|
| 1 | +import os |
| 2 | +import numpy as np |
| 3 | +import PIL |
| 4 | +import torch |
| 5 | +from torch.utils.data import DataLoader |
| 6 | +import torchvision.transforms as transforms |
| 7 | +from torchvision.datasets import ImageNet |
| 8 | + |
| 9 | +from efficientnet_pytorch import EfficientNet |
| 10 | + |
| 11 | +from sotabencheval.image_classification import ImageNetEvaluator |
| 12 | +from sotabencheval.utils import is_server |
| 13 | + |
| 14 | +if is_server(): |
| 15 | + DATA_ROOT = './.data/vision/imagenet' |
| 16 | +else: # local settings |
| 17 | + DATA_ROOT = os.environ['IMAGENET_DIR'] |
| 18 | + assert bool(DATA_ROOT), 'please set IMAGENET_DIR environment variable' |
| 19 | + print('Local data root: ', DATA_ROOT) |
| 20 | + |
| 21 | +model_name = 'EfficientNet-B5' |
| 22 | +model = EfficientNet.from_pretrained(model_name.lower()) |
| 23 | +image_size = EfficientNet.get_image_size(model_name.lower()) |
| 24 | + |
| 25 | +input_transform = transforms.Compose([ |
| 26 | + transforms.Resize(image_size, PIL.Image.BICUBIC), |
| 27 | + transforms.CenterCrop(image_size), |
| 28 | + transforms.ToTensor(), |
| 29 | + transforms.Normalize( |
| 30 | + mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
| 31 | +]) |
| 32 | + |
| 33 | +test_dataset = ImageNet( |
| 34 | + DATA_ROOT, |
| 35 | + split="val", |
| 36 | + transform=input_transform, |
| 37 | + target_transform=None, |
| 38 | +) |
| 39 | + |
| 40 | +test_loader = DataLoader( |
| 41 | + test_dataset, |
| 42 | + batch_size=128, |
| 43 | + shuffle=False, |
| 44 | + num_workers=4, |
| 45 | + pin_memory=True, |
| 46 | +) |
| 47 | + |
| 48 | +model = model.cuda() |
| 49 | +model.eval() |
| 50 | + |
| 51 | +evaluator = ImageNetEvaluator(model_name=model_name, |
| 52 | + paper_arxiv_id='1905.11946') |
| 53 | + |
| 54 | +def get_img_id(image_name): |
| 55 | + return image_name.split('/')[-1].replace('.JPEG', '') |
| 56 | + |
| 57 | +with torch.no_grad(): |
| 58 | + for i, (input, target) in enumerate(test_loader): |
| 59 | + input = input.to(device='cuda', non_blocking=True) |
| 60 | + target = target.to(device='cuda', non_blocking=True) |
| 61 | + output = model(input) |
| 62 | + image_ids = [get_img_id(img[0]) for img in test_loader.dataset.imgs[i*test_loader.batch_size:(i+1)*test_loader.batch_size]] |
| 63 | + evaluator.add(dict(zip(image_ids, list(output.cpu().numpy())))) |
| 64 | + if evaluator.cache_exists: |
| 65 | + break |
| 66 | + |
| 67 | +if not is_server(): |
| 68 | + print("Results:") |
| 69 | + print(evaluator.get_results()) |
| 70 | + |
| 71 | +evaluator.save() |
0 commit comments