forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_fp16_support_ipu.py
107 lines (90 loc) · 3.21 KB
/
test_fp16_support_ipu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test_ipu import IPUOpTest
import paddle
import paddle.nn.functional as F
import paddle.static
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
def set_atol(self):
self.atol = 5e-6
self.rtol = 1e-5
self.atol_fp16 = 1e-2
self.rtol_fp16 = 1e-3
def set_data_feed(self):
np_data = np.random.uniform(low=-1, high=1, size=[1, 3, 100, 100])
self.feed_fp32 = {"x": np_data.astype('float32')}
self.feed_fp16 = {"x": np_data.astype('float16')}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_op_attrs(self):
self.attrs = {}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(
name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32'
)
conv1 = paddle.static.nn.conv2d(
x, num_filters=3, filter_size=3, bias_attr=False
)
conv2 = paddle.static.nn.conv2d(
x, num_filters=3, filter_size=3, bias_attr=False
)
add1 = conv1 + conv2
conv3 = paddle.static.nn.conv2d(
add1, num_filters=8, filter_size=8, bias_attr=False
)
out = F.relu(conv3, **self.attrs)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
class TestIntInput(TestBase):
def set_data_feed(self):
embedding = np.random.uniform(size=[10, 20])
indice = np.array([1, 3, 5]).astype(np.int32)
self.feed_fp32 = {
"embedding": embedding.astype(np.float32),
"indice": indice,
}
self.feed_fp16 = {
"embedding": embedding.astype(np.float16),
"indice": indice,
}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(
name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32'
)
y = paddle.static.data(
name=self.feed_list[1], shape=self.feed_shape[1], dtype='int32'
)
out = paddle.gather(x, index=y)
self.fetch_list = [out.name]
if __name__ == "__main__":
unittest.main()