forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dy2static_fp16_ipu.py
134 lines (113 loc) · 4.29 KB
/
test_dy2static_fp16_ipu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
from op_test_ipu import IPUD2STest
import paddle
class SimpleLayer(paddle.nn.Layer):
def __init__(self, use_ipu=False):
super().__init__()
self.use_ipu = use_ipu
self.conv = paddle.nn.Conv2D(
in_channels=3, out_channels=1, kernel_size=2, stride=1
)
def forward(self, x, target=None):
x = self.conv(x)
x = paddle.flatten(x, 1, -1)
if target is not None:
x = paddle.nn.functional.softmax(x)
loss = paddle.paddle.nn.functional.cross_entropy(
x, target, reduction='none', use_softmax=False
)
if self.use_ipu:
loss = paddle.incubate.identity_loss(loss, 1)
else:
loss = paddle.mean(loss)
return x, loss
return x
class TestBase(IPUD2STest):
def setUp(self):
super().setUp()
self.save_path = tempfile.TemporaryDirectory()
def tearDown(self):
super().tearDown()
self.save_path.cleanup()
def _test(self, use_ipu=False):
paddle.seed(self.SEED)
np.random.seed(self.SEED)
model = SimpleLayer(use_ipu)
specs = [
paddle.static.InputSpec(
name="x", shape=[32, 3, 10, 10], dtype="float32"
),
paddle.static.InputSpec(name="target", shape=[32], dtype="int64"),
]
model = paddle.jit.to_static(model, input_spec=specs)
optim = paddle.optimizer.Adam(
learning_rate=0.01, parameters=model.parameters()
)
data = paddle.uniform((32, 3, 10, 10), dtype='float32')
label = paddle.randint(0, 10, shape=[32], dtype='int64')
model_path = '{}/model_state_dict_{}.pdparams'.format(
self.save_path, 'ipu' if use_ipu else 'cpu'
)
optim_path = '{}/optim_state_dict_{}.pdopt'.format(
self.save_path, 'ipu' if use_ipu else 'cpu'
)
if use_ipu:
paddle.set_device('ipu')
ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.set_graph_config(
num_ipus=1,
is_training=True,
micro_batch_size=1,
enable_manual_shard=False,
)
ipu_strategy.set_precision_config(enable_fp16=True)
ipu_strategy.set_optimizer(optim)
data = data.astype(np.float16)
epochs = 100
result = []
for _ in range(epochs):
# ipu only needs call model() to do forward/backward/grad_update
pred, loss = model(data, label)
if not use_ipu:
loss.backward()
optim.step()
optim.clear_grad()
result.append(loss)
if use_ipu:
paddle.base.core.IpuBackend.get_instance().weights_to_host()
paddle.save(model.state_dict(), model_path)
paddle.save(optim.state_dict(), optim_path)
model.set_state_dict(paddle.load(model_path))
optim.set_state_dict(paddle.load(optim_path))
for _ in range(epochs):
# ipu only needs call model() to do forward/backward/grad_update
pred, loss = model(data, label)
if not use_ipu:
loss.backward()
optim.step()
optim.clear_grad()
result.append(loss)
if use_ipu:
ipu_strategy.release_patch()
return np.array(result)
def test_training(self):
cpu_loss = self._test(False).flatten()
ipu_loss = self._test(True).flatten()
np.testing.assert_allclose(ipu_loss, cpu_loss, rtol=1e-05, atol=0.01)
if __name__ == "__main__":
unittest.main()