-
Notifications
You must be signed in to change notification settings - Fork 111
/
builder.rs
149 lines (135 loc) · 3.64 KB
/
builder.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
//! Builder is a creational design pattern, which allows constructing complex objects step by step.
#[derive(Clone)]
struct Product {
parts: Vec<String>,
}
impl Product {
fn new() -> Product {
Product { parts: Vec::new() }
}
fn list_parts(&self) {
let parts_list = String::from(" parts ");
println!("{0}{1}{0}", "*".repeat(10), parts_list);
for v in &self.parts {
println!("{}", v);
}
println!("{0}{1}{0}", "*".repeat(10), "*".repeat(parts_list.len()));
}
}
/**
* The Builder trait specifies methods for creating the different parts of
* the Product objects.
*/
trait Builder {
fn produce_part_a(&mut self);
fn produce_part_b(&mut self);
fn produce_part_c(&mut self);
fn get_product(&mut self) -> Product;
}
/**
* The Concrete Builder classes follow the Builder interface and provide
* specific implementations of the building steps. Your program may have several
* variations of Builders, implemented differently.
*/
struct ContreteBuilder1 {
product: Product,
}
impl ContreteBuilder1 {
fn new() -> ContreteBuilder1 {
ContreteBuilder1 {
product: Product::new(),
}
}
}
impl Builder for ContreteBuilder1 {
fn produce_part_a(&mut self) {
self.product.parts.push("part a1".to_string());
}
fn produce_part_b(&mut self) {
self.product.parts.push("part b1".to_string());
}
fn produce_part_c(&mut self) {
self.product.parts.push("part c1".to_string());
}
fn get_product(&mut self) -> Product {
let p = self.product.clone();
self.product = Product::new();
p
}
}
struct ContreteBuilder2 {
product: Product,
}
impl ContreteBuilder2 {
fn new() -> ContreteBuilder2 {
ContreteBuilder2 {
product: Product::new(),
}
}
}
impl Builder for ContreteBuilder2 {
fn produce_part_a(&mut self) {
self.product.parts.push("part a ~~~~ 2".to_string());
}
fn produce_part_b(&mut self) {
self.product.parts.push("part b ~~~~ 2".to_string());
}
fn produce_part_c(&mut self) {
self.product.parts.push("part c ~~~~ 2".to_string());
}
fn get_product(&mut self) -> Product {
let p = Product {
parts: self.product.parts.clone(),
..self.product
};
self.product = Product::new();
p
}
}
/**
* The Director is only responsible for executing the building steps in a
* particular sequence. It is helpful when producing products according to a
* specific order or configuration. Strictly speaking, the Director class is
* optional, since the client can control builders directly.
*/
struct Director {
builder: Box<dyn Builder>,
}
impl Director {
fn new(builder: Box<Builder>) -> Director {
Director { builder: builder }
}
fn construct(&mut self) {
self.builder.produce_part_a();
self.builder.produce_part_b();
self.builder.produce_part_c();
}
}
fn main() {
let builder1 = Box::new(ContreteBuilder1::new());
let mut direct = Director::new(builder1);
direct.construct();
let product = direct.builder.get_product();
product.list_parts();
// output:
/*
********** parts **********
part a1
part b1
part c1
***************************
*/
let build2 = Box::new(ContreteBuilder2::new());
let mut direct = Director::new(build2);
direct.construct();
let product = direct.builder.get_product();
product.list_parts();
// output:
/*
********** parts **********
part a ~~~~ 2
part b ~~~~ 2
part c ~~~~ 2
***************************
*/
}