-
Notifications
You must be signed in to change notification settings - Fork 6
/
PatchTST.py
92 lines (77 loc) · 5.31 KB
/
PatchTST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
__all__ = ['PatchTST']
# Cell
from typing import Callable, Optional
import torch
from torch import nn
from torch import Tensor
import torch.nn.functional as F
import numpy as np
from layers.PatchTST_backbone import PatchTST_backbone
from layers.PatchTST_layers import series_decomp
class Model(nn.Module):
def __init__(self, configs, max_seq_len:Optional[int]=1024, d_k:Optional[int]=None, d_v:Optional[int]=None, norm:str='BatchNorm', attn_dropout:float=0.,
act:str="gelu", key_padding_mask:bool='auto',padding_var:Optional[int]=None, attn_mask:Optional[Tensor]=None, res_attention:bool=True,
pre_norm:bool=False, store_attn:bool=False, pe:str='zeros', learn_pe:bool=True, pretrain_head:bool=False, head_type = 'flatten', verbose:bool=False, **kwargs):
super().__init__()
# load parameters
c_in = configs.enc_in
context_window = configs.seq_len
target_window = configs.pred_len
n_layers = configs.e_layers
n_heads = configs.n_heads
d_model = configs.d_model
d_ff = configs.d_ff
dropout = configs.dropout
fc_dropout = configs.fc_dropout
head_dropout = configs.head_dropout
individual = configs.individual
patch_len = configs.patch_len
stride = configs.stride
padding_patch = configs.padding_patch
revin = configs.revin
affine = configs.affine
subtract_last = configs.subtract_last
decomposition = configs.decomposition
kernel_size = configs.kernel_size
# model
self.decomposition = decomposition
if self.decomposition:
self.decomp_module = series_decomp(kernel_size)
self.model_trend = PatchTST_backbone(c_in=c_in, context_window = context_window, target_window=target_window, patch_len=patch_len, stride=stride,
max_seq_len=max_seq_len, n_layers=n_layers, d_model=d_model,
n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout,
dropout=dropout, act=act, key_padding_mask=key_padding_mask, padding_var=padding_var,
attn_mask=attn_mask, res_attention=res_attention, pre_norm=pre_norm, store_attn=store_attn,
pe=pe, learn_pe=learn_pe, fc_dropout=fc_dropout, head_dropout=head_dropout, padding_patch = padding_patch,
pretrain_head=pretrain_head, head_type=head_type, individual=individual, revin=revin, affine=affine,
subtract_last=subtract_last, verbose=verbose, **kwargs)
self.model_res = PatchTST_backbone(c_in=c_in, context_window = context_window, target_window=target_window, patch_len=patch_len, stride=stride,
max_seq_len=max_seq_len, n_layers=n_layers, d_model=d_model,
n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout,
dropout=dropout, act=act, key_padding_mask=key_padding_mask, padding_var=padding_var,
attn_mask=attn_mask, res_attention=res_attention, pre_norm=pre_norm, store_attn=store_attn,
pe=pe, learn_pe=learn_pe, fc_dropout=fc_dropout, head_dropout=head_dropout, padding_patch = padding_patch,
pretrain_head=pretrain_head, head_type=head_type, individual=individual, revin=revin, affine=affine,
subtract_last=subtract_last, verbose=verbose, **kwargs)
else:
self.model = PatchTST_backbone(c_in=c_in, context_window = context_window, target_window=target_window, patch_len=patch_len, stride=stride,
max_seq_len=max_seq_len, n_layers=n_layers, d_model=d_model,
n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout,
dropout=dropout, act=act, key_padding_mask=key_padding_mask, padding_var=padding_var,
attn_mask=attn_mask, res_attention=res_attention, pre_norm=pre_norm, store_attn=store_attn,
pe=pe, learn_pe=learn_pe, fc_dropout=fc_dropout, head_dropout=head_dropout, padding_patch = padding_patch,
pretrain_head=pretrain_head, head_type=head_type, individual=individual, revin=revin, affine=affine,
subtract_last=subtract_last, verbose=verbose, **kwargs)
def forward(self, x): # x: [Batch, Input length, Channel]
if self.decomposition:
res_init, trend_init = self.decomp_module(x)
res_init, trend_init = res_init.permute(0,2,1), trend_init.permute(0,2,1) # x: [Batch, Channel, Input length]
res = self.model_res(res_init)
trend = self.model_trend(trend_init)
x = res + trend
x = x.permute(0,2,1) # x: [Batch, Input length, Channel]
else:
x = x.permute(0,2,1) # x: [Batch, Channel, Input length]
x = self.model(x)
x = x.permute(0,2,1) # x: [Batch, Input length, Channel]
return x