Skip to content

Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward

Notifications You must be signed in to change notification settings

luyang-huang96/GraphAugmentedSum

Repository files navigation

Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward

Code for ACL2020 paper: Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward

We are not allowed to share data/outputs on New York Times Dataset. If you need data/outputs on New York Times Dataset, please email me with your license and we're glad to share our processed data/outputs on NYT dataset for research purpose.

My permenant email address: luyang.huang96@gmail.com

How to train our model

I. our processed data with constructed graphs can be found here:

https://drive.google.com/open?id=1ccja3oyWIJIm91EiG-NJPFNb4Eg1pOmO

our processed cloze questions can be found here:

https://drive.google.com/open?id=16aPmfT9Gurjhg1uLeVAUTL7fTc6TO42W

our best model can be found here:

https://drive.google.com/open?id=19HeT3rr2mzvEx82arrvpSVOBM_JNeRzo

our trained cloze model can be found here:

https://drive.google.com/open?id=1SxIitGBuPmOfKPHQ21LIX_OJ1RUpHpsk

our best system results/reference can be found here:

https://drive.google.com/open?id=1SRLCVb-YtCzL5NgI76CXby_Oc_MczYjk
https://drive.google.com/open?id=1uXn-dyN4KH4LYzKsCDCVnvRDbbR-lAAV

II. To train our best model:

  1. specify data path
    export DATA=[path/to/decompressed/data]

  2. train our model with ML objective

python train_abstractor.py --batch 32 --max_input 512 --bert --docgraph(--paragraph for SegGraph extension) --path [path/to/ml/model]
  1. train our model with our cloze reward
python train_abstractor_rl.py --abs_dir [path/to/ml/model] --docgraph(--paragraph for SegGraph extension) --batch 32 --max_art 512 --reward_model_dir [/path/to/cloze/model] --reward_data_dir [/path/to/cloze/data/questions] --path [/path/to/best/model]
  1. decode
python decode_abs.py --abs_dir [/path/to/best/model] --test --reverse --docgraph(--paragraph)  --gpu_id 0 --path [/path/to/results]
  1. evaluate ROUGE
export ROUGE=[/path/to/ROUGE 1.5.5]
python evaluate_full_model.py --decode_dir [/path/to/results] --rouge
  1. evaluate QA
python eval_cloze_model.py --system_path [/path/to/results] --data_path [/path/to/cloze/data/questions]  --model_dir [/path/to/cloze/model]

III. To train our multiple choice QA model

python train_roberta_multiple_choice.py --path [/path/to/cloze/data/training] --save_path [/path/to/cloze/model]

Dependencies

About

Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages