-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathmap_point.py
614 lines (526 loc) · 27.5 KB
/
map_point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import math
import time
import numpy as np
from threading import RLock, Lock, Thread
from utils_geom import poseRt, add_ones, normalize_vector, normalize_vector2
from frame import Frame, FrameShared
from utils_sys import Printer
from parameters import Parameters
class MapPointBase(object):
_id = 0 # shared point counter
_id_lock = RLock() # shared lock for id
def __init__(self, id=None):
if id is not None:
self.id = id
else:
with MapPointBase._id_lock:
self.id = MapPointBase._id
MapPointBase._id += 1
self._lock_pos = RLock()
self._lock_features = RLock()
self.map = None # this is used by the object for automatically removing itself from the map when it becomes bad (see below)
self._observations = dict() # keyframe observations (used by mapping methods)
# for kf, kidx in self._observations.items(): kf.points[kidx] = this point
self._frame_views = dict() # frame observations (used for drawing the tracking keypoint trails, frame by frame)
# for f, idx in self._frame_views.items(): f.points[idx] = this point
self._is_bad = False # a map point becomes bad when its num_observations < 2 (cannot be considered for bundle ajustment or other related operations)
self._num_observations = 0 # number of keyframe observations
self.num_times_visible = 1 # number of times the point is visible in the camera
self.num_times_found = 1 # number of times the point was actually matched and not rejected as outlier by the pose optimization in Tracking.track_local_map()
self.last_frame_id_seen =-1 # last frame id in which this point was seen
#self.is_replaced = False # is True when the point was replaced by another point
self.replacement = None # replacing point
# for loop correction
self.corrected_by_kf = 0 # use kf.kid here!
self.corrected_reference = 0 # use kf.kid here!
def __hash__(self):
return self.id
def __eq__(self, rhs):
return (isinstance(rhs, MapPointBase) and self.id == rhs.id)
def __lt__(self, rhs):
return self.id < rhs.id
def __le__(self, rhs):
return self.id <= rhs.id
def observations_string(self):
obs = sorted([(kf.id, kidx, kf.get_point_match(kidx)!=None) for kf,kidx in self.observations()],key=lambda x:x[0])
return 'observations: ' + str(obs)
def frame_views_string(self):
obs = sorted([(f.id, idx, f.get_point_match(idx)!=None) for f,idx in self.frame_views()],key=lambda x:x[0])
return 'views: ' + str(obs)
def __str__(self):
#return str(self.__class__) + ": " + str(self.__dict__)
return 'MapPoint ' + str(self.id) + ' { ' + self.observations_string() + ', ' + self.frame_views_string() + ' }'
# return a copy of the dictionary’s list of (key, value) pairs
def observations(self):
with self._lock_features:
return list(self._observations.items()) # https://www.python.org/dev/peps/pep-0469/
# return an iterator of the dictionary’s list of (key, value) pairs
# NOT thread-safe
def observations_iter(self):
return iter(self._observations.items()) # https://www.python.org/dev/peps/pep-0469/
# return a copy of the dictionary’s list of keys
def keyframes(self):
with self._lock_features:
return list(self._observations.keys())
# return an iterator of the dictionary’s list of keys
# NOT thread-safe
def keyframes_iter(self):
return iter(self._observations.keys())
def is_in_keyframe(self, keyframe):
assert(keyframe.is_keyframe)
with self._lock_features:
return (keyframe in self._observations)
def get_observation_idx(self, keyframe):
assert(keyframe.is_keyframe)
with self._lock_features:
try:
return self._observations[keyframe]
except KeyError:
return -1
def add_observation_no_lock_(self, keyframe, idx):
if keyframe not in self._observations:
keyframe.set_point_match(self, idx) # add point association in keyframe
self._observations[keyframe] = idx
if keyframe.kps_ur is not None and keyframe.kps_ur[idx]>0:
self._num_observations += 2
else:
self._num_observations += 1
return True
# elif self._observations[keyframe] != idx: # if the keyframe is already there but it is incoherent then fix it!
# self._observations[keyframe] = idx
# return True
else:
return False
def add_observation(self, keyframe, idx):
assert(keyframe.is_keyframe)
with self._lock_features:
return self.add_observation_no_lock_(keyframe, idx)
# return (was the observation added?, self.is_bad)
def add_observation_if_not_bad(self, keyframe, idx):
assert(keyframe.is_keyframe)
with self._lock_features:
if self._is_bad:
return (False, self._is_bad) # we didn't add the observation
else:
return (self.add_observation_no_lock_(keyframe, idx), self._is_bad)
def remove_observation(self, keyframe, idx=None):
assert(keyframe.is_keyframe)
with self._lock_features:
# remove point association
if idx is not None:
if __debug__:
assert(self == keyframe.get_point_match(idx))
keyframe.remove_point_match(idx)
if __debug__:
assert(not self in keyframe.points) # checking there are no multiple instances
else:
keyframe.remove_point(self)
try:
del self._observations[keyframe]
if keyframe.kps_ur is not None and keyframe.kps_ur[idx]>0:
self._num_observations = max(0, self._num_observations-2)
else:
self._num_observations = max(0, self._num_observations-1)
self._is_bad = (self._num_observations <= 2)
if self.kf_ref is keyframe and self._observations:
self.kf_ref = list(self._observations.keys())[0]
# if bad remove it from map
if self._is_bad and self.map is not None:
self.map.remove_point(self)
except KeyError:
pass
# return a copy of the dictionary’s list of (key, value) pairs
def frame_views(self):
with self._lock_features:
return list(self._frame_views.items())
# return an iterator of the dictionary’s list of (key, value) pairs
# NOT thread-safe
def frame_views_iter(self):
return iter(self._frame_views.items())
# return a copy of the dictionary’s list of keys
def frames(self):
with self._lock_features:
return list(self._frame_views.keys())
# return an iterator of the dictionary’s list of keys
# NOT thread-safe
def frames_iter(self):
return iter(self._frame_views.keys())
def is_in_frame(self, frame):
with self._lock_features:
return (frame in self._frame_views)
# add a frame observation
def add_frame_view(self, frame, idx):
assert(not frame.is_keyframe)
with self._lock_features:
if frame not in self._frame_views: # do not allow a point to be matched to diffent keypoints of the same frame
frame.set_point_match(self, idx)
self._frame_views[frame] = idx
return True
#elif self._frame_views[keyframe] != idx: # if the frame is already there but it is incoherent then fix it!
# self._frame_views[keyframe] = idx
# return True
else:
return False
def remove_frame_view(self, frame, idx=None):
assert(not frame.is_keyframe)
with self._lock_features:
# remove point from frame
if idx is not None:
if __debug__:
assert(self == frame.get_point_match(idx))
frame.remove_point_match(idx)
if __debug__:
assert(not self in frame.get_points()) # checking there are no multiple instances
else:
frame.remove_point(self) # remove all match instances
try:
del self._frame_views[frame]
except KeyError:
pass
@property
def is_bad(self):
with self._lock_features:
#with self._lock_pos:
return self._is_bad
@property
def num_observations(self):
with self._lock_features:
return self._num_observations
def is_good_with_min_obs(self, minObs):
with self._lock_features:
return not self._is_bad and (self._num_observations >= minObs)
def is_bad_and_is_good_with_min_obs(self, minObs):
with self._lock_features:
return (self._is_bad, not self._is_bad and (self._num_observations >= minObs))
def increase_visible(self, num_times=1):
with self._lock_features:
self.num_times_visible += num_times
def increase_found(self, num_times=1):
with self._lock_features:
self.num_times_found += num_times
def get_found_ratio(self):
with self._lock_features:
return self.num_times_found/self.num_times_visible
# A Point is a 3-D point in the world
# Each Point is observed in multiple Frames
class MapPoint(MapPointBase):
global_lock = RLock() # shared global lock for blocking point position update
def __init__(self, position, color, keyframe=None, idxf=None, id=None):
super().__init__(id)
self._pt = np.array(position) # position in the world frame
self.color = color
self.des = None # best descriptor (continuously updated)
self._min_distance, self._max_distance = 0, float('inf') # depth infos
self.normal = np.array([0,0,1]) # just a default 3D vector
self.kf_ref = keyframe
self.first_kid = -1 # first observation keyframe id
#self.idxf_ref = idxf
if keyframe is not None:
if keyframe.is_keyframe:
self.first_kid = keyframe.kid
if idxf is not None:
self.des = keyframe.des[idxf]
# update normal and depth infos
po = (self._pt - self.kf_ref.Ow)
self.normal, dist = normalize_vector(po)
if idxf is not None:
level = keyframe.octaves[idxf]
level_scale_factor = FrameShared.feature_manager.scale_factors[level]
self._max_distance = dist * level_scale_factor
self._min_distance = self._max_distance / FrameShared.feature_manager.scale_factors[FrameShared.feature_manager.num_levels-1]
self.num_observations_on_last_update_des = 1 # must be 1!
self.num_observations_on_last_update_normals = 1 # must be 1!
# for GBA
self.pt_GBA = None
self.GBA_kf_id = 0
def __getstate__(self):
# Create a copy of the instance's __dict__
state = self.__dict__.copy()
# Remove the unpickable RLock from the state (can't pickle it)
if '_lock_pos' in state:
del state['_lock_pos']
if '_lock_features' in state:
del state['_lock_features']
return state
def __setstate__(self, state):
# Restore the state (without 'RLock' initially)
self.__dict__.update(state)
self._lock_pos = RLock()
self._lock_features = RLock()
def to_json(self):
return {'id': int(self.id) if self.id is not None else None,
'_observations': [(int(kf.id), int(idx)) for kf,idx in self._observations.items()],
'_frame_views': [(int(f.id), int(idx)) for f,idx in self._frame_views.items()],
'_is_bad': bool(self._is_bad),
'_num_observations': self._num_observations,
'num_times_visible': self.num_times_visible,
'num_times_found': self.num_times_found,
'last_frame_id_seen': self.last_frame_id_seen,
'pt': self.pt.tolist(),
'color': self.color,
'des': self.des.tolist(),
'_min_distance': self._min_distance,
'_max_distance': self._max_distance,
'normal': self.normal.tolist(),
'first_kid': int(self.first_kid),
'kf_ref': int(self.kf_ref.id) if self.kf_ref is not None else None
}
@staticmethod
def from_json(json_str):
p = MapPoint(json_str['pt'], json_str['color'], keyframe=None, idxf=None, id=json_str['id'])
p._observations = json_str['_observations']
p._frame_views = json_str['_frame_views']
p._is_bad = json_str['_is_bad']
p._num_observations = json_str['_num_observations']
p.num_times_visible = json_str['num_times_visible']
p.num_times_found = json_str['num_times_found']
p.last_frame_id_seen = json_str['last_frame_id_seen']
p.des = np.array(json_str['des'])
p._min_distance = json_str['_min_distance']
p._max_distance = json_str['_max_distance']
p.normal = np.array(json_str['normal'])
p.first_kid = json_str['first_kid']
p.kf_ref = json_str['kf_ref']
return p
def replace_ids_with_objects(self, points, frames, keyframes):
def get_object_with_id(id, objs):
if id is None:
return None
found_objs = [o for o in objs if o is not None and o.id == id]
#print(f'found_objs = {found_objs}, id = {id}, objs = {[o.id for o in objs]}')
return found_objs[0] if len(found_objs) > 0 else None
# get actual _observations
if self._observations is not None:
actual_observations = {get_object_with_id(fid, keyframes):idx for fid,idx in self._observations}
self._observations = actual_observations
# get actual _frame_views
if self._frame_views is not None:
actual_frame_views = {get_object_with_id(fid, frames):idx for fid,idx in self._frame_views}
self._frame_views = actual_frame_views
# get actual kf_ref
if self.kf_ref is not None: # NOTE: here kf_ref is still an id to be replaced with an object
self.kf_ref = get_object_with_id(self.kf_ref, keyframes)
@property
def pt(self):
with self._lock_pos:
return self._pt
def homogeneous(self):
with self._lock_pos:
#return add_ones(self._pt)
return np.concatenate([self._pt,np.array([1.0])], axis=0)
def update_position(self, position):
with self.global_lock:
with self._lock_pos:
self._pt = position
@property
def min_distance(self):
with self._lock_pos:
#return FrameShared.feature_manager.inv_scale_factor * self._min_distance # give it one level of margin (can be too much with scale factor = 2)
return Parameters.kMinDistanceToleranceFactor * self._min_distance
@property
def max_distance(self):
with self._lock_pos:
#return FrameShared.feature_manager.scale_factor * self._max_distance # give it one level of margin (can be too much with scale factor = 2)
return Parameters.kMaxDistanceToleranceFactor * self._max_distance
def get_all_pos_info(self):
with self._lock_pos:
return (self._pt, \
self.normal, \
Parameters.kMinDistanceToleranceFactor * self._min_distance, \
Parameters.kMaxDistanceToleranceFactor * self._max_distance)
def get_reference_keyframe(self):
with self._lock_features:
return self.kf_ref
# return array of corresponding descriptors
def descriptors(self):
with self._lock_features:
return [kf.des[idx] for kf,idx in self._observations.items()]
# minimum distance between input descriptor and map point corresponding descriptors
def min_des_distance(self, descriptor):
with self._lock_features:
#return min([FrameShared.descriptor_distance(d, descriptor) for d in self.descriptors()])
return FrameShared.descriptor_distance(self.des, descriptor)
def delete(self):
with self._lock_features:
with self._lock_pos:
#if __debug__:
# Printer.red('deleting ', self, ' is_replaced: ', self.replacement != None)
self._is_bad = True
self._num_observations = 0
observations = list(self._observations.items())
#frame_views = list(self._frame_views.items())
self._observations.clear()
#self._frame_views.clear()
for kf,idx in observations:
kf.remove_point_match(idx)
#for f,idx in _frame_views:
# f.remove_point_match(idx)
del self # delete if self is the last reference
def set_bad(self):
with self._lock_features:
with self._lock_pos:
#if __debug__:
# Printer.red('setting bad ', self, ' is_replaced: ', self.replacement != None)
self._is_bad = True
self._num_observations = 0
observations = list(self._observations.items())
self._observations.clear()
for kf,idx in observations:
kf.remove_point_match(idx)
if self.map is not None:
self.map.remove_point(self)
def get_replacement(self):
with self._lock_features:
with self._lock_pos:
return self.replacement
def get_normal(self):
with self._lock_pos:
return self.normal
# replace this point with map point p
def replace_with(self, p):
if p.id == self.id:
return
#if __debug__:
# Printer.orange('replacing ', self, ' with ', p)
observations, num_times_visible, num_times_found = None, 0, 0
with self._lock_features:
with self._lock_pos:
observations = list(self._observations.items())
self._observations.clear()
num_times_visible = self.num_times_visible
num_times_found = self.num_times_found
self._is_bad = True
self._num_observations = 0
#self.is_replaced = True # tell the delete() method not to remove observations and frame views
self.replacement = p
# replace point observations in keyframes
for kf, kidx in observations: # we have kf.get_point_match(kidx) = self
# if p.is_in_keyframe(kf):
# # point p is already in kf => just remove this point match from kf
# # (do NOT remove the observation otherwise self._num_observations is decreased in the replacement)
# kf.remove_point_match(kidx)
# else:
# # point p is not in kf => add new observation in p
# kf.replace_point_match(p,kidx)
# p.add_observation(kf,kidx)
if p.add_observation(kf,kidx):
# point p was NOT in kf => added new observation in p
kf.replace_point_match(p,kidx)
else:
# point p is already in kf => just remove this point match from kf
# (do NOT remove the observation otherwise self._num_observations is decreased in the replacement)
kf.remove_point_match(kidx)
#if p.get_observation_idx(kf) != kidx:
# kf.remove_point_match(kidx)
#else:
# kf.replace_point_match(p,kidx)
p.increase_visible(num_times_visible)
p.increase_found(num_times_found)
#p.update_info()
p.update_best_descriptor(force=True)
# replace point observations in frames (done by frame.check_replaced_map_points())
# for f, idx in frame_views: # we have f.get_point_match(idx) = self
# if p.is_in_frame(f):
# if not f.is_keyframe: # if not already managed above in keyframes
# # point p is already in f => just remove this point match from f
# f.remove_point_match(idx)
# else:
# # point p is not in f => add new frame view in p
# f.replace_point_match(p,idx)
# p.add_frame_view(f,idx)
self.map.remove_point(self)
#if __debug__:
# Printer.green('after replacement ', p)
# update normal and depth representations
def update_normal_and_depth(self, frame=None, idxf=None, force=False):
skip = False
with self._lock_features:
with self._lock_pos:
if self._is_bad:
return
if self._num_observations > self.num_observations_on_last_update_normals or force: # implicit if self._num_observations > 1
self.num_observations_on_last_update_normals = self._num_observations
observations = list(self._observations.items())
kf_ref = self.kf_ref
idx_ref = self._observations[kf_ref]
position = self._pt.copy()
else:
skip = True
if skip or len(observations)==0:
return
normals = np.array([normalize_vector2(position-kf.Ow) for kf,idx in observations])
normal = normalize_vector2(np.mean(normals,axis=0))
#print('normals: ', normals)
#print('mean normal: ', self.normal)
level = kf_ref.octaves[idx_ref]
level_scale_factor = FrameShared.feature_manager.scale_factors[level]
dist = np.linalg.norm(position-kf_ref.Ow)
with self._lock_pos:
self._max_distance = dist * level_scale_factor
self._min_distance = self._max_distance / FrameShared.feature_manager.scale_factors[FrameShared.feature_manager.num_levels-1]
self.normal = normal
def update_best_descriptor(self, force=False):
skip = False
with self._lock_features:
if self._is_bad:
return
if self._num_observations > self.num_observations_on_last_update_des or force: # implicit if self._num_observations > 1
self.num_observations_on_last_update_des = self._num_observations
observations = list(self._observations.items())
else:
skip = True
if skip or len(observations)==0:
return
descriptors = [kf.des[idx] for kf,idx in observations if not kf.is_bad]
N = len(descriptors)
if N > 2:
#median_distances = [ np.median([FrameShared.descriptor_distance(d, descriptors[i]) for d in descriptors]) for i in range(N) ]
median_distances = [ np.median(FrameShared.descriptor_distances(descriptors[i], descriptors)) for i in range(N)]
with self._lock_features:
self.des = descriptors[np.argmin(median_distances)].copy()
#print('descriptors: ', descriptors)
#print('median_distances: ', median_distances)
#print('des: ', self.des)
def update_info(self):
#if self._is_bad:
# return
# with self._lock_features:
# with self._lock_pos:
self.update_normal_and_depth()
self.update_best_descriptor()
# predict detection level from map point distance
def predict_detection_level(self, dist):
with self._lock_pos:
ratio = self._max_distance/dist
level = math.ceil(math.log(ratio)/FrameShared.feature_manager.log_scale_factor)
if level < 0:
level = 0
elif level >= FrameShared.feature_manager.num_levels:
level = FrameShared.feature_manager.num_levels-1
return level
# predict detection levels from map point distances
def predict_detection_levels(points, dists):
assert(len(points)==len(dists))
max_distances = np.array([p._max_distance for p in points])
ratios = max_distances/dists
levels = np.ceil(np.log(ratios)/FrameShared.feature_manager.log_scale_factor).astype(np.intp)
levels = np.clip(levels,0,FrameShared.feature_manager.num_levels-1)
return levels