forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_print_op_ipu.py
180 lines (146 loc) · 5.23 KB
/
test_print_op_ipu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test_ipu import IPUD2STest, IPUOpTest
import paddle
import paddle.static
from paddle.jit import to_static
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
@property
def fp16_enabled(self):
return False
def set_data_feed(self):
data = np.random.uniform(size=[1, 3, 3, 3]).astype('float32')
self.feed_fp32 = {"x": data.astype(np.float32)}
self.feed_fp16 = {"x": data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_op_attrs(self):
self.attrs = {}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype=self.feed_dtype[0],
)
out = paddle.static.nn.conv2d(x, num_filters=3, filter_size=3)
out = paddle.static.Print(out, **self.attrs)
if self.is_training:
loss = paddle.mean(out)
adam = paddle.optimizer.Adam(learning_rate=1e-2)
adam.minimize(loss)
self.fetch_list = [loss.name]
else:
self.fetch_list = [out.name]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
class TestCase1(TestBase):
def set_op_attrs(self):
self.attrs = {"message": "input_data"}
class TestTrainCase1(TestBase):
def set_op_attrs(self):
# "forward" : print forward
# "backward" : print forward and backward
# "both": print forward and backward
self.attrs = {"message": "input_data2", "print_phase": "both"}
def set_training(self):
self.is_training = True
self.epoch = 2
@unittest.skip("attrs are not supported")
class TestCase2(TestBase):
def set_op_attrs(self):
self.attrs = {
"first_n": 10,
"summarize": 10,
"print_tensor_name": True,
"print_tensor_type": True,
"print_tensor_shape": True,
"print_tensor_layout": True,
"print_tensor_lod": True,
}
class SimpleLayer(paddle.nn.Layer):
def __init__(self):
super().__init__()
self.conv = paddle.nn.Conv2D(
in_channels=3, out_channels=1, kernel_size=2, stride=1
)
@to_static()
def forward(self, x, target=None):
x = self.conv(x)
print(x)
x = paddle.flatten(x, 1, -1)
if target is not None:
x = paddle.nn.functional.softmax(x)
loss = paddle.paddle.nn.functional.cross_entropy(
x, target, reduction='none', use_softmax=False
)
loss = paddle.incubate.identity_loss(loss, 1)
return x, loss
return x
class TestD2S(IPUD2STest):
def setUp(self):
self.set_data_feed()
def set_data_feed(self):
self.data = paddle.uniform((8, 3, 10, 10), dtype='float32')
self.label = paddle.randint(0, 10, shape=[8], dtype='int64')
def _test(self, use_ipu=False):
paddle.seed(self.SEED)
np.random.seed(self.SEED)
model = SimpleLayer()
optim = paddle.optimizer.Adam(
learning_rate=0.01, parameters=model.parameters()
)
if use_ipu:
paddle.set_device('ipu')
ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.set_graph_config(
num_ipus=1,
is_training=True,
micro_batch_size=1,
enable_manual_shard=False,
)
ipu_strategy.set_optimizer(optim)
result = []
for _ in range(2):
# ipu only needs call model() to do forward/backward/grad_update
pred, loss = model(self.data, self.label)
if not use_ipu:
loss.backward()
optim.step()
optim.clear_grad()
result.append(loss)
if use_ipu:
ipu_strategy.release_patch()
return np.array(result)
def test_training(self):
ipu_loss = self._test(True).flatten()
cpu_loss = self._test(False).flatten()
np.testing.assert_allclose(ipu_loss, cpu_loss, rtol=1e-05, atol=1e-4)
if __name__ == "__main__":
unittest.main()