76
76
import PyHum .utils as humutils
77
77
import pyresample
78
78
#from scipy.ndimage import binary_dilation, binary_erosion, binary_fill_holes
79
- # from skimage.restoration import denoise_tv_chambolle
79
+ from skimage .restoration import denoise_tv_chambolle
80
80
81
81
try :
82
82
from pykdtree .kdtree import KDTree
@@ -261,6 +261,7 @@ def map(humfile, sonpath, cs2cs_args = "epsg:26949", res = 99, mode=3, nn = 64,
261
261
# dat_port = port_fp[p]
262
262
# dat_star = star_fp[p]
263
263
# data_R = R_fp[p]
264
+ # dx=np.arcsin(meta['c']/(1000*meta['t']*meta['f']))
264
265
265
266
# e = esi;# del esi
266
267
# n = nsi; #del nsi
@@ -307,7 +308,12 @@ def make_map(e, n, t, d, dat_port, dat_star, data_R, pix_m, res, cs2cs_args, son
307
308
308
309
trans = pyproj .Proj (init = cs2cs_args )
309
310
310
- merge = np .vstack ((dat_port ,dat_star ))
311
+ mp = np .nanmean (dat_port )
312
+ ms = np .nanmean (dat_star )
313
+ if mp > ms :
314
+ merge = np .vstack ((dat_port ,dat_star * (mp / ms )))
315
+ else :
316
+ merge = np .vstack ((dat_port * (ms / mp ),dat_star ))
311
317
del dat_port , dat_star
312
318
313
319
merge [np .isnan (merge )] = 0
@@ -329,7 +335,7 @@ def make_map(e, n, t, d, dat_port, dat_star, data_R, pix_m, res, cs2cs_args, son
329
335
330
336
merge = merge .astype ('float32' )
331
337
332
- ## merge = denoise_tv_chambolle(merge.copy(), weight=2, multichannel=False).astype('float32')
338
+ merge = denoise_tv_chambolle (merge .copy (), weight = . 2 , multichannel = False ).astype ('float32' )
333
339
334
340
R = np .vstack ((np .flipud (data_R ),data_R ))
335
341
del data_R
@@ -531,7 +537,7 @@ def make_map(e, n, t, d, dat_port, dat_star, data_R, pix_m, res, cs2cs_args, son
531
537
532
538
dat = dat .reshape (shape )
533
539
534
- dat [dist > res * 10 ] = np .nan
540
+ dat [dist > res * 30 ] = np .nan
535
541
del dist
536
542
537
543
r_dat = r_dat .reshape (shape )
@@ -569,6 +575,21 @@ def make_map(e, n, t, d, dat_port, dat_star, data_R, pix_m, res, cs2cs_args, son
569
575
glon , glat = trans (grid_x , grid_y , inverse = True )
570
576
del grid_x , grid_y
571
577
578
+
579
+ #try:
580
+ # import rasterio
581
+ # from rasterio.transform import from_origin
582
+ # r = (humlon[-1]-humlon[0]) / np.nanmax(humlon) #240.0
583
+ # transform = from_origin(humlon[0] - r / 2, humlon[-1] + r / 2, r, r)
584
+ # datw = np.ma.filled(dat).astype('float64')
585
+ # datw[np.isnan(datw)] = 0
586
+ # ew_dataset = rasterio.open(os.path.normpath(os.path.join(sonpath,'geotiff_map'+str(p)+'.tif')), mode='w', driver='GTiff', height=datw.shape[0], width=datw.shape[1], count=1, crs=rasterio.crs.CRS({'init': cs2cs_args}), transform=transform, dtype=rasterio.float64)
587
+ # ew_dataset.write(datw, 1)
588
+ # ew_dataset.close()
589
+ #except:
590
+ # print("error: geotiff could not be created... check your rasterio install")
591
+
592
+
572
593
try :
573
594
574
595
# =========================================================
0 commit comments