-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathcamera.py
273 lines (241 loc) · 11 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
from enum import Enum
import numpy as np
import cv2
import json
#import g2o
from utils_geom import add_ones
from utils_sys import Printer
class CameraTypes(Enum):
NONE = 0
PINHOLE = 1
class CameraBase:
def __init__(self):
self.type = CameraTypes.NONE
self.width, self.height = None, None
self.fx, self.fy = None, None
self.cx, self.cy = None, None
self.D = None
self.is_distorted = None
self.fps = None
self.bf = None
self.b = None
self.u_min = None
self.u_max = None
self.v_min = None
self.v_max = None
self.initialized = False
class Camera(CameraBase):
def __init__(self, config):
super().__init__()
if config is None:
return
width = config.cam_settings['Camera.width']
height = config.cam_settings['Camera.height']
fx = config.cam_settings['Camera.fx']
fy = config.cam_settings['Camera.fy']
cx = config.cam_settings['Camera.cx']
cy = config.cam_settings['Camera.cy']
D = config.DistCoef # D = [k1, k2, p1, p2, k3]
fps = config.cam_settings['Camera.fps']
self.width = width
self.height = height
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
self.D = np.array(D,dtype=np.float32) # np.array([k1, k2, p1, p2, k3]) distortion coefficients
self.is_distorted = np.linalg.norm(self.D) > 1e-10
self.fps = fps
# If stereo camera => assuming rectified images as input at present (so no need of left-right transformation matrix Tlr)
if 'Camera.bf' in config.cam_settings:
self.bf = config.cam_settings['Camera.bf']
self.b = self.bf/self.fx
if config.sensor_type == 'stereo' and self.bf is None:
raise ValueError('Expecting the field Camera.bf in the camera config file')
self.depth_factor = 1.0 # Deptmap values factor
if 'DepthMapFactor' in config.cam_settings:
self.depth_factor = 1.0/float(config.cam_settings['DepthMapFactor'])
print('Using DepthMapFactor = %f' % self.depth_factor)
if config.sensor_type == 'rgbd' and self.depth_factor is None:
raise ValueError('Expecting the field DepthMapFactor in the camera config file')
self.depth_threshold = None # Close/Far threshold. Baseline times.
if 'ThDepth' in config.cam_settings:
depth_threshold = float(config.cam_settings['ThDepth'])
assert(self.bf is not None)
self.depth_threshold = self.bf * depth_threshold / self.fx
print('Using depth_threshold = %f' % self.depth_threshold)
if (config.sensor_type == 'rgbd' or config.sensor_type == 'stereo') and self.depth_threshold is None:
raise ValueError('Expecting the field ThDepth in the camera config file')
def is_stereo(self):
return self.bf is not None
def to_json(self):
return {'type':int(self.type.value),
'width':int(self.width),
'height':int(self.height),
'fx':float(self.fx),
'fy':float(self.fy),
'cx':float(self.cx),
'cy':float(self.cy),
'D':json.dumps(self.D.astype(float).tolist() if self.D is not None else None),
'fps':int(self.fps),
'bf':float(self.bf),
'b':float(self.b),
'depth_factor':float(self.depth_factor),
'depth_threshold':float(self.depth_threshold),
'is_distorted':bool(self.is_distorted),
'u_min':float(self.u_min),
'u_max':float(self.u_max),
'v_min':float(self.v_min),
'v_max':float(self.v_max),
'initialized':bool(self.initialized)
}
def init_from_json(self, json_str):
self.type = CameraTypes(int(json_str['type']))
self.width = int(json_str['width'])
self.height = int(json_str['height'])
self.fx = float(json_str['fx'])
self.fy = float(json_str['fy'])
self.cx = float(json_str['cx'])
self.cy = float(json_str['cy'])
self.D = np.array(json.loads(json_str['D'])) if json_str['D'] is not None else None
self.fps = int(json_str['fps'])
self.bf = float(json_str['bf'])
self.b = float(json_str['b'])
self.depth_factor = float(json_str['depth_factor'])
self.depth_threshold = float(json_str['depth_threshold'])
self.is_distorted = bool(json_str['is_distorted'])
self.u_min = float(json_str['u_min'])
self.u_max = float(json_str['u_max'])
self.v_min = float(json_str['v_min'])
self.v_max = float(json_str['v_max'])
self.initialized = bool(json_str['initialized'])
class PinholeCamera(Camera):
def __init__(self, config):
super().__init__(config)
self.type = CameraTypes.PINHOLE
if config is None:
return
fx = self.fx
fy = self.fy
cx = self.cx
cy = self.cy
self.K = np.array([[fx, 0,cx],
[ 0,fy,cy],
[ 0, 0, 1]])
self.Kinv = np.array([[1/fx, 0,-cx/fx],
[ 0, 1/fy,-cy/fy],
[ 0, 0, 1]])
#print(f'PinholeCamera: K = {self.K}')
self.u_min, self.u_max = 0, self.width
self.v_min, self.v_max = 0, self.height
self.init()
def to_json(self):
camera_json = super().to_json()
camera_json['K'] = json.dumps(self.K.astype(float).tolist())
camera_json['Kinv'] = json.dumps(self.Kinv.astype(float).tolist())
return camera_json
@staticmethod
def from_json(json_str):
c = PinholeCamera(None)
c.init_from_json(json_str)
c.K = np.array(json.loads(json_str['K']))
c.Kinv = np.array(json.loads(json_str['Kinv']))
return c
def init(self):
if not self.initialized:
self.initialized = True
self.undistort_image_bounds()
# project a 3D point or an array of 3D points (w.r.t. camera frame), of shape [Nx3]
# out: Nx2 image points, [Nx1] array of map point depths
def project(self, xcs):
# u = self.fx * xc[0]/xc[2] + self.cx
# v = self.fy * xc[1]/xc[2] + self.cy
projs = self.K @ xcs.T
zs = projs[-1]
projs = projs[:2]/ zs
return projs.T, zs
# stereo-project a 3D point or an array of 3D points (w.r.t. camera frame), of shape [Nx3]
# (assuming rectified stereo images)
# out: Nx3 image points, [Nx1] array of map point depths
def project_stereo(self, xcs):
# u = self.fx * xc[0]/xc[2] + self.cx
# v = self.fy * xc[1]/xc[2] + self.cy
# ur = u - bf//xc[2]
projs = self.K @ xcs.T
zs = projs[-1]
projs = projs[:2]/ zs
ur = projs[0] - self.bf/zs
projs = np.concatenate((projs.T,ur[:, np.newaxis]),axis=1)
return projs, zs
# unproject 2D point uv (pixels on image plane) on
def unproject(self, uv):
x = (uv[0] - self.cx)/self.fx
y = (uv[1] - self.cy)/self.fy
return x,y
# in: uvs [Nx2]
# out: xcs array [Nx2] of normalized coordinates
def unproject_points(self, uvs):
return np.dot(self.Kinv, add_ones(uvs).T).T[:, 0:2]
# in: uvs [Nx2], depths [Nx1]
# out: xcs array [Nx3] of normalized coordinates
def unproject_points_3d(self, uvs, depths):
return np.dot(self.Kinv, add_ones(uvs).T * depths).T[:, 0:3]
# in: uvs [Nx2]
# out: uvs_undistorted array [Nx2] of undistorted coordinates
def undistort_points(self, uvs):
if self.is_distorted:
#uvs_undistorted = cv2.undistortPoints(np.expand_dims(uvs, axis=1), self.K, self.D, None, self.K) # => Error: while undistorting the points error: (-215:Assertion failed) src.isContinuous()
uvs_contiguous = np.ascontiguousarray(uvs[:, :2]).reshape((uvs.shape[0], 1, 2))
uvs_undistorted = cv2.undistortPoints(uvs_contiguous, self.K, self.D, None, self.K)
return uvs_undistorted.ravel().reshape(uvs_undistorted.shape[0], 2)
else:
return uvs
# update image bounds
def undistort_image_bounds(self):
uv_bounds = np.array([[self.u_min, self.v_min],
[self.u_min, self.v_max],
[self.u_max, self.v_min],
[self.u_max, self.v_max]], dtype=np.float32).reshape(4,2)
#print('uv_bounds: ', uv_bounds)
if self.is_distorted:
uv_bounds_undistorted = cv2.undistortPoints(np.expand_dims(uv_bounds, axis=1), self.K, self.D, None, self.K)
uv_bounds_undistorted = uv_bounds_undistorted.ravel().reshape(uv_bounds_undistorted.shape[0], 2)
else:
uv_bounds_undistorted = uv_bounds
#print('uv_bounds_undistorted: ', uv_bounds_undistorted)
self.u_min = min(uv_bounds_undistorted[0][0],uv_bounds_undistorted[1][0])
self.u_max = max(uv_bounds_undistorted[2][0],uv_bounds_undistorted[3][0])
self.v_min = min(uv_bounds_undistorted[0][1],uv_bounds_undistorted[2][1])
self.v_max = max(uv_bounds_undistorted[1][1],uv_bounds_undistorted[3][1])
# print('camera u_min: ', self.u_min)
# print('camera u_max: ', self.u_max)
# print('camera v_min: ', self.v_min)
# print('camera v_max: ', self.v_max)
def is_in_image(self, uv, z):
return (uv[0] > self.u_min) & (uv[0] < self.u_max) & \
(uv[1] > self.v_min) & (uv[1] < self.v_max) & \
(z > 0)
# input: [Nx2] array of uvs, [Nx1] of zs
# output: [Nx1] array of visibility flags
def are_in_image(self, uvs, zs):
return (uvs[:, 0] > self.u_min) & (uvs[:, 0] < self.u_max) & \
(uvs[:, 1] > self.v_min) & (uvs[:, 1] < self.v_max) & \
(zs > 0 )