forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_reduce_x_op_ipu.py
192 lines (152 loc) · 5.11 KB
/
test_reduce_x_op_ipu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test_ipu import IPUOpTest
import paddle
import paddle.static
class TestMean(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_test_op()
def set_test_op(self):
self.op = paddle.mean
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(
name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32'
)
out = self.op(x, **self.attrs)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def run_test_base(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
def set_data_feed0(self):
data = np.random.uniform(size=[2, 4])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
self.set_feed_attr()
def set_data_feed1(self):
data = np.random.uniform(size=[2, 2, 2])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
self.set_feed_attr()
def set_op_attr0(self):
self.attrs = {}
self.attrs['dim'] = None
self.attrs['keep_dim'] = False
def test_case0(self):
self.set_data_feed0()
self.set_op_attr0()
self.run_test_base()
def test_case1(self):
self.set_data_feed0()
self.set_op_attr0()
self.attrs['dim'] = 0
self.run_test_base()
def test_case2(self):
self.set_data_feed0()
self.set_op_attr0()
self.attrs['dim'] = -1
self.run_test_base()
def test_case3(self):
self.set_data_feed0()
self.set_op_attr0()
self.attrs['dim'] = 1
self.run_test_base()
def test_case4(self):
self.set_data_feed0()
self.attrs = {}
self.attrs['dim'] = 1
self.attrs['keep_dim'] = True
self.run_test_base()
def test_case5(self):
self.set_data_feed1()
self.attrs = {}
self.attrs['dim'] = [1, 2]
self.attrs['keep_dim'] = False
self.run_test_base()
def test_case6(self):
self.set_data_feed1()
self.attrs = {}
self.attrs['dim'] = [0, 1]
self.attrs['keep_dim'] = False
self.run_test_base()
def test_case7(self):
self.set_data_feed1()
self.attrs = {}
self.attrs['dim'] = [0, 1]
self.attrs['keep_dim'] = True
self.run_test_base()
class TestMax(TestMean):
def set_test_op(self):
self.op = paddle.max
class TestMin(TestMean):
def set_test_op(self):
self.op = paddle.min
class TestSum(TestMean):
def set_test_op(self):
self.op = paddle.sum
class TestLogsumexp(TestMean):
def set_test_op(self):
self.op = paddle.logsumexp
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(
name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32'
)
if 'dim' in self.attrs:
self.attrs['axis'] = self.attrs['dim']
del self.attrs['dim']
if 'keep_dim' in self.attrs:
self.attrs['keepdim'] = self.attrs['keep_dim']
del self.attrs['keep_dim']
out = self.op(x, **self.attrs)
self.fetch_list = [out.name]
class TestAll(TestMean):
@property
def fp16_enabled(self):
return False
def set_data_feed0(self):
data = np.random.choice(a=[False, True], size=(2, 4))
self.feed_fp32 = {"in_0": data.astype(bool)}
self.set_feed_attr()
def set_data_feed1(self):
data = np.random.choice(a=[False, True], size=(2, 2, 2))
self.feed_fp32 = {"in_0": data.astype(bool)}
self.set_feed_attr()
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(
name=self.feed_list[0], shape=self.feed_shape[0], dtype='bool'
)
out = self.op(x, **self.attrs)
self.fetch_list = [out.name]
def set_test_op(self):
self.op = paddle.all
class TestAny(TestAll):
def set_test_op(self):
self.op = paddle.any
if __name__ == "__main__":
unittest.main()