-
Notifications
You must be signed in to change notification settings - Fork 0
/
classify_image.py
44 lines (31 loc) · 1.43 KB
/
classify_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications.resnet50 import decode_predictions, preprocess_input
import streamlit as st
import numpy as np
from PIL import Image
model = ResNet50(include_top=True, weights="imagenet")
def classify_image(image):
img = np.array(image)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
img = tf.keras.preprocessing.image.smart_resize(img, size=(224, 224))
img = img[:, :, :, :3]
preds = model.predict(img)
_, class_name, pred_probability = decode_predictions(preds, top=1)[0][0]
pred_probability = round(float(pred_probability), 4)
return class_name, pred_probability
# Upload the image
st.title("Image Classification")
st.write("This webapp takes a dog image and classifies it: it provides a classification and a probability, using the tensorflow, keras and resnet50 libraries and model to predict")
uploaded_file = st.file_uploader("Upload an image file... ", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Open the image file
image = Image.open(uploaded_file)
# Show the image in the UI
st.image(image, "Uploaded image", use_container_width=True)
# Make the predictions
predicted_name, probability = classify_image(image)
# Print the predictions in the UI
st.write(f"Predicted animal = {predicted_name}")
st.write(f"Probability = {probability}")