forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_relu_op.cu
166 lines (145 loc) · 5.99 KB
/
custom_relu_op.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/extension.h"
#define CHECK_GPU_INPUT(x) PD_CHECK(x.is_gpu(), #x " must be a GPU Tensor.")
template <typename data_t>
__global__ void relu_cuda_forward_kernel(const data_t* x,
data_t* y,
int64_t num) {
int64_t gid = blockIdx.x * blockDim.x + threadIdx.x;
for (int64_t i = gid; i < num; i += blockDim.x * gridDim.x) {
y[i] = x[i] > static_cast<data_t>(0.) ? x[i] : static_cast<data_t>(0.);
}
}
template <typename data_t>
__global__ void relu_cuda_backward_kernel(const data_t* dy,
const data_t* y,
data_t* dx,
int64_t num) {
int64_t gid = blockIdx.x * blockDim.x + threadIdx.x;
for (int64_t i = gid; i < num; i += blockDim.x * gridDim.x) {
dx[i] = dy[i] * (y[i] > static_cast<data_t>(0.) ? static_cast<data_t>(1.)
: static_cast<data_t>(0.));
}
}
template <typename data_t>
__global__ void relu_cuda_double_backward_kernel(const data_t* out_data,
const data_t* ddx_data,
data_t* ddout_data,
int64_t num) {
int64_t gid = blockIdx.x * blockDim.x + threadIdx.x;
for (int64_t i = gid; i < num; i += blockDim.x * gridDim.x) {
ddout_data[i] = ddx_data[i] * (out_data[i] > static_cast<data_t>(0.)
? static_cast<data_t>(1.)
: static_cast<data_t>(0.));
}
}
std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x) {
CHECK_GPU_INPUT(x);
auto out = paddle::empty_like(x);
PD_CHECK(x.place() == paddle::DefaultGPUPlace());
int64_t numel = x.numel();
int64_t block = 512;
int64_t grid = (numel + block - 1) / block;
PD_DISPATCH_FLOATING_AND_HALF_TYPES(
x.type(), "relu_cuda_forward_kernel", ([&] {
relu_cuda_forward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
x.data<data_t>(), out.data<data_t>(), numel);
}));
return {out};
}
std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor& x,
const paddle::Tensor& out,
const paddle::Tensor& grad_out) {
CHECK_GPU_INPUT(x);
CHECK_GPU_INPUT(out);
CHECK_GPU_INPUT(grad_out);
auto grad_x = paddle::empty_like(x);
PD_CHECK(x.place() == paddle::DefaultGPUPlace());
int64_t numel = out.numel();
int64_t block = 512;
int64_t grid = (numel + block - 1) / block;
PD_DISPATCH_FLOATING_AND_HALF_TYPES(
out.type(), "relu_cuda_backward_kernel", ([&] {
relu_cuda_backward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
grad_out.data<data_t>(),
out.data<data_t>(),
grad_x.mutable_data<data_t>(x.place()),
numel);
}));
return {grad_x};
}
std::vector<paddle::Tensor> relu_cuda_double_backward(
const paddle::Tensor& out, const paddle::Tensor& ddx) {
CHECK_GPU_INPUT(out);
CHECK_GPU_INPUT(ddx);
auto ddout = paddle::empty(out.shape(), out.dtype(), out.place());
int64_t numel = out.numel();
int64_t block = 512;
int64_t grid = (numel + block - 1) / block;
PD_DISPATCH_FLOATING_AND_HALF_TYPES(
out.type(), "relu_cuda_double_backward_kernel", ([&] {
relu_cuda_double_backward_kernel<data_t>
<<<grid, block, 0, out.stream()>>>(
out.data<data_t>(),
ddx.data<data_t>(),
ddout.mutable_data<data_t>(out.place()),
numel);
}));
return {ddout};
}
std::vector<paddle::Tensor> relu_cuda_backward_without_x(
const paddle::Tensor& out, const paddle::Tensor& grad_out) {
auto grad_x = paddle::empty(out.shape(), out.dtype(), out.place());
int numel = out.numel();
int block = 512;
int grid = (numel + block - 1) / block;
PD_DISPATCH_FLOATING_AND_HALF_TYPES(
out.type(), "relu_cuda_backward_kernel", ([&] {
relu_cuda_backward_kernel<data_t><<<grid, block, 0, out.stream()>>>(
grad_out.data<data_t>(),
out.data<data_t>(),
grad_x.mutable_data<data_t>(out.place()),
numel);
}));
return {grad_x};
}
void relu_cuda_forward_out(const paddle::Tensor& x, paddle::Tensor* out) {
int numel = x.numel();
int block = 512;
int grid = (numel + block - 1) / block;
out->reshape(x.shape());
PD_DISPATCH_FLOATING_AND_HALF_TYPES(
x.type(), "relu_cuda_forward_kernel", ([&] {
relu_cuda_forward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
x.data<data_t>(), out->mutable_data<data_t>(x.place()), numel);
}));
}
void relu_cuda_backward_out(const paddle::Tensor& x,
const paddle::Tensor& out,
const paddle::Tensor& grad_out,
paddle::Tensor* grad_x) {
int numel = out.numel();
int block = 512;
int grid = (numel + block - 1) / block;
grad_x->reshape(x.shape());
PD_DISPATCH_FLOATING_AND_HALF_TYPES(
out.type(), "relu_cuda_backward_kernel", ([&] {
relu_cuda_backward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
grad_out.data<data_t>(),
out.data<data_t>(),
grad_x->mutable_data<data_t>(x.place()),
numel);
}));
}