); |
| 145 | + // step4: reverse between [i + 1, n - 1] |
| 146 | + reverse(nums, i + 1, nums.size() - 1); |
| 147 | +
|
| 148 | + return nums; |
| 149 | + } |
| 150 | +
|
| 151 | + private void reverse(List<Integer> nums, int start, int end) { |
| 152 | + for (int i = start, j = end; i < j; i++, j--) { |
| 153 | + Collections.swap(nums, i, j); |
| 154 | + } |
| 155 | + } |
| 156 | +} |
| 157 | +``` |
| 158 | + |
| 159 | +### 源码分析 |
| 160 | + |
| 161 | +和 Permutation 一小节类似,这里只需要注意在step 1中`i == 0`时需要反转之以获得最大的序列。对于有重复元素,只要在 step1和 step2中判断元素大小时不取等号即可。 |
| 162 | + |
| 163 | +### 复杂度分析 |
| 164 | + |
| 165 | +最坏情况下,遍历两次原数组,反转一次数组,时间复杂度为 $$O(n)$$, 使用了 temp 临时变量,空间复杂度可认为是 $$O(1)$$. |
| 166 | + |
| 167 | +## Reference |
| 168 | + |
| 169 | +- [Permutation | Data Structure and Algorithm](http://algorithm.yuanbin.me/exhaustive_search/permutation.html) |
0 commit comments