-
Notifications
You must be signed in to change notification settings - Fork 4
/
path2d_bezier2_hit.lua
53 lines (44 loc) · 2.25 KB
/
path2d_bezier2_hit.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
--finding the nearest-point on a quad bezier curve using closed form (3rd degree equation) solution.
--solution from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html adapted by Cosmin Apreutesei.
if not ... then require'path2d_hit_demo'; return end
local bezier2 = require'path2d_bezier2'
local solve_equation3 = require'eq'.solve3
local distance2 = require'path2d_point'.distance2
local point = bezier2.point
local function test_solution(mind, minx, miny, mint, t, x0, y0, x1, y1, x2, y2, x3, y3)
if t and t >= 0 and t <= 1 then
local x, y = point(t, x1, y1, x2, y2, x3, y3)
local d = distance2(x0, y0, x, y)
if d < mind then
mind, minx, miny, mint = d, x, y, t
end
end
return mind, minx, miny, mint
end
--shortest distance-squared from point (x0, y0) to a quad bezier curve, plus the touch point,
--and the parametric value t on the curve where the touch point splits the curve.
function bezier2.hit(x0, y0, x1, y1, x2, y2, x3, y3)
local Ax, Ay = x2 - x1, y2 - y1 --A = P2-P1
local Bx, By = x3 - x2 - Ax, y3 - y2 - Ay --B = P3-P2-A, also P3-2*P2+P1
local Mx, My = x1 - x0, y1 - y0 --M = P1-P0
local a = Bx^2 + By^2 --a = B^2
local b = 3 * (Ax * Bx + Ay * By) --b = 3*AxB
local c = 2 * (Ax^2 + Ay^2) + Mx * Bx + My * By --c = 2*A^2+MxB
local d = Mx * Ax + My * Ay --d = MxA
local t1, t2, t3 = solve_equation3(a, b, c, d) --solve a*t^3 + b*t^2 + c*t + d = 0
local mind, minx, miny, mint = 1/0 --shortest distance, touch point, and the parametric value for the touch point.
--test all solutions for shortest distance
mind, minx, miny, mint = test_solution(mind, minx, miny, mint, t1, x0, y0, x1, y1, x2, y2, x3, y3)
mind, minx, miny, mint = test_solution(mind, minx, miny, mint, t2, x0, y0, x1, y1, x2, y2, x3, y3)
mind, minx, miny, mint = test_solution(mind, minx, miny, mint, t3, x0, y0, x1, y1, x2, y2, x3, y3)
--also test distances to beginning and end of the curve, where t = 0 and 1 respectively.
local d = distance2(x0, y0, x1, y1)
if d < mind then
mind, minx, miny, mint = d, x1, y1, 0
end
local d = distance2(x0, y0, x3, y3)
if d < mind then
mind, minx, miny, mint = d, x3, y3, 1
end
return mind, minx, miny, mint
end