diff --git a/nlp/understanding_mohler_dataset.ipynb b/nlp/understanding_mohler_dataset.ipynb new file mode 100644 index 0000000..59b9e02 --- /dev/null +++ b/nlp/understanding_mohler_dataset.ipynb @@ -0,0 +1,511 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "understanding mohler dataset.ipynb", + "provenance": [], + "authorship_tag": "ABX9TyN9ELXbxdE6j9A9QP6PTO3s" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "code", + "metadata": { + "id": "gHNQ5S4LdxdR" + }, + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd" + ], + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 269 + }, + "id": "6P7apcKIiRCd", + "outputId": "1c5a1423-8ee2-4a15-bbcd-b62501d5efef" + }, + "source": [ + "fig = plt.figure()\n", + "ax = fig.add_subplot(111)" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAANT0lEQVR4nO3cYYjkd33H8ffHO1NpjKb0VpC706T00njYQtIlTRFqirZc8uDugUXuIFgleGAbKVWEFEuU+MiGWhCu1ZOKVdAYfSALntwDjQTEC7chNXgXItvTeheFrDHNk6Ax7bcPZtKdrneZf3Zndy/7fb/gYP7/+e3Mlx97752d2ZlUFZKk7e8VWz2AJGlzGHxJasLgS1ITBl+SmjD4ktSEwZekJqYGP8lnkzyZ5PuXuD5JPplkKcmjSW6c/ZiSpPUa8gj/c8CBF7n+VmDf+N9R4F/WP5YkadamBr+qHgR+/iJLDgGfr5FTwNVJXj+rASVJs7FzBrexGzg/cXxhfO6nqxcmOcrotwCuvPLKP7z++utncPeS1MfDDz/8s6qaW8vXziL4g1XVceA4wPz8fC0uLm7m3UvSy16S/1zr187ir3SeAPZOHO8Zn5MkXUZmEfwF4F3jv9a5GXimqn7t6RxJ0taa+pROki8BtwC7klwAPgK8EqCqPgWcAG4DloBngfds1LCSpLWbGvyqOjLl+gL+emYTSZI2hO+0laQmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqYlBwU9yIMnjSZaS3HWR69+Q5IEkjyR5NMltsx9VkrQeU4OfZAdwDLgV2A8cSbJ/1bK/B+6vqhuAw8A/z3pQSdL6DHmEfxOwVFXnquo54D7g0Ko1BbxmfPm1wE9mN6IkaRaGBH83cH7i+ML43KSPArcnuQCcAN5/sRtKcjTJYpLF5eXlNYwrSVqrWb1oewT4XFXtAW4DvpDk1267qo5X1XxVzc/Nzc3oriVJQwwJ/hPA3onjPeNzk+4A7geoqu8CrwJ2zWJASdJsDAn+aWBfkmuTXMHoRdmFVWt+DLwNIMmbGAXf52wk6TIyNfhV9TxwJ3ASeIzRX+OcSXJPkoPjZR8E3pvke8CXgHdXVW3U0JKkl27nkEVVdYLRi7GT5+6euHwWeMtsR5MkzZLvtJWkJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNTEo+EkOJHk8yVKSuy6x5p1JziY5k+SLsx1TkrReO6ctSLIDOAb8GXABOJ1koarOTqzZB/wd8JaqejrJ6zZqYEnS2gx5hH8TsFRV56rqOeA+4NCqNe8FjlXV0wBV9eRsx5QkrdeQ4O8Gzk8cXxifm3QdcF2S7yQ5leTAxW4oydEki0kWl5eX1zaxJGlNZvWi7U5gH3ALcAT4TJKrVy+qquNVNV9V83NzczO6a0nSEEOC/wSwd+J4z/jcpAvAQlX9qqp+CPyA0Q8ASdJlYkjwTwP7klyb5ArgMLCwas3XGD26J8kuRk/xnJvhnJKkdZoa/Kp6HrgTOAk8BtxfVWeS3JPk4HjZSeCpJGeBB4APVdVTGzW0JOmlS1VtyR3Pz8/X4uLilty3JL1cJXm4qubX8rW+01aSmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmBgU/yYEkjydZSnLXi6x7R5JKMj+7ESVJszA1+El2AMeAW4H9wJEk+y+y7irgb4CHZj2kJGn9hjzCvwlYqqpzVfUccB9w6CLrPgZ8HPjFDOeTJM3IkODvBs5PHF8Yn/s/SW4E9lbV11/shpIcTbKYZHF5efklDytJWrt1v2ib5BXAJ4APTltbVcerar6q5ufm5tZ715Kkl2BI8J8A9k4c7xmfe8FVwJuBbyf5EXAzsOALt5J0eRkS/NPAviTXJrkCOAwsvHBlVT1TVbuq6pqqugY4BRysqsUNmViStCZTg19VzwN3AieBx4D7q+pMknuSHNzoASVJs7FzyKKqOgGcWHXu7kusvWX9Y0mSZs132kpSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmhgU/CQHkjyeZCnJXRe5/gNJziZ5NMk3k7xx9qNKktZjavCT7ACOAbcC+4EjSfavWvYIMF9VfwB8FfiHWQ8qSVqfIY/wbwKWqupcVT0H3AccmlxQVQ9U1bPjw1PAntmOKUlaryHB3w2cnzi+MD53KXcA37jYFUmOJllMsri8vDx8SknSus30RdsktwPzwL0Xu76qjlfVfFXNz83NzfKuJUlT7Byw5glg78TxnvG5/yfJ24EPA2+tql/OZjxJ0qwMeYR/GtiX5NokVwCHgYXJBUluAD4NHKyqJ2c/piRpvaYGv6qeB+4ETgKPAfdX1Zkk9yQ5OF52L/Bq4CtJ/j3JwiVuTpK0RYY8pUNVnQBOrDp398Tlt894LknSjPlOW0lqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpoYFPwkB5I8nmQpyV0Xuf43knx5fP1DSa6Z9aCSpPWZGvwkO4BjwK3AfuBIkv2rlt0BPF1Vvwv8E/DxWQ8qSVqfIY/wbwKWqupcVT0H3AccWrXmEPBv48tfBd6WJLMbU5K0XjsHrNkNnJ84vgD80aXWVNXzSZ4Bfhv42eSiJEeBo+PDXyb5/lqG3oZ2sWqvGnMvVrgXK9yLFb+31i8cEvyZqarjwHGAJItVNb+Z93+5ci9WuBcr3IsV7sWKJItr/dohT+k8AeydON4zPnfRNUl2Aq8FnlrrUJKk2RsS/NPAviTXJrkCOAwsrFqzAPzl+PJfAN+qqprdmJKk9Zr6lM74Ofk7gZPADuCzVXUmyT3AYlUtAP8KfCHJEvBzRj8Upjm+jrm3G/dihXuxwr1Y4V6sWPNexAfiktSD77SVpCYMviQ1seHB92MZVgzYiw8kOZvk0STfTPLGrZhzM0zbi4l170hSSbbtn+QN2Ysk7xx/b5xJ8sXNnnGzDPg/8oYkDyR5ZPz/5LatmHOjJflskicv9V6ljHxyvE+PJrlx0A1X1Yb9Y/Qi738AvwNcAXwP2L9qzV8BnxpfPgx8eSNn2qp/A/fiT4HfHF9+X+e9GK+7CngQOAXMb/XcW/h9sQ94BPit8fHrtnruLdyL48D7xpf3Az/a6rk3aC/+BLgR+P4lrr8N+AYQ4GbgoSG3u9GP8P1YhhVT96KqHqiqZ8eHpxi952E7GvJ9AfAxRp/L9IvNHG6TDdmL9wLHquppgKp6cpNn3CxD9qKA14wvvxb4ySbOt2mq6kFGf/F4KYeAz9fIKeDqJK+fdrsbHfyLfSzD7kutqarngRc+lmG7GbIXk+5g9BN8O5q6F+NfUfdW1dc3c7AtMOT74jrguiTfSXIqyYFNm25zDdmLjwK3J7kAnADevzmjXXZeak+ATf5oBQ2T5HZgHnjrVs+yFZK8AvgE8O4tHuVysZPR0zq3MPqt78Ekv19V/7WlU22NI8Dnquofk/wxo/f/vLmq/merB3s52OhH+H4sw4ohe0GStwMfBg5W1S83abbNNm0vrgLeDHw7yY8YPUe5sE1fuB3yfXEBWKiqX1XVD4EfMPoBsN0M2Ys7gPsBquq7wKsYfbBaN4N6stpGB9+PZVgxdS+S3AB8mlHst+vztDBlL6rqmaraVVXXVNU1jF7POFhVa/7QqMvYkP8jX2P06J4kuxg9xXNuM4fcJEP24sfA2wCSvIlR8Jc3dcrLwwLwrvFf69wMPFNVP532RRv6lE5t3McyvOwM3It7gVcDXxm/bv3jqjq4ZUNvkIF70cLAvTgJ/HmSs8B/Ax+qqm33W/DAvfgg8Jkkf8voBdx3b8cHiEm+xOiH/K7x6xUfAV4JUFWfYvT6xW3AEvAs8J5Bt7sN90qSdBG+01aSmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElq4n8BzPZcum6w2goAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "akoJi3oxilgJ", + "outputId": "90c525c8-3d0e-4595-f7a9-6450004e1b98" + }, + "source": [ + "answers_data = pd.read_csv(\"/content/mohler_dataset_edited.csv\")\n", + "print(answers_data.head())\n" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " id ... score_avg\n", + "0 1.1 ... 3.5\n", + "1 1.1 ... 5.0\n", + "2 1.1 ... 4.0\n", + "3 1.1 ... 5.0\n", + "4 1.1 ... 3.0\n", + "\n", + "[5 rows x 7 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fKA-urqLi9ZG", + "outputId": "fd0f4f2c-669a-440a-f142-40ebd695db15" + }, + "source": [ + "answers_data.shape" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(2273, 7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hSjgemF4jCF3", + "outputId": "52252285-551e-4649-cd32-220c252db9e1" + }, + "source": [ + "answers_data.columns" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['id', 'question', 'desired_answer', 'student_answer', 'score_me',\n", + " 'score_other', 'score_avg'],\n", + " dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4H0vaS33jFz9", + "outputId": "d1ebadbc-9e45-44c1-b5b0-0e22473b8340" + }, + "source": [ + "answers_data['question'][0], answers_data['desired_answer'][0], answers_data['student_answer'][0], answers_data['score_me'][0], answers_data['score_other'][0], answers_data['score_avg'][0]" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "('What is the role of a prototype program in problem solving?',\n", + " 'To simulate the behaviour of portions of the desired software product.',\n", + " 'High risk problems are address in the prototype program to make sure that the program is feasible. A prototype may also be used to show a company that the software can be possibly programmed.',\n", + " 4.0,\n", + " 3.0,\n", + " 3.5)" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Yu-Nk97EjNjq", + "outputId": "59dc60b4-e6e1-4773-9952-48d8e2da75ec" + }, + "source": [ + "answers_data.shape" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(2273, 7)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "id": "AEA6GNAXxuUh", + "outputId": "5250f03b-13d8-4d14-ece4-298164c7c223" + }, + "source": [ + "answers_data.describe()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idscore_mescore_otherscore_avg
count2273.0000002273.0000002273.0000002273.000000
mean7.1346593.9234494.4067314.165090
std3.7370341.5189070.9422951.107382
min1.1000000.0000000.0000000.000000
25%3.6000003.0000004.0000003.500000
50%7.3000005.0000005.0000004.500000
75%10.7000005.0000005.0000005.000000
max12.9000005.0000005.0000005.000000
\n", + "
" + ], + "text/plain": [ + " id score_me score_other score_avg\n", + "count 2273.000000 2273.000000 2273.000000 2273.000000\n", + "mean 7.134659 3.923449 4.406731 4.165090\n", + "std 3.737034 1.518907 0.942295 1.107382\n", + "min 1.100000 0.000000 0.000000 0.000000\n", + "25% 3.600000 3.000000 4.000000 3.500000\n", + "50% 7.300000 5.000000 5.000000 4.500000\n", + "75% 10.700000 5.000000 5.000000 5.000000\n", + "max 12.900000 5.000000 5.000000 5.000000" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BwAHBKUvxH0i", + "outputId": "ddc4a346-3cee-4161-a03c-f11c4b85bb87" + }, + "source": [ + "answers_data.info()" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "RangeIndex: 2273 entries, 0 to 2272\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 2273 non-null float64\n", + " 1 question 2273 non-null object \n", + " 2 desired_answer 2273 non-null object \n", + " 3 student_answer 2273 non-null object \n", + " 4 score_me 2273 non-null float64\n", + " 5 score_other 2273 non-null float64\n", + " 6 score_avg 2273 non-null float64\n", + "dtypes: float64(4), object(3)\n", + "memory usage: 124.4+ KB\n" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Mqn5h5psxMKH" + }, + "source": [ + "\n", + "count = answers_data['score_avg'].value_counts(sort=True)\n" + ], + "execution_count": 20, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uABU5cXVx_Ha", + "outputId": "01997adb-bbb3-4d36-b7cd-c4442eb023b6" + }, + "source": [ + "count" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "5.000 1089\n", + "4.500 263\n", + "4.000 178\n", + "3.500 164\n", + "3.000 136\n", + "2.500 97\n", + "2.000 73\n", + "1.500 37\n", + "4.250 23\n", + "0.000 23\n", + "4.750 22\n", + "3.750 20\n", + "1.875 16\n", + "4.375 16\n", + "2.250 10\n", + "2.375 9\n", + "3.250 9\n", + "4.875 8\n", + "2.750 8\n", + "3.375 7\n", + "2.875 7\n", + "1.000 7\n", + "4.625 6\n", + "2.625 6\n", + "2.125 6\n", + "3.875 5\n", + "4.125 4\n", + "1.250 4\n", + "1.125 4\n", + "3.625 4\n", + "3.125 4\n", + "1.750 3\n", + "0.625 2\n", + "0.500 1\n", + "1.375 1\n", + "1.625 1\n", + "Name: score_avg, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "GzYjOovvyUPB", + "outputId": "2d7fe856-e42f-4313-a108-f7904e793d75" + }, + "source": [ + "hist = answers_data['score_avg'].hist(grid=False)\n" + ], + "execution_count": 23, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAQvklEQVR4nO3cf4xlZX3H8fenrKBidfkxJXR30yF1Y0NNW8kEaWiMkRaXH3H5Qw2kldVusmmKrRYTXGxSUo0Jpo2IiSXZwlZICUhQw0apukGMMRFkQH6jMkFwdwPuKD+UEmvRb/+4z9rrOssyc2fusPO8X8nNnPOc55zzPdns5z55zjk3VYUkqQ+/tdwFSJLGx9CXpI4Y+pLUEUNfkjpi6EtSR1YtdwEv5Nhjj63JycnlLkOSDil33nnnj6pqYq5tL+nQn5ycZHp6ernLkKRDSpLHDrTN6R1J6oihL0kdMfQlqSOGviR15KChn2R7kr1J7p9j2weSVJJj23qSfDLJTJJ7k5w01HdTkofbZ9PiXoYk6cV4MSP9TwMb9m9Msg44HfjBUPMZwPr22QJc0foeDVwCvBE4GbgkyVGjFC5Jmr+Dhn5VfR14co5NlwEXAcM/07kRuKYGbgNWJzkeeCuws6qerKqngJ3M8UUiSVpaC5rTT7IR2FNV9+y3aQ2wa2h9d2s7UPtcx96SZDrJ9Ozs7ELKkyQdwLxDP8krgQ8B/7T45UBVbauqqaqampiY84UySdICLeSN3N8HTgDuSQKwFrgrycnAHmDdUN+1rW0P8Ob92r+2gHNL0lhNbv3ispz30UvPWpLjznukX1X3VdXvVNVkVU0ymKo5qaqeAHYA57eneE4Bnqmqx4EvA6cnOardwD29tUmSxujFPLJ5HfBN4HVJdifZ/ALdbwYeAWaAfwf+FqCqngQ+AtzRPh9ubZKkMTro9E5VnXeQ7ZNDywVccIB+24Ht86xPkrSIfCNXkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSMHDf0k25PsTXL/UNu/JPlOknuTfD7J6qFtFyeZSfLdJG8dat/Q2maSbF38S5EkHcyLGel/GtiwX9tO4PVV9UfA94CLAZKcCJwL/GHb59+SHJbkMOBTwBnAicB5ra8kaYwOGvpV9XXgyf3avlJVz7fV24C1bXkjcH1V/U9VfR+YAU5un5mqeqSqfg5c3/pKksZoMeb0/xr4r7a8Btg1tG13aztQ+29IsiXJdJLp2dnZRShPkrTPSKGf5B+B54FrF6ccqKptVTVVVVMTExOLdVhJErBqoTsmeTdwNnBaVVVr3gOsG+q2trXxAu2SpDFZ0Eg/yQbgIuBtVfXc0KYdwLlJjkhyArAe+BZwB7A+yQlJDmdws3fHaKVLkubroCP9JNcBbwaOTbIbuITB0zpHADuTANxWVX9TVQ8kuQF4kMG0zwVV9Yt2nPcCXwYOA7ZX1QNLcD2SpBdw0NCvqvPmaL7qBfp/FPjoHO03AzfPqzpJ0qLyjVxJ6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXkoKGfZHuSvUnuH2o7OsnOJA+3v0e19iT5ZJKZJPcmOWlon02t/8NJNi3N5UiSXsiLGel/GtiwX9tW4JaqWg/c0tYBzgDWt88W4AoYfEkAlwBvBE4GLtn3RSFJGp+Dhn5VfR14cr/mjcDVbflq4Jyh9mtq4DZgdZLjgbcCO6vqyap6CtjJb36RSJKW2ELn9I+rqsfb8hPAcW15DbBrqN/u1nagdknSGI18I7eqCqhFqAWAJFuSTCeZnp2dXazDSpJYeOj/sE3b0P7ube17gHVD/da2tgO1/4aq2lZVU1U1NTExscDyJElzWWjo7wD2PYGzCbhpqP389hTPKcAzbRroy8DpSY5qN3BPb22SpDFadbAOSa4D3gwcm2Q3g6dwLgVuSLIZeAx4Z+t+M3AmMAM8B7wHoKqeTPIR4I7W78NVtf/NYUnSEjto6FfVeQfYdNocfQu44ADH2Q5sn1d1kqRF5Ru5ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0ZKfST/EOSB5Lcn+S6JC9PckKS25PMJPlMksNb3yPa+kzbPrkYFyBJevEWHPpJ1gB/D0xV1euBw4BzgY8Bl1XVa4GngM1tl83AU639stZPkjRGo07vrAJekWQV8ErgceAtwI1t+9XAOW15Y1unbT8tSUY8vyRpHhYc+lW1B/hX4AcMwv4Z4E7g6ap6vnXbDaxpy2uAXW3f51v/Y/Y/bpItSaaTTM/Ozi60PEnSHEaZ3jmKwej9BOB3gSOBDaMWVFXbqmqqqqYmJiZGPZwkacgo0zt/Dny/qmar6n+BzwGnAqvbdA/AWmBPW94DrANo218D/HiE80uS5mmU0P8BcEqSV7a5+dOAB4Fbgbe3PpuAm9ryjrZO2/7VqqoRzi9JmqdR5vRvZ3BD9i7gvnasbcAHgQuTzDCYs7+q7XIVcExrvxDYOkLdkqQFWHXwLgdWVZcAl+zX/Ahw8hx9fwa8Y5TzSZJG4xu5ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0ZKfSTrE5yY5LvJHkoyZ8mOTrJziQPt79Htb5J8skkM0nuTXLS4lyCJOnFGnWkfznwpar6A+CPgYeArcAtVbUeuKWtA5wBrG+fLcAVI55bkjRPCw79JK8B3gRcBVBVP6+qp4GNwNWt29XAOW15I3BNDdwGrE5y/IIrlyTN2ygj/ROAWeA/knw7yZVJjgSOq6rHW58ngOPa8hpg19D+u1vbr0myJcl0kunZ2dkRypMk7W+U0F8FnARcUVVvAP6b/5/KAaCqCqj5HLSqtlXVVFVNTUxMjFCeJGl/o4T+bmB3Vd3e1m9k8CXww33TNu3v3rZ9D7BuaP+1rU2SNCYLDv2qegLYleR1rek04EFgB7CptW0CbmrLO4Dz21M8pwDPDE0DSZLGYNWI+/8dcG2Sw4FHgPcw+CK5Iclm4DHgna3vzcCZwAzwXOsrSRqjkUK/qu4GpubYdNocfQu4YJTzSZJG4xu5ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0ZOfSTHJbk20m+0NZPSHJ7kpkkn0lyeGs/oq3PtO2To55bkjQ/izHSfx/w0ND6x4DLquq1wFPA5ta+GXiqtV/W+kmSxmik0E+yFjgLuLKtB3gLcGPrcjVwTlve2NZp209r/SVJYzLqSP8TwEXAL9v6McDTVfV8W98NrGnLa4BdAG37M63/r0myJcl0kunZ2dkRy5MkDVtw6Cc5G9hbVXcuYj1U1baqmqqqqYmJicU8tCR1b9UI+54KvC3JmcDLgVcDlwOrk6xqo/m1wJ7Wfw+wDtidZBXwGuDHI5xfkjRPCx7pV9XFVbW2qiaBc4GvVtVfArcCb2/dNgE3teUdbZ22/atVVQs9vyRp/pbiOf0PAhcmmWEwZ39Va78KOKa1XwhsXYJzS5JewCjTO79SVV8DvtaWHwFOnqPPz4B3LMb5JEkL4xu5ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR1ZtdAdk6wDrgGOAwrYVlWXJzka+AwwCTwKvLOqnkoS4HLgTOA54N1Vdddo5UvqweTWLy53CSvGKCP954EPVNWJwCnABUlOBLYCt1TVeuCWtg5wBrC+fbYAV4xwbknSAiw49Kvq8X0j9ar6KfAQsAbYCFzdul0NnNOWNwLX1MBtwOokxy+4cknSvC3KnH6SSeANwO3AcVX1eNv0BIPpHxh8Iewa2m13a9v/WFuSTCeZnp2dXYzyJEnNguf090nyKuCzwPur6ieDqfuBqqokNZ/jVdU2YBvA1NTUvPaVtLScWz/0jTTST/IyBoF/bVV9rjX/cN+0Tfu7t7XvAdYN7b62tUmSxmTBod+exrkKeKiqPj60aQewqS1vAm4aaj8/A6cAzwxNA0mSxmCU6Z1TgXcB9yW5u7V9CLgUuCHJZuAx4J1t280MHtecYfDI5ntGOLckaQEWHPpV9Q0gB9h82hz9C7hgoeeTJI3ON3IlqSMjP70jabx8gkajcKQvSR0x9CWpI4a+JHXE0JekjngjV1ogb6jqUORIX5I6YuhLUkec3tEhzSkWaX4c6UtSRwx9SeqIoS9JHTH0Jakjhr4kdcSnd7QofIpGOjQ40pekjhj6ktQRQ1+SOmLoS1JHVvSN3OW6ufjopWcty3kl6WDGHvpJNgCXA4cBV1bVpeOuYSXzKRpJL2Ss0ztJDgM+BZwBnAicl+TEcdYgST0b90j/ZGCmqh4BSHI9sBF4cMx1LClH25JeqsYd+muAXUPru4E3DndIsgXY0lafTfLdEc53LPCjEfY/FPV2zb1dL3jNXcjHRrrm3zvQhpfcjdyq2gZsW4xjJZmuqqnFONahordr7u16wWvuxVJd87gf2dwDrBtaX9vaJEljMO7QvwNYn+SEJIcD5wI7xlyDJHVrrNM7VfV8kvcCX2bwyOb2qnpgCU+5KNNEh5jerrm36wWvuRdLcs2pqqU4riTpJcifYZCkjhj6ktSRFRn6STYk+W6SmSRbl7uepZZke5K9Se5f7lrGJcm6JLcmeTDJA0net9w1LbUkL0/yrST3tGv+5+WuaRySHJbk20m+sNy1jEuSR5Pcl+TuJNOLeuyVNqfffurhe8BfMHj56w7gvKpaUW/9DkvyJuBZ4Jqqev1y1zMOSY4Hjq+qu5L8NnAncM4K/3cOcGRVPZvkZcA3gPdV1W3LXNqSSnIhMAW8uqrOXu56xiHJo8BUVS36C2krcaT/q596qKqfA/t+6mHFqqqvA08udx3jVFWPV9VdbfmnwEMM3vhesWrg2bb6svZZWaO2/SRZC5wFXLnctawUKzH05/qphxUdBr1LMgm8Abh9eStZem2q425gL7Czqlb6NX8CuAj45XIXMmYFfCXJne2naRbNSgx9dSTJq4DPAu+vqp8sdz1Lrap+UVV/wuBt9pOTrNjpvCRnA3ur6s7lrmUZ/FlVncTgF4kvaFO4i2Ilhr4/9dCJNq/9WeDaqvrcctczTlX1NHArsGG5a1lCpwJva/Pb1wNvSfKfy1vSeFTVnvZ3L/B5BtPWi2Ilhr4/9dCBdlPzKuChqvr4ctczDkkmkqxuy69g8LDCd5a3qqVTVRdX1dqqmmTw//irVfVXy1zWkktyZHs4gSRHAqcDi/Zk3ooL/ap6Htj3Uw8PATcs8U89LLsk1wHfBF6XZHeSzctd0xicCryLwejv7vY5c7mLWmLHA7cmuZfB4GZnVXXzGGNHjgO+keQe4FvAF6vqS4t18BX3yKYk6cBW3EhfknRghr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqyP8BzAp/hd2eve0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "cuUVTqubyCS6", + "outputId": "301a8782-df13-4ae0-a76b-70046f4ad3e5" + }, + "source": [ + "ax.set_xticks(np.arange(0, 5.5, 0.5))\n", + "ax.grid(linestyle='--')\n", + "\n", + "plt.ylabel('count', fontsize=12, weight='bold')\n", + "plt.xlabel('assigned grade', fontsize=12, weight='bold')\n", + "\n", + "plt.show()\n" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAENCAYAAADzFzkJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAU40lEQVR4nO3de7SldX3f8feHIWiiKMYZu5QZLuogjtgKnoUkWh0viYArQ1bDspB4gRBZsSHGYM2iJREXNkmty9iyQqOTxkIk3GJaO9WxhCUgqRHCEITCEOJwiQxmwSCXWE1B9Ns/nucw282cOb89zHnOnjnv11qz9n4ue+/v+c05+7Of5/fs3y9VhSRJLfZZ7AIkSXsOQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktRskNBI8ukkDyS5dY7tSXJeki1Jbkly1BB1SZImM9SRxgXAsTvZfhywuv93OvAHA9QkSZrQIKFRVdcCD+1klxOAP67OdcABSV44RG2SpHb7LnYBvQOBe0eWt/br/n58xySn0x2N8KxnPevVhx9++CAFStLe4sYbb3ywqlbsymOnJTSaVdV6YD3AzMxMbdq0aZErkqQ9S5K/29XHTsvVU/cBq0aWV/brJElTZFpCYwPwrv4qqmOAR6vqKaemJEmLa5DTU0kuAdYCy5NsBc4BfgSgqj4JbASOB7YA3wVOHaIuSdJkBgmNqjp5nu0F/MoQtUiSdt20nJ6SJO0BDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktRssNBIcmySO5JsSXLWDrYflOTqJDcluSXJ8UPVJklqM0hoJFkGnA8cB6wBTk6yZmy33wQur6ojgZOA/zxEbZKkdkMdaRwNbKmqu6rqceBS4ISxfQp4Tn//ucA3B6pNktRoqNA4ELh3ZHlrv27Uh4F3JNkKbAR+dUdPlOT0JJuSbNq2bdtC1CpJmsM0dYSfDFxQVSuB44HPJHlKfVW1vqpmqmpmxYoVgxcpSUvZUKFxH7BqZHllv27UacDlAFX1VeCZwPJBqpMkNRkqNG4AVic5NMl+dB3dG8b2+QbwZoAkL6cLDc8/SdIUGSQ0quoJ4AzgCuB2uqukbktybpJ1/W4fAN6T5GbgEuCUqqoh6pMktdl3qBeqqo10Hdyj6z40cn8z8Nqh6pEkTW6aOsIlSVPO0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1Gyw0khyb5I4kW5KcNcc+b0+yOcltSS4eqjZJUpt9h3iRJMuA84GfArYCNyTZUFWbR/ZZDfwb4LVV9XCSFwxRmySp3VBHGkcDW6rqrqp6HLgUOGFsn/cA51fVwwBV9cBAtUmSGg0VGgcC944sb+3XjToMOCzJV5Jcl+TYHT1RktOTbEqyadu2bQtUriRpR6apI3xfYDWwFjgZ+MMkB4zvVFXrq2qmqmZWrFgxcImStLQNFRr3AatGllf260ZtBTZU1feq6m7gb+lCRJI0JYYKjRuA1UkOTbIfcBKwYWyfz9EdZZBkOd3pqrsGqk+S1GCQ0KiqJ4AzgCuA24HLq+q2JOcmWdfvdgXwrSSbgauBD1bVt4aoT5LUJlW12DXsspmZmdq0adNilyFJe5QkN1bVzK48tvlII8ldSX5zbN0vJRk/zSRJ2ktNcnrqEODHx9YdCbxtt1UjSZpq834jPMlVI4snJnlVf38f4NXAtxeiMEnS9GkZRmRtf1t0l8quHNv+J7uzIEnS9GoJjVOBAJ8GrgRmBxL8Pt23vK9dmNIkSdNm3tCoqgsBkhSwuapuWPCqJElTqXmU26q6MMkbk5wJPHts27m7vTJJ0tRpDo0kHwfeP76arq/D0JCkJWCS+TROpQuI/w080t+XJC0hk4TGt4HPV9W7FqoYSdJ0m+TLfR8GXp/kqCTTNKS6JGkgkxxp/BHdKakbAJLMrq+qGmTaWEnS4pr0zT6N6yRJe6FJQuPQBatCkrRHmOR7Gn+3kIVIkqbfJN/TmGsWvaqql+ymeiRJU2yS01OHzLHe72tI0hIxSWi8ceT+MuCVdJfh/t7uLEiSNL0m6dP48tiqq5KsBNYBH9mtVUmSptIkfRrj3wR/DnAi8PzdWpEkaWpNcnrqAp7afxHgi7utGknSVJskNK7lh0PjO8BN2KchSUvGJH0aaxewDknSHmCigQeTHJPkoiR/keQzSX5ioQqTJE2fSTrC3wp8nu5yW4DXAicn+Zmqsl9DkpaASYdGL+A/Ar/c3/4A+NDuL0uSNI0m6QhfA1xSVWfOrkjyfOBnd3tVkqSpNMmRxiPAK5I8E6C/fUW/XpK0BEwSGlcCRwH3J7kVuB84sl8vSVoCJgmNs4Drgf3pTlXt3y+ftQB1SZKm0CR9GgcDv0N3hHEwcA/wwv7+g7u9MknS1JkkND4DPFRVrwP+CiDJNcBy4IjdX5okadpMcnrqUOC2sXV/A7x495UjSZpmk4TG/cDrkzwDoL99A/DAQhQmSZo+k4TGl4GXAXcm+SJwJ3AYcM0C1CVJmkKThMa/BbYALwLe2t9uAc5ueXCSY5PckWRLkjmvuEryc0kqycwEtUmSBjDJKLf3JflnwPF0/Rt3Axur6h/ne2ySZcD5wE8BW4Ebkmyoqs1j++0P/BrdpbySpCkzydVT9AHxZ7vwOkcDW6rqLoAklwInAJvH9vsI8FHgg7vwGpKkBTbR0OhPw4HAvSPLW/t1T0pyFLCqqr6wsydKcnqSTUk2bdu2bfdXKkma01ChsVNJ9qGbAfAD8+1bVeuraqaqZlasWLHwxUmSnjRUaNwHrBpZXtmvm7U/3RcEr0lyD3AMsMHOcEmaLkOFxg3A6iSHJtkPOAnYMLuxqh6tquVVdUhVHQJcB6yrqk0D1SdJajBIaFTVE8AZwBXA7cDlVXVbknOTrBuiBknS0zfR1VNPR1VtBDaOrdvhrH9VtXaImiRJk5mKjnBJ0p7B0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1Gyw0khyb5I4kW5KctYPtZybZnOSWJF9KcvBQtUmS2gwSGkmWAecDxwFrgJOTrBnb7SZgpqr+KfBZ4D8MUZskqd1QRxpHA1uq6q6qehy4FDhhdIequrqqvtsvXgesHKg2SVKjoULjQODekeWt/bq5nAZ8cUcbkpyeZFOSTdu2bduNJUqS5jN1HeFJ3gHMAB/b0faqWl9VM1U1s2LFimGLk6Qlbt+BXuc+YNXI8sp+3Q9J8hbgbOANVfXYQLVJkhoNdaRxA7A6yaFJ9gNOAjaM7pDkSOBTwLqqemCguiRJExgkNKrqCeAM4ArgduDyqrotyblJ1vW7fQx4NvCnSb6WZMMcTydJWiRDnZ6iqjYCG8fWfWjk/luGqkWStGumriNckjS9DA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktRssNBIcmySO5JsSXLWDrY/I8ll/fbrkxwyVG2SpDaDhEaSZcD5wHHAGuDkJGvGdjsNeLiqXgp8AvjoELVJktoNdaRxNLClqu6qqseBS4ETxvY5Abiwv/9Z4M1JMlB9kqQG+w70OgcC944sbwVeM9c+VfVEkkeB5wMPju6U5HTg9H7xsSS3LkjFe57ljLXVEmZbbGdbbGdbbPeyXX3gUKGx21TVemA9QJJNVTWzyCVNBdtiO9tiO9tiO9tiuySbdvWxQ52eug9YNbK8sl+3w32S7As8F/jWINVJkpoMFRo3AKuTHJpkP+AkYMPYPhuAd/f3TwSuqqoaqD5JUoNBTk/1fRRnAFcAy4BPV9VtSc4FNlXVBuCPgM8k2QI8RBcs81m/YEXveWyL7WyL7WyL7WyL7Xa5LeKHeUlSK78RLklqZmhIkprtEaHhECTbNbTFmUk2J7klyZeSHLwYdQ5hvrYY2e/nklSSvfZyy5a2SPL2/nfjtiQXD13jUBr+Rg5KcnWSm/q/k+MXo86FluTTSR6Y67ts6ZzXt9MtSY5qeuKqmup/dB3ndwIvBvYDbgbWjO3zr4BP9vdPAi5b7LoXsS3eCPxYf/+9S7kt+v32B64FrgNmFrvuRfy9WA3cBDyvX37BYte9iG2xHnhvf38NcM9i171AbfF64Cjg1jm2Hw98EQhwDHB9y/PuCUcaDkGy3bxtUVVXV9V3+8Xr6L4Tszdq+b0A+AjdOGb/b8jiBtbSFu8Bzq+qhwGq6oGBaxxKS1sU8Jz+/nOBbw5Y32Cq6lq6K1HncgLwx9W5DjggyQvne949ITR2NATJgXPtU1VPALNDkOxtWtpi1Gl0nyT2RvO2RX+4vaqqvjBkYYug5ffiMOCwJF9Jcl2SYwerblgtbfFh4B1JtgIbgV8dprSpM+n7CbAHDiOiNkneAcwAb1jsWhZDkn2A3wNOWeRSpsW+dKeo1tIdfV6b5JVV9ciiVrU4TgYuqKqPJ/kJuu+HHVFVP1jswvYEe8KRhkOQbNfSFiR5C3A2sK6qHhuotqHN1xb7A0cA1yS5h+6c7Ya9tDO85fdiK7Chqr5XVXcDf0sXInublrY4DbgcoKq+CjyTbjDDpabp/WTcnhAaDkGy3bxtkeRI4FN0gbG3nreGedqiqh6tquVVdUhVHULXv7OuqnZ5oLYp1vI38jm6owySLKc7XXXXkEUOpKUtvgG8GSDJy+lCY9ugVU6HDcC7+quojgEeraq/n+9BU396qhZuCJI9TmNbfAx4NvCn/bUA36iqdYtW9AJpbIslobEtrgB+Oslm4PvAB6tqrzsab2yLDwB/mOTX6TrFT9kbP2QmuYTug8Lyvv/mHOBHAKrqk3T9OccDW4DvAqc2Pe9e2FaSpAWyJ5yekiRNCUNDktTM0JAkNTM0JEnNDA1JUjNDQ3u9JBf0o9x+eJHruKav4/2LWUdfy9q+lqX4jXA9DVP/PQ1pN/hz4BG6L/hJehoMDe31qupiYK+cP6IfYwvHTdJQPD2lqZHk4iT3JXksybeTXJXklSPb35/kzn77g/3pnpf1236+n2DoH5M8lOSrSV7Xb/uh01NJ9kvyB0ke7p/v9H57JTmg3+eefvmsfrKe7yTZmOR5I/W8rq/h4STf7Ce9ef7I9n/RT3DzaJKPM8/fWz+cw7n9xDn3JXnnSF2v6veZPcX10STXA48DByX510m+3tf5WJKbk5w48tzPTTdR2T8kuZlunoXx1z8oyaX9az+S5M+THLEL/5XaixkamiYHA9cA/wX4a7oJpS4HSPJS4BN08yD8V7pTTgcBL0zyo8AF/eP/BPhCv99L5nids4Ff7u9/GTh3JzV9CLiFbj6O44Az+3qOAL4EvBr4X/0+p9IN35Ikq4HL+hquBl4DvHaen/8U4Lf62q+kG8J7Lh8EHgAuAR4DDgX+D107/A/gFcBF2T6L5XnA2+mmDbix/7melOTHgKv6fW6hG5doLXBVP1aVBBgami5vp+t3+DbdGxfA4UleRD9mDt2EOf8N+I2qejHwF3RjDC0DHqYbmO+cqnoFcNEcr/ML/e37q+oX6WY4nMs5VfVu4Pf75SP72/fSzQx3G3A/8Dd0b95vBF4G/Eu6079XVdXP0r0Bzzco3mxdv1tVp9ANvjmXi6rqZ6rqnf0gc79B97M/RDdS6TbgGcBPJlnG9vHYfr7/mX9r7PneRhdw3wTu6J/nG8CKeerQEmOfhqZC/8n8r+kGWxy3oqpuTnIO8D66wehIcgdwYlXdmuS9dAOy/c9+21bgnXRHLuNmJ5q5vb/dvJPSbupvZ68ymq3vkP72Nf2/US8deY074MmB9O4G/slOXmuSur4yeyfdaK7X0Q0FP24F3bDf+43WQzc0+qhDRmr4tbFtL91JHVpiPNLQtHgb3Rvy14AD+OE31/Sfln+7qpbTnYb6KN0n+l/v97mwqg4EXkT3preSp36anjU7Z8DsfBKH76SuJ/rb8ZE97+lvP1FVmf0HvKSqPj/yGrN9LvvSnULamUnqGp0nZQ1dYDxBd7SwD9sDJ8CDdH0fT9ZDNzT6jn6eG4F9Rn6e5wG/PU/dWkI80tC0uL+/PQz4T8CrxravAq5Pci3dufzZ/oHZI4D7k1xDd3rllWPbxl1Ed1RyXpI30Q0PPan1dPNuvy/JoXRvzC8HfpLuTfsyuj6JNyX5HN2n/RfM85wX0c3zcHbfh/PPG2t5EPgB3d/zx+kmoHpygqWq+n6Sy+iOvC5OciVPPeW0Ebibro/mK0luoeszWkvXPtc01qK9nEcamhaX082L8n3gLcDvjm3/B+Cv6MLiPXRHFJcC/67ffiXdFUGn0XUCf4Fu3oQd+R3gk3S//2vHXuvxHT1gXFXd3Nd5LfB6uj6D/Wefq6q+Tjet6F10QfA1Rk4pzeFC4CPA/wXeCvz7kW1zzsBYVVvp5rm+H3gT3dHCX47t9j7gs3RHcUcz1r5V9Z3+sZfQhcW76Y5KLmL7KS3J+TS09PRXCn2vqr7XL59M9z2OrVW1aqcPXti6lgHP7N/ASTd/9V/SBemz9uKpe7UH8fSUlqLDgMuS/He6v4Ff6teft3glAd2Ryq1JLqe7xHd2CuNPGRiaFoaGlqJv0V1S+iv98p10p6vWL1pFnceArwO/SHe10z3A+XT9FNJU8PSUJKmZHeGSpGaGhiSpmaEhSWpmaEiSmhkakqRm/x/qvImZZrezaQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "OQhAQEIoyQLd" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file