-
Notifications
You must be signed in to change notification settings - Fork 0
/
Binary Search Tree Iterator.java
70 lines (60 loc) · 1.58 KB
/
Binary Search Tree Iterator.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/*
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST.
Calling next() will return the next smallest number in the BST.
Note: next() and hasNext() should run in average O(1) time and uses O(h) memory, where h is the height of the tree.
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
steps:
5
/ \
2 6
/ \
1 4
/
3
stack: 5,2,1 => 5,2
stack: 5,2 => 5 => 5,4 next = 3
5,4,3
stack: 5,4,3 => 5,4 => 5 next = 6
6
stack:6 => null
time = O(1) on average
space = O(height) = O(n) for the deque
*/
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class BSTIterator {
private Deque<TreeNode> stack = new LinkedList<TreeNode>();
public BSTIterator(TreeNode root) {
while (root != null) {
stack.offerFirst(root);
root = root.left;
}
}
/** @return whether we have a next smallest number */
public boolean hasNext() {
return !stack.isEmpty();
}
/** @return the next smallest number */
public int next() {
TreeNode tmp = stack.pollFirst();
TreeNode next = tmp.right;
while (next != null) {
stack.offerFirst(next);
next = next.left;
}
return tmp.val;
}
}
/**
* Your BSTIterator will be called like this:
* BSTIterator i = new BSTIterator(root);
* while (i.hasNext()) v[f()] = i.next();
*/