forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pool_max_op_ipu.py
127 lines (96 loc) · 3.31 KB
/
test_pool_max_op_ipu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test_ipu import IPUOpTest
import paddle
import paddle.static
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
def set_data_feed(self):
data = np.random.uniform(size=[1, 3, 10, 10])
self.feed_fp32 = {'in_0': data.astype(np.float32)}
self.feed_fp16 = {'in_0': data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_op_attrs(self):
self.attrs = {
"kernel_size": 3,
"stride": 1,
"padding": 0,
"ceil_mode": False,
"data_format": 'NCHW',
}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(
name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32'
)
out = paddle.nn.functional.max_pool2d(x, **self.attrs)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
class TestCase1(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['kernel_size'] = 3
class TestCase1_2(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['kernel_size'] = [3, 1]
class TestCase2(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['stride'] = 2
class TestCase2_2(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['stride'] = [2, 1]
class TestCase3(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['padding'] = [1, 1]
class TestCase3_2(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['padding'] = [1, 1, 2, 2]
@unittest.skip('auto_pad is not currently supported')
class TestCase3_3(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['padding'] = 'VALID'
@unittest.skip('auto_pad is not currently supported')
class TestCase3_4(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['padding'] = 'SAME'
class TestCase5(TestBase):
def set_op_attrs(self):
super().set_op_attrs()
self.attrs['ceil_mode'] = True
if __name__ == "__main__":
unittest.main()