-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupdataset.py
65 lines (49 loc) · 1.94 KB
/
supdataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from lumo import DatasetBuilder
from augmentations.strategies import standard, simclr, read, randaugment, basic, none
from .const import mean_std_dic, imgsize_dic, lazy_load_ds
from .datas import pick_datas
def get_train_loader(dataset_name, batch_size=64, method='default', split='train'):
xs, ys = pick_datas(dataset_name, split=split)
mean, std = mean_std_dic.get(dataset_name, mean_std_dic.get('default'))
img_size = imgsize_dic(dataset_name)
assert img_size is not None
lazy_load = dataset_name in lazy_load_ds
ds = (
DatasetBuilder()
.add_ids('id')
.add_input('xs', xs)
.add_input('ys', ys)
.add_output('xs', 'xs', standard(mean, std, size=img_size))
.add_output('xs', 'sxs0', simclr(mean, std, size=img_size))
.add_output('xs', 'sxs1', randaugment(mean, std, size=img_size))
.add_output('ys', 'ys')
)
if lazy_load:
ds.add_input_transform('xs', read)
dl = ds.DataLoader(batch_size=batch_size,
num_workers=8,
shuffle=True,
pin_memory=True)
return dl
def get_test_loader(dataset_name):
xs, ys = pick_datas(dataset_name, split='test')
mean, std = mean_std_dic.get(dataset_name, mean_std_dic.get('default'))
img_size = imgsize_dic(dataset_name)
assert img_size is not None
lazy_load = dataset_name in lazy_load_ds
ds = (
DatasetBuilder()
.add_ids('id')
.add_input('xs', xs)
.add_input('ys', ys)
.add_output('ys', 'ys')
)
if lazy_load:
ds.add_input_transform('xs', read)
ds.add_output('xs', 'xs0', basic(mean, std, size=img_size))
ds.add_output('xs', 'xs1', none(mean, std, size=img_size))
dl = ds.DataLoader(batch_size=128,
num_workers=8,
pin_memory=True,
drop_last=False)
return dl