|
76 | 76 | import PyHum.utils as humutils
|
77 | 77 | import pyresample
|
78 | 78 | #from scipy.ndimage import binary_dilation, binary_erosion, binary_fill_holes
|
| 79 | +from skimage.restoration import denoise_tv_chambolle |
79 | 80 |
|
80 | 81 | try:
|
81 | 82 | from pykdtree.kdtree import KDTree
|
@@ -261,13 +262,13 @@ def map(humfile, sonpath, cs2cs_args = "epsg:26949", res = 99, mode=3, nn = 64,
|
261 | 262 | # dat_star = star_fp[p]
|
262 | 263 | # data_R = R_fp[p]
|
263 | 264 |
|
264 |
| -# e = esi; del esi |
265 |
| -# n = nsi; del nsi |
266 |
| -# t = theta; del theta |
267 |
| -# d = dist_tvg; del dist_tvg |
268 |
| -# dat_port = port_fp; del port_fp |
269 |
| -# dat_star = star_fp; del star_fp |
270 |
| -# data_R = R_fp; del R_fp |
| 265 | +# e = esi;# del esi |
| 266 | +# n = nsi; #del nsi |
| 267 | +# t = theta;# del theta |
| 268 | +# d = dist_tvg;# del dist_tvg |
| 269 | +# dat_port = port_fp;# del port_fp |
| 270 | +# dat_star = star_fp; #del star_fp |
| 271 | +# data_R = R_fp; #del R_fp |
271 | 272 |
|
272 | 273 | dx = np.arcsin(meta['c']/(1000*meta['t']*meta['f']))
|
273 | 274 | pix_m = meta['pix_m']*1.1
|
@@ -296,6 +297,7 @@ def map(humfile, sonpath, cs2cs_args = "epsg:26949", res = 99, mode=3, nn = 64,
|
296 | 297 | print("Processing took "+str(elapsed)+"seconds to analyse")
|
297 | 298 |
|
298 | 299 | print("Done!")
|
| 300 | + print("===================================================") |
299 | 301 |
|
300 | 302 |
|
301 | 303 | # =========================================================
|
@@ -327,6 +329,8 @@ def make_map(e, n, t, d, dat_port, dat_star, data_R, pix_m, res, cs2cs_args, son
|
327 | 329 |
|
328 | 330 | merge = merge.astype('float32')
|
329 | 331 |
|
| 332 | + merge = denoise_tv_chambolle(merge.copy(), weight=2, multichannel=False).astype('float32') |
| 333 | + |
330 | 334 | R = np.vstack((np.flipud(data_R),data_R))
|
331 | 335 | del data_R
|
332 | 336 | R = R[:np.shape(merge)[0],:np.shape(merge)[1]]
|
|
0 commit comments