forked from emmanuelle/multidiff-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_diffusion_model.py
executable file
·43 lines (35 loc) · 1.07 KB
/
script_diffusion_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from diffusion_model import diffusion_matrix
import numpy as np
import matplotlib.pyplot as plt
from sklearn.externals.joblib import delayed, Parallel
rates = np.array([[0.05, 0.01, 0.9],
[0.01, 0.03, 0.1],
[0.9, 0.1, 0.1]])
conc_interv = np.linspace(0.1, 0.9, 20)
concs = []
n = len(conc_interv)
for i in range(n):
for j in range(n):
a = conc_interv[i]
b = conc_interv[j]
if a + b >= 0.95:
continue
concs.append([a, b, 1 - (a + b)])
concs = np.array(concs)
diags_all = []
eigvecs_all = []
res = Parallel(n_jobs=4)(delayed(diffusion_matrix)(base_conc, rates)
for base_conc in concs)
diags = np.vstack([resi[0] for resi in res])
np.save('diags.npy', diags)
eigvecs = np.hstack([resi[1] for resi in res])
np.save('eigvecs.npy', eigvecs)
all_results = {}
all_results['rates'] = rates
all_results['concs'] = concs
all_results['diags'] = diags
all_results['eigvecs'] = eigvecs
import pickle
f = open('dump_scrip_diffusion_model.pkl', 'w')
pickle.dump(all_results, f)
f.close()