-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteract.py
executable file
·97 lines (81 loc) · 2.75 KB
/
interact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
import argparse
import logging
import numpy as np
import os
import re
import torch
import pytorch_lightning as pl
from inference import InferenceModule
from model import TrainingModule
from pprint import pprint as pp
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s",
level=logging.INFO,
datefmt="%H:%M:%S",
)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--exp_dir",
default="experiments",
type=str,
help="Base directory of the experiment.",
)
parser.add_argument(
"--experiment",
type=str,
default=None,
help="Name of the experiment directory from which the model is loaded if `--model_name` is not specified.",
)
parser.add_argument(
"--model_name",
type=str,
default=None,
help="Name of the pretrained model used for prediction if `--experiment` is not specified.",
)
parser.add_argument("--max_threads", default=8, type=int, help="Maximum number of threads.")
parser.add_argument("--beam_size", default=5, type=int, help="Beam size.")
parser.add_argument("--gpus", default=0, type=int, help="Number of GPUs.")
parser.add_argument("--mps", action='store_true', help="Use MPS.")
parser.add_argument(
"--max_length",
type=int,
default=1024,
help="Maximum number of tokens per example",
)
parser.add_argument(
"--checkpoint",
type=str,
default="model.ckpt",
help="Override the default checkpoint name 'model.ckpt'.",
)
parser.add_argument(
"--load_in_8bit",
action="store_true",
help="Use 8-bit precision. Packages `bitsandbytes` and `accelerate` need to be installed.",
)
args = parser.parse_args()
logger.info(args)
torch.set_num_threads(args.max_threads)
if args.experiment is not None and args.model_name is not None:
raise ValueError(
"The parameters `experiment` and `model_name` are mutually exclusive,\
please specify only one of these."
)
elif args.experiment is None and args.model_name is None:
raise ValueError("Please specify one of the following parameters: `experiment` OR `model_name`")
if args.experiment:
model_path = os.path.join(args.exp_dir, args.experiment, args.checkpoint)
dm = InferenceModule(args, model_path=model_path)
elif args.model_name:
dm = InferenceModule(args)
while True:
# wait for user input
s = input("[In]: ")
s = s.replace("\\n", "\n")
out = dm.predict(s)
print("[Out]:")
pp(out, width=300)
print("============")