Skip to content

Commit 0afd65d

Browse files
committed
update docstring
1 parent 16f4a1a commit 0afd65d

File tree

2 files changed

+10
-10
lines changed

2 files changed

+10
-10
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -45,10 +45,10 @@ At `user/inference.py` you will find a dummy cell detection algorithm. Your task
4545

4646
```python
4747
def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
48-
"""This function detects the cells in the cell patch, while additionally
49-
providing the broader tissue context
48+
"""This function detects the cells in the cell patch. Additionally
49+
the broader tissue context is provided.
5050

51-
NOTE: this function offers a dummy example inference code. This must be
51+
NOTE: this implementation offers a dummy inference example. This must be
5252
updated by the participant.
5353

5454
Parameters
@@ -58,7 +58,7 @@ def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
5858
tissue_patch: np.ndarray[uint8]
5959
Tissue patch with shape [1024, 1024, 3] with values from 0 - 255
6060
pair_id: str
61-
identification number of the patch pair
61+
Identification number of the patch pair
6262
meta_dataset: Dict
6363
Dataset metadata in case you wish to compute statistics
6464

@@ -77,8 +77,8 @@ def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
7777
prediction = np.copy(cell_patch[:, :, 2])
7878
prediction[(cell_patch[:, :, 2] <= 40)] = 1
7979
xs, ys = np.where(prediction.transpose() == 1)
80-
probs = [1.0] * len(xs) # Confidence score
8180
class_id = [1] * len(xs) # Type of cell
81+
probs = [1.0] * len(xs) # Confidence score
8282

8383
#############################################
8484
####### RETURN RESULS PER SAMPLE ############

user/inference.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,10 +2,10 @@
22

33

44
def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
5-
"""This function detects the cells in the cell patch, while additionally
6-
providing the broader tissue context
5+
"""This function detects the cells in the cell patch. Additionally
6+
the broader tissue context is provided.
77
8-
NOTE: this function offers a dummy example inference code. This must be
8+
NOTE: this implementation offers a dummy inference example. This must be
99
updated by the participant.
1010
1111
Parameters
@@ -15,7 +15,7 @@ def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
1515
tissue_patch: np.ndarray[uint8]
1616
Tissue patch with shape [1024, 1024, 3] with values from 0 - 255
1717
pair_id: str
18-
identification number of the patch pair
18+
Identification number of the patch pair
1919
meta_dataset: Dict
2020
Dataset metadata in case you wish to compute statistics
2121
@@ -34,8 +34,8 @@ def process_patch_pair(cell_patch, tissue_patch, pair_id, meta_dataset):
3434
prediction = np.copy(cell_patch[:, :, 2])
3535
prediction[(cell_patch[:, :, 2] <= 40)] = 1
3636
xs, ys = np.where(prediction.transpose() == 1)
37-
probs = [1.0] * len(xs) # Confidence score
3837
class_id = [1] * len(xs) # Type of cell
38+
probs = [1.0] * len(xs) # Confidence score
3939

4040
#############################################
4141
####### RETURN RESULS PER SAMPLE ############

0 commit comments

Comments
 (0)