A low-bitrate single-codebook 16 / 24 kHz speech codec based on focal modulation.
-
📜 Preprints:
-
🌐 Project Page: https://lucadellalib.github.io/focalcodec-web/
-
🔊 Downstream Tasks: https://github.com/lucadellalib/audiocodecs
- [2025-09-19] – 📜 Released preprint: FocalCodec-Stream: Streaming Low-Bitrate Speech Coding via Causal Distillation
- [2025-09-18] – 🎉 FocalCodec has been accepted at NeurIPS 2025!
- [2025-02-06] – 📜 Released preprint: FocalCodec: Low-Bitrate Speech Coding via Focal Modulation Networks
- Added support for streaming inference
- Released causal checkpoints for real-time inference
- Added experimental support for ONNX export and inference
- Improved inference speed via precomputed relative positional embeddings
- Improved overall code structure and documentation
- Initial release (available at https://github.com/lucadellalib/focalcodec/tree/v0.0.1)
Checkpoint | Sample Rate (kHz, In / Out) | Token Rate (Hz) | Codebooks | Bitrate (kbps) | Streaming | Latency (ms) | Dataset |
---|---|---|---|---|---|---|---|
lucadellalib/focalcodec_50hz | 16 / 16 | 50.0 | 1x8192 | 0.65 | ❌ | — | LibriTTS-960 |
lucadellalib/focalcodec_50hz_65k_causal | 16 / 24 | 50.0 | 1x65536 | 0.80 | ✅ | 80 | Libri-Light |
lucadellalib/focalcodec_50hz_4k_causal | 16 / 24 | 50.0 | 1x4096 | 0.60 | ✅ | 80 | Libri-Light |
lucadellalib/focalcodec_50hz_2k_causal | 16 / 24 | 50.0 | 1x2048 | 0.55 | ✅ | 80 | Libri-Light |
lucadellalib/focalcodec_25hz | 16 / 16 | 25.0 | 1x8192 | 0.33 | ❌ | — | LibriTTS-960 |
lucadellalib/focalcodec_12_5hz | 16 / 16 | 12.5 | 1x8192 | 0.16 | ❌ | — | LibriTTS-960 |
First of all, install Python 3.8 or later. Then, open a terminal and run:
pip install huggingface-hub safetensors sounddevice soundfile torch torchaudio
NOTE: the audios
directory contains audio samples that you can download and use to test the codec.
You can easily load the model using torch.hub
without cloning the repository:
import torch
import torchaudio
# Load FocalCodec model
codec = torch.hub.load(
repo_or_dir="lucadellalib/focalcodec",
model="focalcodec",
config="lucadellalib/focalcodec_50hz",
force_reload=True, # Fetch the latest FocalCodec version from Torch Hub
)
codec.eval().requires_grad_(False)
# Load and preprocess the input audio
audio_file = "audios/librispeech-dev-clean/251-118436-0003.wav"
sig, sample_rate = torchaudio.load(audio_file)
sig = torchaudio.functional.resample(sig, sample_rate, codec.sample_rate_input)
# Encode audio into tokens
toks = codec.sig_to_toks(sig) # Shape: (batch, time)
print(toks.shape)
print(toks)
# Convert tokens to their corresponding binary spherical codes
codes = codec.toks_to_codes(toks) # Shape: (batch, code_time, log2 codebook_size)
print(codes.shape)
print(codes)
# Decode tokens back into a waveform
rec_sig = codec.toks_to_sig(toks)
# Save the reconstructed audio
rec_sig = torchaudio.functional.resample(rec_sig, codec.sample_rate_output, sample_rate)
torchaudio.save("reconstruction.wav", rec_sig, sample_rate)
Alternatively, you can install FocalCodec as a standard Python package using pip
:
pip install focalcodec@git+https://github.com/lucadellalib/focalcodec.git@main#egg=focalcodec
Once installed, you can import it in your scripts:
import focalcodec
config = "lucadellalib/focalcodec_50hz"
codec = focalcodec.FocalCodec.from_pretrained(config)
Check the code documentation for more details on model usage and available configurations.
NOTE: the initial v0.0.1 release is still available at https://github.com/lucadellalib/focalcodec/tree/v0.0.1.
It can be loaded via torch.hub
as repo_or_dir="lucadellalib/focalcodec:v0.0.1"
, or installed via pip
as
focalcodec@git+https://github.com/lucadellalib/focalcodec.git@v0.0.1#egg=focalcodec
.
Clone or download and extract the repository, navigate to <path-to-repository>
, open a terminal and run one of the following commands.
💾 Offline
python demo.py \
audios/librispeech-dev-clean/251-118436-0003.wav \
--output_file reconstruction.wav
⚡ Streaming from audio file (GPU recommended for real-time performance)
python demo.py \
audios/librispeech-dev-clean/251-118436-0003.wav \
--output-file reconstruction.wav \
--config lucadellalib/focalcodec_50hz_4k_causal \
--streaming
🎤 Streaming from laptop's microphone (GPU recommended for real-time performance)
python demo.py \
microphone \
--output-file reconstruction.wav \
--config lucadellalib/focalcodec_50hz_4k_causal \
--streaming
💾 Offline
python demo.py \
audios/librispeech-dev-clean/251-118436-0003.wav \
--output_file reconstruction.wav \
--reference-files audios/librispeech-dev-clean/84
⚡ Streaming from audio file (GPU recommended for real-time performance)
python demo.py \
audios/librispeech-dev-clean/251-118436-0003.wav \
--output-file reconstruction.wav \
--reference-files audios/librispeech-dev-clean/84 \
--config lucadellalib/focalcodec_50hz_4k_causal \
--streaming
🎤 Streaming from laptop's microphone (GPU recommended for real-time performance)
python demo.py \
microphone \
--output-file reconstruction.wav \
--reference-files audios/librispeech-dev-clean/84 \
--config lucadellalib/focalcodec_50hz_4k_causal \
--streaming
NOTE: you can add the --jit
flag for minor speed improvements. python demo.py --help
for more details on the available options.
@article{dellalibera2025focalcodec,
title = {{FocalCodec}: Low-Bitrate Speech Coding via Focal Modulation Networks},
author = {Luca {Della Libera} and Francesco Paissan and Cem Subakan and Mirco Ravanelli},
journal = {arXiv preprint arXiv:2502.04465},
year = {2025},
}
@article{dellalibera2025focalcodecstream,
title = {{FocalCodec-Stream}: Streaming Low-Bitrate Speech Coding via Causal Distillation},
author = {Luca {Della Libera} and Cem Subakan and Mirco Ravanelli},
journal = {arXiv preprint arXiv:2509.16195},
year = {2025},
}