forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cross_entropy2_op_ipu.py
147 lines (124 loc) · 4.12 KB
/
test_cross_entropy2_op_ipu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test_ipu import IPUOpTest
import paddle
import paddle.static
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
def set_data_feed(self):
x = np.random.uniform(size=[3, 7])
label = np.arange(3).reshape([3, 1])
self.feed_fp32 = {
"x": x.astype(np.float32),
"label": label.astype(np.int64),
}
self.feed_fp16 = {
"x": x.astype(np.float16),
"label": label.astype(np.int32),
}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
def set_op_attrs(self):
self.attrs = {
'soft_label': False,
}
@IPUOpTest.static_graph
def build_model(self, on_ipu):
x = paddle.static.data(
name=self.feed_list[0], shape=self.feed_shape[0], dtype="float32"
)
if on_ipu:
label = paddle.static.data(
name=self.feed_list[1], shape=self.feed_shape[1], dtype='int32'
)
else:
label = paddle.static.data(
name=self.feed_list[1], shape=self.feed_shape[1], dtype='int64'
)
out = paddle.nn.functional.cross_entropy(
input=x,
label=label,
reduction='none',
use_softmax=False,
**self.attrs
)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
if self.is_ipu_mode(exec_mode):
self.feed_fp32['label'] = self.feed_fp32['label'].astype(np.int32)
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model(self.is_ipu_mode(m))
self.run_model(m)
self.check()
class TestCase1(TestBase):
def set_op_attrs(self):
self.attrs = {
'soft_label': False,
'ignore_index': 1,
}
class TestCase2(TestBase):
def set_data_feed(self):
x = np.random.uniform(size=[30, 70])
label = np.arange(30).reshape([30, 1])
self.feed_fp32 = {
"x": x.astype(np.float32),
"label": label.astype(np.int64),
}
self.feed_fp16 = {
"x": x.astype(np.float16),
"label": label.astype(np.int32),
}
@unittest.skip("soft_label=True is not supported")
class TestCase3(TestBase):
def set_op_attrs(self):
self.attrs = {
'soft_label': True,
}
class TestCase4(TestBase):
def set_data_feed(self):
x = np.random.uniform(size=[3, 5, 7])
label = np.random.randint(0, 7, [3, 5, 1], dtype='int64')
self.feed_fp32 = {
"x": x.astype(np.float32),
"label": label.astype(np.int64),
}
self.feed_fp16 = {
"x": x.astype(np.float16),
"label": label.astype(np.int32),
}
class TestCase5(TestBase):
def set_data_feed(self):
x = np.random.uniform(size=[3, 5, 6, 7])
label = np.random.randint(0, 7, [3, 5, 6], dtype='int64')
self.feed_fp32 = {
"x": x.astype(np.float32),
"label": label.astype(np.int64),
}
self.feed_fp16 = {
"x": x.astype(np.float16),
"label": label.astype(np.int32),
}
if __name__ == "__main__":
unittest.main()