forked from sigp/blockprint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbalance.py
executable file
·78 lines (59 loc) · 2.23 KB
/
balance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python3
import os
import shutil
import random
import argparse
from prepare_training_data import CLIENTS
# Sample a directory of training data so that it contains a balanced number of samples per client
def sample(data_dir, output_dir, disabled_clients, max_imbalance):
filenames_by_client = {}
for client in CLIENTS:
if client in disabled_clients:
print(f"skipping {client} (disabled)")
continue
client_dir = os.path.join(data_dir, client)
if not os.path.exists(client_dir):
print(f"skipping {client} (no data)")
continue
filenames = []
for filename in os.listdir(client_dir):
filenames.append(os.path.join(client_dir, filename))
filenames_by_client[client] = filenames
min_files = min(len(filenames) for filenames in filenames_by_client.values())
max_samples = max_imbalance * min_files
print(
f"sampling up to {max_samples} ({max_imbalance}x{min_files}) training blocks per client"
)
os.makedirs(output_dir)
for client, filenames in filenames_by_client.items():
n_samples = min(len(filenames), max_samples)
selected_files = random.sample(filenames, n_samples)
client_output_dir = os.path.join(output_dir, client)
os.makedirs(client_output_dir)
for filename in selected_files:
shutil.copy(filename, client_output_dir)
def parse_args():
parser = argparse.ArgumentParser("re-sample training data so that it is balanced")
parser.add_argument(
"input_dir", help="input directory containing unbalanced training data"
)
parser.add_argument(
"output_dir", help="output directory for balanced training data"
)
parser.add_argument(
"--disable",
default=[],
nargs="+",
help="clients to ignore when forming training data",
)
parser.add_argument(
"--max-imbalance",
metavar="N",
default=1,
type=int,
help="allow clients to have at most N times the minimum training set size",
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
sample(args.input_dir, args.output_dir, args.disable, args.max_imbalance)