@@ -45,10 +45,10 @@ At `user/inference.py` you will find a dummy cell detection algorithm. Your task
45
45
46
46
```python
47
47
def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
48
- " " "This function detects the cells in the cell patch, while additionally
49
- providing the broader tissue context
48
+ " " "This function detects the cells in the cell patch. Additionally
49
+ the broader tissue context is provided.
50
50
51
- NOTE: this function offers a dummy example inference code . This must be
51
+ NOTE: this implementation offers a dummy inference example . This must be
52
52
updated by the participant.
53
53
54
54
Parameters
@@ -58,7 +58,7 @@ def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
58
58
tissue_patch: np.ndarray[uint8]
59
59
Tissue patch with shape [1024, 1024, 3] with values from 0 - 255
60
60
pair_id: str
61
- identification number of the patch pair
61
+ Identification number of the patch pair
62
62
meta_dataset: Dict
63
63
Dataset metadata in case you wish to compute statistics
64
64
@@ -77,8 +77,8 @@ def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
77
77
prediction = np.copy(cell_patch[:, :, 2])
78
78
prediction[(cell_patch[:, :, 2] <= 40)] = 1
79
79
xs, ys = np.where(prediction.transpose() == 1)
80
- probs = [1.0] * len(xs) # Confidence score
81
80
class_id = [1] * len(xs) # Type of cell
81
+ probs = [1.0] * len(xs) # Confidence score
82
82
83
83
#############################################
84
84
####### RETURN RESULS PER SAMPLE ############
0 commit comments