Skip to content

lucadellalib/focalcodec

Repository files navigation

⚡ FocalCodec Open In Colab

License Stars

A low-bitrate single-codebook 16 / 24 kHz speech codec based on focal modulation.


📢 News


📰 Changelog

v0.0.2 (2025-09-21)

  • Added support for streaming inference
  • Released causal checkpoints for real-time inference
  • Added experimental support for ONNX export and inference
  • Improved inference speed via precomputed relative positional embeddings
  • Improved overall code structure and documentation

v0.0.1 (2025-02-12)


📌 Available Checkpoints

Checkpoint Sample Rate (kHz, In / Out) Token Rate (Hz) Codebooks Bitrate (kbps) Streaming Latency (ms) Dataset
lucadellalib/focalcodec_50hz 16 / 16 50.0 1x8192 0.65 LibriTTS-960
lucadellalib/focalcodec_50hz_65k_causal 16 / 24 50.0 1x65536 0.80 80 Libri-Light
lucadellalib/focalcodec_50hz_4k_causal 16 / 24 50.0 1x4096 0.60 80 Libri-Light
lucadellalib/focalcodec_50hz_2k_causal 16 / 24 50.0 1x2048 0.55 80 Libri-Light
lucadellalib/focalcodec_25hz 16 / 16 25.0 1x8192 0.33 LibriTTS-960
lucadellalib/focalcodec_12_5hz 16 / 16 12.5 1x8192 0.16 LibriTTS-960

🛠️️ Installation

First of all, install Python 3.8 or later. Then, open a terminal and run:

pip install huggingface-hub safetensors sounddevice soundfile torch torchaudio

▶️ Quickstart

NOTE: the audios directory contains audio samples that you can download and use to test the codec.

You can easily load the model using torch.hub without cloning the repository:

import torch
import torchaudio

# Load FocalCodec model
codec = torch.hub.load(
    repo_or_dir="lucadellalib/focalcodec",
    model="focalcodec",
    config="lucadellalib/focalcodec_50hz",
    force_reload=True,  # Fetch the latest FocalCodec version from Torch Hub
)
codec.eval().requires_grad_(False)

# Load and preprocess the input audio
audio_file = "audios/librispeech-dev-clean/251-118436-0003.wav"
sig, sample_rate = torchaudio.load(audio_file)
sig = torchaudio.functional.resample(sig, sample_rate, codec.sample_rate_input)

# Encode audio into tokens
toks = codec.sig_to_toks(sig)  # Shape: (batch, time)
print(toks.shape)
print(toks)

# Convert tokens to their corresponding binary spherical codes
codes = codec.toks_to_codes(toks)  # Shape: (batch, code_time, log2 codebook_size)
print(codes.shape)
print(codes)

# Decode tokens back into a waveform
rec_sig = codec.toks_to_sig(toks)

# Save the reconstructed audio
rec_sig = torchaudio.functional.resample(rec_sig, codec.sample_rate_output, sample_rate)
torchaudio.save("reconstruction.wav", rec_sig, sample_rate)

Alternatively, you can install FocalCodec as a standard Python package using pip:

pip install focalcodec@git+https://github.com/lucadellalib/focalcodec.git@main#egg=focalcodec

Once installed, you can import it in your scripts:

import focalcodec

config = "lucadellalib/focalcodec_50hz"
codec = focalcodec.FocalCodec.from_pretrained(config)

Check the code documentation for more details on model usage and available configurations.

NOTE: the initial v0.0.1 release is still available at https://github.com/lucadellalib/focalcodec/tree/v0.0.1. It can be loaded via torch.hub as repo_or_dir="lucadellalib/focalcodec:v0.0.1", or installed via pip as focalcodec@git+https://github.com/lucadellalib/focalcodec.git@v0.0.1#egg=focalcodec.


🎤 Running the Demo Open In Colab

Clone or download and extract the repository, navigate to <path-to-repository>, open a terminal and run one of the following commands.

Speech Resynthesis

💾 Offline

python demo.py \
    audios/librispeech-dev-clean/251-118436-0003.wav \
    --output_file reconstruction.wav

Streaming from audio file (GPU recommended for real-time performance)

python demo.py \
    audios/librispeech-dev-clean/251-118436-0003.wav \
    --output-file reconstruction.wav \
    --config lucadellalib/focalcodec_50hz_4k_causal \
    --streaming

🎤 Streaming from laptop's microphone (GPU recommended for real-time performance)

python demo.py \
    microphone \
    --output-file reconstruction.wav \
    --config lucadellalib/focalcodec_50hz_4k_causal \
    --streaming

Voice Conversion

💾 Offline

python demo.py \
    audios/librispeech-dev-clean/251-118436-0003.wav \
    --output_file reconstruction.wav \
    --reference-files audios/librispeech-dev-clean/84

Streaming from audio file (GPU recommended for real-time performance)

python demo.py \
    audios/librispeech-dev-clean/251-118436-0003.wav \
    --output-file reconstruction.wav \
    --reference-files audios/librispeech-dev-clean/84 \
    --config lucadellalib/focalcodec_50hz_4k_causal \
    --streaming

🎤 Streaming from laptop's microphone (GPU recommended for real-time performance)

python demo.py \
    microphone \
    --output-file reconstruction.wav \
    --reference-files audios/librispeech-dev-clean/84 \
    --config lucadellalib/focalcodec_50hz_4k_causal \
    --streaming

NOTE: you can add the --jit flag for minor speed improvements. python demo.py --help for more details on the available options.


@ Citing

@article{dellalibera2025focalcodec,
    title   = {{FocalCodec}: Low-Bitrate Speech Coding via Focal Modulation Networks},
    author  = {Luca {Della Libera} and Francesco Paissan and Cem Subakan and Mirco Ravanelli},
    journal = {arXiv preprint arXiv:2502.04465},
    year    = {2025},
}

@article{dellalibera2025focalcodecstream,
    title   = {{FocalCodec-Stream}: Streaming Low-Bitrate Speech Coding via Causal Distillation},
    author  = {Luca {Della Libera} and Cem Subakan and Mirco Ravanelli},
    journal = {arXiv preprint arXiv:2509.16195},
    year    = {2025},
}

📧 Contact

luca.dellalib@gmail.com