-
Notifications
You must be signed in to change notification settings - Fork 55
/
a1111_compat.py
434 lines (360 loc) · 21.5 KB
/
a1111_compat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import comfy
import torch
from .libs import utils
from einops import rearrange
import random
import math
from .libs import common
class Inspire_RandomNoise:
def __init__(self, seed, mode, incremental_seed_mode, variation_seed, variation_strength, variation_method="linear"):
device = comfy.model_management.get_torch_device()
self.seed = seed
self.noise_device = "cpu" if mode == "CPU" else device
self.incremental_seed_mode = incremental_seed_mode
self.variation_seed = variation_seed
self.variation_strength = variation_strength
self.variation_method = variation_method
def generate_noise(self, input_latent):
latent_image = input_latent["samples"]
batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None
noise = utils.prepare_noise(latent_image, self.seed, batch_inds, self.noise_device, self.incremental_seed_mode,
variation_seed=self.variation_seed, variation_strength=self.variation_strength, variation_method=self.variation_method)
return noise.cpu()
class RandomNoise:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{"variation_method": (["linear", "slerp"],), }
}
RETURN_TYPES = ("NOISE",)
FUNCTION = "get_noise"
CATEGORY = "InspirePack/a1111_compat"
def get_noise(self, noise_seed, noise_mode, batch_seed_mode, variation_seed, variation_strength, variation_method="linear"):
return (Inspire_RandomNoise(noise_seed, noise_mode, batch_seed_mode, variation_seed, variation_strength, variation_method=variation_method),)
def inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0,
noise_mode="CPU", disable_noise=False, start_step=None, last_step=None, force_full_denoise=False,
incremental_seed_mode="comfy", variation_seed=None, variation_strength=None, noise=None, callback=None, variation_method="linear",
scheduler_func=None):
device = comfy.model_management.get_torch_device()
noise_device = "cpu" if noise_mode == "CPU" else device
latent_image = latent["samples"]
if hasattr(comfy.sample, 'fix_empty_latent_channels'):
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
latent = latent.copy()
if noise is not None and latent_image.shape[1] != noise.shape[1]:
print("[Inspire Pack] inspire_ksampler: The type of latent input for noise generation does not match the model's latent type. When using the SD3 model, you must use the SD3 Empty Latent.")
raise Exception("The type of latent input for noise generation does not match the model's latent type. When using the SD3 model, you must use the SD3 Empty Latent.")
if noise is None:
if disable_noise:
torch.manual_seed(seed)
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device=noise_device)
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = utils.prepare_noise(latent_image, seed, batch_inds, noise_device, incremental_seed_mode,
variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method)
if start_step is None:
if denoise == 1.0:
start_step = 0
else:
advanced_steps = math.floor(steps / denoise)
start_step = advanced_steps - steps
steps = advanced_steps
try:
samples = common.impact_sampling(
model=model, add_noise=not disable_noise, seed=seed, steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler, positive=positive, negative=negative,
latent_image=latent, start_at_step=start_step, end_at_step=last_step, return_with_leftover_noise=not force_full_denoise, noise=noise, callback=callback,
scheduler_func=scheduler_func)
except Exception as e:
if "unexpected keyword argument 'scheduler_func'" in str(e):
print(f"[Inspire Pack] Impact Pack is outdated. (Cannot use GITS scheduler.)")
samples = common.impact_sampling(
model=model, add_noise=not disable_noise, seed=seed, steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler, positive=positive, negative=negative,
latent_image=latent, start_at_step=start_step, end_at_step=last_step, return_with_leftover_noise=not force_full_denoise, noise=noise, callback=callback)
else:
raise e
return samples, noise
class KSampler_inspire:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (common.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{
"variation_method": (["linear", "slerp"],),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "doit"
CATEGORY = "InspirePack/a1111_compat"
@staticmethod
def doit(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode,
batch_seed_mode="comfy", variation_seed=None, variation_strength=None, variation_method="linear", scheduler_func_opt=None):
return (inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode,
incremental_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method,
scheduler_func=scheduler_func_opt)[0], )
class KSamplerAdvanced_inspire:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (common.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
"batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{
"variation_method": (["linear", "slerp"],),
"noise_opt": ("NOISE_IMAGE",),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "doit"
CATEGORY = "InspirePack/a1111_compat"
@staticmethod
def sample(model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise,
denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None, callback=None, variation_method="linear", scheduler_func_opt=None):
force_full_denoise = True
if return_with_leftover_noise:
force_full_denoise = False
disable_noise = False
if not add_noise:
disable_noise = True
return inspire_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step,
force_full_denoise=force_full_denoise, noise_mode=noise_mode, incremental_seed_mode=batch_seed_mode,
variation_seed=variation_seed, variation_strength=variation_strength, noise=noise_opt, callback=callback, variation_method=variation_method,
scheduler_func=scheduler_func_opt)
def doit(self, *args, **kwargs):
return (self.sample(*args, **kwargs)[0],)
class KSampler_inspire_pipe:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"basic_pipe": ("BASIC_PIPE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (common.SCHEDULERS, ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("LATENT", "VAE")
FUNCTION = "sample"
CATEGORY = "InspirePack/a1111_compat"
def sample(self, basic_pipe, seed, steps, cfg, sampler_name, scheduler, latent_image, denoise, noise_mode, batch_seed_mode="comfy",
variation_seed=None, variation_strength=None, scheduler_func_opt=None):
model, clip, vae, positive, negative = basic_pipe
latent = inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, incremental_seed_mode=batch_seed_mode,
variation_seed=variation_seed, variation_strength=variation_strength, scheduler_func=scheduler_func_opt)[0]
return latent, vae
class KSamplerAdvanced_inspire_pipe:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"basic_pipe": ("BASIC_PIPE",),
"add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (common.SCHEDULERS, ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
"batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{
"noise_opt": ("NOISE_IMAGE",),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("LATENT", "VAE", )
FUNCTION = "sample"
CATEGORY = "InspirePack/a1111_compat"
def sample(self, basic_pipe, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise,
denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None, scheduler_func_opt=None):
model, clip, vae, positive, negative = basic_pipe
latent = KSamplerAdvanced_inspire().sample(model=model, add_noise=add_noise, noise_seed=noise_seed,
steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler,
positive=positive, negative=negative, latent_image=latent_image,
start_at_step=start_at_step, end_at_step=end_at_step,
noise_mode=noise_mode, return_with_leftover_noise=return_with_leftover_noise,
denoise=denoise, batch_seed_mode=batch_seed_mode, variation_seed=variation_seed,
variation_strength=variation_strength, noise_opt=noise_opt, scheduler_func_opt=scheduler_func_opt)[0]
return latent, vae
# Modified version of ComfyUI main code
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy_extras/nodes_hypertile.py
def get_closest_divisors(hw: int, aspect_ratio: float) -> tuple[int, int]:
pairs = [(i, hw // i) for i in range(int(math.sqrt(hw)), 1, -1) if hw % i == 0]
pair = min(((i, hw // i) for i in range(2, hw + 1) if hw % i == 0),
key=lambda x: abs(x[1] / x[0] - aspect_ratio))
pairs.append(pair)
res = min(pairs, key=lambda x: max(x) / min(x))
return res
def calc_optimal_hw(hw: int, aspect_ratio: float) -> tuple[int, int]:
hcand = round(math.sqrt(hw * aspect_ratio))
wcand = hw // hcand
if hcand * wcand != hw:
wcand = round(math.sqrt(hw / aspect_ratio))
hcand = hw // wcand
if hcand * wcand != hw:
return get_closest_divisors(hw, aspect_ratio)
return hcand, wcand
def random_divisor(value: int, min_value: int, /, max_options: int = 1, rand_obj=random.Random()) -> int:
# print(f"value={value}, min_value={min_value}, max_options={max_options}")
min_value = min(min_value, value)
# All big divisors of value (inclusive)
divisors = [i for i in range(min_value, value + 1) if value % i == 0]
ns = [value // i for i in divisors[:max_options]] # has at least 1 element
if len(ns) - 1 > 0:
idx = rand_obj.randint(0, len(ns) - 1)
else:
idx = 0
# print(f"ns={ns}, idx={idx}")
return ns[idx]
# def get_divisors(value: int, min_value: int, /, max_options: int = 1) -> list[int]:
# """
# Returns divisors of value that
# x * min_value <= value
# in big -> small order, amount of divisors is limited by max_options
# """
# max_options = max(1, max_options) # at least 1 option should be returned
# min_value = min(min_value, value)
# divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order
# ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order
# return ns
# def random_divisor(value: int, min_value: int, /, max_options: int = 1, rand_obj=None) -> int:
# """
# Returns a random divisor of value that
# x * min_value <= value
# if max_options is 1, the behavior is deterministic
# """
# print(f"value={value}, min_value={min_value}, max_options={max_options}")
# ns = get_divisors(value, min_value, max_options=max_options) # get cached divisors
# idx = rand_obj.randint(0, len(ns) - 1)
# print(f"ns={ns}, idx={idx}")
#
# return ns[idx]
class HyperTileInspire:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL",),
"tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}),
"swap_size": ("INT", {"default": 2, "min": 1, "max": 128}),
"max_depth": ("INT", {"default": 0, "min": 0, "max": 10}),
"scale_depth": ("BOOLEAN", {"default": False}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "InspirePack/__for_testing"
def patch(self, model, tile_size, swap_size, max_depth, scale_depth, seed):
latent_tile_size = max(32, tile_size) // 8
temp = None
rand_obj = random.Random()
rand_obj.seed(seed)
def hypertile_in(q, k, v, extra_options):
nonlocal temp
model_chans = q.shape[-2]
orig_shape = extra_options['original_shape']
apply_to = []
for i in range(max_depth + 1):
apply_to.append((orig_shape[-2] / (2 ** i)) * (orig_shape[-1] / (2 ** i)))
if model_chans in apply_to:
shape = extra_options["original_shape"]
aspect_ratio = shape[-1] / shape[-2]
hw = q.size(1)
# h, w = calc_optimal_hw(hw, aspect_ratio)
h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio))
factor = (2 ** apply_to.index(model_chans)) if scale_depth else 1
nh = random_divisor(h, latent_tile_size * factor, swap_size, rand_obj)
nw = random_divisor(w, latent_tile_size * factor, swap_size, rand_obj)
print(f"factor: {factor} <--- params.depth: {apply_to.index(model_chans)} / scale_depth: {scale_depth} / latent_tile_size={latent_tile_size}")
# print(f"h: {h}, w:{w} --> nh: {nh}, nw: {nw}")
if nh * nw > 1:
q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw)
temp = (nh, nw, h, w)
# else:
# temp = None
print(f"q={q} / k={k} / v={v}")
return q, k, v
return q, k, v
def hypertile_out(out, extra_options):
nonlocal temp
if temp is not None:
nh, nw, h, w = temp
temp = None
out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw)
out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw)
return out
m = model.clone()
m.set_model_attn1_patch(hypertile_in)
m.set_model_attn1_output_patch(hypertile_out)
return (m, )
NODE_CLASS_MAPPINGS = {
"KSampler //Inspire": KSampler_inspire,
"KSamplerAdvanced //Inspire": KSamplerAdvanced_inspire,
"KSamplerPipe //Inspire": KSampler_inspire_pipe,
"KSamplerAdvancedPipe //Inspire": KSamplerAdvanced_inspire_pipe,
"RandomNoise //Inspire": RandomNoise,
"HyperTile //Inspire": HyperTileInspire
}
NODE_DISPLAY_NAME_MAPPINGS = {
"KSampler //Inspire": "KSampler (inspire)",
"KSamplerAdvanced //Inspire": "KSamplerAdvanced (inspire)",
"KSamplerPipe //Inspire": "KSampler [pipe] (inspire)",
"KSamplerAdvancedPipe //Inspire": "KSamplerAdvanced [pipe] (inspire)",
"RandomNoise //Inspire": "RandomNoise (inspire)",
"HyperTile //Inspire": "HyperTile (Inspire)"
}