forked from scikit-image/scikit-image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_join_segmentations.py
66 lines (51 loc) · 1.97 KB
/
plot_join_segmentations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
==========================================
Find the intersection of two segmentations
==========================================
When segmenting an image, you may want to combine multiple alternative
segmentations. The `skimage.segmentation.join_segmentations` function
computes the join of two segmentations, in which a pixel is placed in
the same segment if and only if it is in the same segment in _both_
segmentations.
"""
import numpy as np
from scipy import ndimage as nd
import matplotlib.pyplot as plt
from skimage.filter import sobel
from skimage.segmentation import slic, join_segmentations
from skimage.morphology import watershed
from skimage.color import label2rgb
from skimage import data
coins = data.coins()
# make segmentation using edge-detection and watershed
edges = sobel(coins)
markers = np.zeros_like(coins)
foreground, background = 1, 2
markers[coins < 30] = background
markers[coins > 150] = foreground
ws = watershed(edges, markers)
seg1 = nd.label(ws == foreground)[0]
# make segmentation using SLIC superpixels
# make the RGB equivalent of `coins`
coins_colour = np.tile(coins[..., np.newaxis], (1, 1, 3))
seg2 = slic(coins_colour, n_segments=30, max_iter=160, sigma=1, ratio=9,
convert2lab=False)
# combine the two
segj = join_segmentations(seg1, seg2)
# show the segmentations
fig, axes = plt.subplots(ncols=4, figsize=(9, 2.5))
axes[0].imshow(coins, cmap=plt.cm.gray, interpolation='nearest')
axes[0].set_title('Image')
color1 = label2rgb(seg1, image=coins, bg_label=0)
axes[1].imshow(color1, interpolation='nearest')
axes[1].set_title('Sobel+Watershed')
color2 = label2rgb(seg2, image=coins, image_alpha=0.5)
axes[2].imshow(color2, interpolation='nearest')
axes[2].set_title('SLIC superpixels')
color3 = label2rgb(segj, image=coins, image_alpha=0.5)
axes[3].imshow(color3, interpolation='nearest')
axes[3].set_title('Join')
for ax in axes:
ax.axis('off')
plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1)
plt.show()