-
-
Notifications
You must be signed in to change notification settings - Fork 206
/
lgfx_tjpgd.c
989 lines (822 loc) · 35.7 KB
/
lgfx_tjpgd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor R0.01c (C)ChaN, 2019
/-----------------------------------------------------------------------------/
/ The TJpgDec is a generic JPEG decompressor module for tiny embedded systems.
/ This is a free software that opened for education, research and commercial
/ developments under license policy of following terms.
/
/ Copyright (C) 2019, ChaN, all right reserved.
/
/ * The TJpgDec module is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/-----------------------------------------------------------------------------/
/ Oct 04, 2011 R0.01 First release.
/ Feb 19, 2012 R0.01a Fixed decompression fails when scan starts with an escape seq.
/ Sep 03, 2012 R0.01b Added JD_TBLCLIP option.
/ Mar 16, 2019 R0.01c Supprted stdint.h.
/-----------------------------------------------------------------------------/
/ original source is here : http://elm-chan.org/fsw/tjpgd/00index.html
/
/ Modified for LGFX by lovyan03, 2020
/ add support grayscale jpeg
/ add bayer pattern
/ tweak for 32bit processor
/----------------------------------------------------------------------------*/
#include "lgfx_tjpgd.h"
#include <string.h> // for memcpy memset
/*-----------------------------------------------*/
/* Zigzag-order to raster-order conversion table */
/*-----------------------------------------------*/
//#define ZIG(n) Zig[n]
static const uint8_t Zig[64] = { /* Zigzag-order to raster-order conversion table */
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63
};
/*-------------------------------------------------*/
/* Input scale factor of Arai algorithm */
/* (scaled up 16 bits for fixed point operations) */
/*-------------------------------------------------*/
//#define IPSF(n) Ipsf[n]
static const uint16_t Ipsf[64] = { /* See also aa_idct.png */
(uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
(uint16_t)(1.38704*8192), (uint16_t)(1.92388*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.08979*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.38268*8192),
(uint16_t)(1.30656*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.70711*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.36048*8192),
(uint16_t)(1.17588*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.38268*8192), (uint16_t)(1.17588*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.32442*8192),
(uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
(uint16_t)(0.78570*8192), (uint16_t)(1.08979*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.61732*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.21677*8192),
(uint16_t)(0.54120*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.29290*8192), (uint16_t)(0.14932*8192),
(uint16_t)(0.27590*8192), (uint16_t)(0.38268*8192), (uint16_t)(0.36048*8192), (uint16_t)(0.32442*8192), (uint16_t)(0.27590*8192), (uint16_t)(0.21678*8192), (uint16_t)(0.14932*8192), (uint16_t)(0.07612*8192)
};
/*---------------------------------------------*/
/* Conversion table for fast clipping process */
/*---------------------------------------------*/
#if JD_TBLCLIP
//#define BYTECLIP(v) Clip8[(uint16_t)(v) & 0x3FF]
static const uint8_t Clip8[1024] = {
/* 0..255 */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
/* 256..511 */
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
/* -512..-257 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* -256..-1 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#else /* JD_TBLCLIP */
static inline int32_t BYTECLIP (
int32_t val
)
{
return (val < 0) ? 0 : (val > 255) ? 255 : val;
}
#endif
/*---------------------------------------------*/
/* Output 4x4 bayer pattern table */
/*---------------------------------------------*/
#if JD_BAYER
static const int8_t Bayer[16] = { 0, 4, 1, 5,-2, 2,-1, 3, 1, 5, 0, 4,-1, 3,-2, 2};
#endif
/*-----------------------------------------------------------------------*/
/* Allocate a memory block from memory pool */
/*-----------------------------------------------------------------------*/
static uint8_t* alloc_pool ( /* Pointer to allocated memory block (NULL:no memory available) */
lgfxJdec* jd, /* Pointer to the decompressor object */
uint_fast16_t nd /* Number of bytes to allocate */
)
{
uint8_t *rp = 0;
nd = (nd + 3) & ~3; /* Align block size to the word boundary */
if (jd->sz_pool >= nd) {
jd->sz_pool -= nd;
rp = jd->pool; /* Get start of available memory pool */
jd->pool = (rp + nd); /* Allocate requierd bytes */
}
return rp; /* Return allocated memory block (NULL:no memory to allocate) */
}
/*-----------------------------------------------------------------------*/
/* Create de-quantization and prescaling tables with a DQT segment */
/*-----------------------------------------------------------------------*/
static int32_t create_qt_tbl ( /* 0:OK, !0:Failed */
lgfxJdec* jd, /* Pointer to the decompressor object */
const uint8_t* data, /* Pointer to the quantizer tables */
uint_fast16_t ndata /* Size of input data */
)
{
const uint8_t* dataend = data + ndata;
do { /* Process all tables in the segment */
size_t d = *data++; /* Get table property */
if (d & 0xF0) return JDR_FMT1; /* Err: not 8-bit resolution */
int32_t *pb = (int32_t*)alloc_pool(jd, 64 * sizeof (int32_t));/* Allocate a memory block for the table */
if (!pb) return JDR_MEM1; /* Err: not enough memory */
jd->qttbl[d & 3] = pb; /* Register the table */
for (size_t i = 0; i < 64; ++i) { /* Load the table */
uint_fast8_t z = Zig[i]; /* Zigzag-order to raster-order conversion */
pb[z] = (int32_t)((uint32_t)data[i] * Ipsf[z]); /* Apply scale factor of Arai algorithm to the de-quantizers */
}
} while (dataend != (data += 64));
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Create huffman code tables with a DHT segment */
/*-----------------------------------------------------------------------*/
static int32_t create_huffman_tbl ( /* 0:OK, !0:Failed */
lgfxJdec* jd, /* Pointer to the decompressor object */
const uint8_t* data, /* Pointer to the packed huffman tables */
int_fast16_t ndata /* Size of input data */
)
{
uint_fast16_t np;
uint8_t *pb, *pd;
uint16_t *ph;
do { /* Process all tables in the segment */
uint_fast8_t d = *data++; /* Get table number and class */
if (d & 0xEE) return JDR_FMT1; /* Err: invalid class/number */
uint_fast8_t cls = d >> 4; /* class = dc(0)/ac(1), table number = 0/1 */
uint_fast8_t num = d & 0x0F;
pb = alloc_pool(jd, 16); /* Allocate a memory block for the bit distribution table */
if (!pb) return JDR_MEM1; /* Err: not enough memory */
jd->huffbits[num][cls] = pb - 1;
np = 0;
size_t i = 0;
do { /* Load number of patterns for 1 to 16-bit code */
np += (pb[i] = data[i]); /* Get sum of code words for each code */
} while (++i < 16);
ph = (uint16_t*)alloc_pool(jd, np * sizeof (uint16_t));/* Allocate a memory block for the code word table */
if (!ph) return JDR_MEM1; /* Err: not enough memory */
jd->huffcode[num][cls] = ph - 1;
uint_fast16_t hc = 0;
i = 0;
do { /* Re-build huffman code word table */
size_t b = pb[i];
while (b--) *ph++ = hc++;
hc <<= 1;
} while (++i < 16);
pd = alloc_pool(jd, np); /* Allocate a memory block for the decoded data */
if (!pd) return JDR_MEM1; /* Err: not enough memory */
jd->huffdata[num][cls] = pd - 1;
memcpy(pd, data += 16, np); /* Load decoded data corresponds to each code ward */
data += np;
} while (ndata -= 17 + np);
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Extract N bits from input stream */
/*-----------------------------------------------------------------------*/
static int32_t bitext ( /* >=0: extracted data, <0: error code */
lgfxJdec* jd, /* Pointer to the decompressor object */
uint_fast8_t nbit /* Number of bits to extract (1 to 11) */
)
{
uint_fast8_t msk = jd->dbit;
uint8_t *dp = jd->dptr;
uint32_t w = *dp;
if (msk < nbit) {
do { /* Next byte? */
uint8_t *dpend = jd->dpend;
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
dpend = dp + jd->infunc(jd->device, dp, JD_SZBUF);
if (dp == dpend) return 0 - (int32_t)JDR_INP; /* Err: read error or wrong stream termination */
jd->dpend = dpend;
}
uint_fast8_t s = *dp;
w = (w << 8) + s;
if (s == 0xff) { /* Is start of flag sequence? */
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
dpend = dp + jd->infunc(jd->device, dp, JD_SZBUF);
if (dp == dpend) return 0 - (int32_t)JDR_INP; /* Err: read error or wrong stream termination */
jd->dpend = dpend;
}
if (*dp != 0) return 0 - (int32_t)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
*dp = 0xff; /* The flag is a data 0xFF */
}
jd->dptr = dp;
msk += 8; /* Read from MSB */
} while (msk < nbit);
}
msk -= nbit;
jd->dbit = msk;
return (w >> msk) & ((1 << nbit) - 1); /* Get bits */
}
/*-----------------------------------------------------------------------*/
/* Extract a huffman decoded data from input stream */
/*-----------------------------------------------------------------------*/
static int32_t huffext ( /* >=0: decoded data, <0: error code */
lgfxJdec* jd, /* Pointer to the decompressor object */
const uint8_t* hb, /* Pointer to the bit distribution table */
const uint16_t* hc, /* Pointer to the code word table */
const uint8_t* hd /* Pointer to the data table */
)
{
const uint8_t* hb_end = hb + 16 + 1;
uint_fast8_t msk = jd->dbit;
uint32_t w = *jd->dptr & ((1ul << msk) - 1);
for (;;) {
if (!msk) { /* Next byte? */
uint8_t *dp = jd->dptr;
uint8_t *dpend = jd->dpend;
msk = 8;
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
jd->dpend = dpend = dp + jd->infunc(jd->device, dp, JD_SZBUF);
if (dp == dpend) return 0 - (int32_t)JDR_INP; /* Err: read error or wrong stream termination */
}
uint_fast8_t s = *dp;
w = (w << 8) + s;
if (*dp == 0xff) { /* Is start of flag sequence? */
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
jd->dpend = dpend = dp + jd->infunc(jd->device, dp, JD_SZBUF);
if (dp == dpend) return 0 - (int32_t)JDR_INP; /* Err: read error or wrong stream termination */
}
if (*dp != 0) return 0 - (int32_t)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
*dp = 0xff; /* The flag is a data 0xFF */
}
jd->dptr = dp;
}
do {
uint_fast16_t v = w >> --msk;
uint_fast8_t nc = *++hb;
if (hb == hb_end) return 0 - (int32_t)JDR_FMT1; /* Err: code not found (may be collapted data) */
if (nc) {
const uint8_t* hd_end = hd + nc;
do { /* Search the code word in this bit length */
if (v == *++hc) goto huffext_match; /* Matched? */
} while (++hd != hd_end);
}
} while (msk);
}
huffext_match:
jd->dbit = msk;
return *++hd; /* Return the decoded data */
}
/*-----------------------------------------------------------------------*/
/* Apply Inverse-DCT in Arai Algorithm (see also aa_idct.png) */
/*-----------------------------------------------------------------------*/
static void block_idct (
int32_t* src, /* Input block data (de-quantized and pre-scaled for Arai Algorithm) */
int16_t* dst /* Pointer to the destination to store the block as byte array */
)
{
const int32_t M13 = (int32_t)(1.41421*256), M2 = (int32_t)(1.08239*256), M4 = (int32_t)(2.61313*256), M5 = (int32_t)(1.84776*256);
int32_t v0, v1, v2, v3, v4, v5, v6, v7;
int32_t t10, t11, t12, t13;
/* Process columns */
for (int i = 0; i < 8; ++i) {
/* Get and Process the odd elements */
v4 = src[8 * 7];
v5 = src[8 * 1];
v6 = src[8 * 5];
v7 = src[8 * 3];
t10 = v5 - v4;
t11 = v5 + v4;
t12 = v6 - v7;
v7 += v6;
v5 = (t11 - v7) * M13 >> 8;
t13 = (t10 + t12) * M5 >> 8;
v6 = t13 - ((t12 * M4 >> 8) + (v7 += t11));
v4 = t13 - ((t10 * M2 >> 8) + (v5 -= v6));
/* Get and Process the even elements */
v0 = src[8 * 0];
v2 = src[8 * 4];
t10 = v0 + v2;
t12 = v0 - v2;
v1 = src[8 * 2];
v3 = src[8 * 6];
t11 = (v1 - v3) * M13 >> 8;
v3 += v1;
t11 -= v3;
v0 = t10 + v3;
v3 = t10 - v3;
v1 = t12 + t11;
v2 = t12 - t11;
/* Write-back transformed values */
src[8 * 0] = v0 + v7;
src[8 * 7] = v0 - v7;
src[8 * 1] = v1 + v6;
src[8 * 6] = v1 - v6;
src[8 * 2] = v2 + v5;
src[8 * 5] = v2 - v5;
src[8 * 3] = v3 + v4;
src[8 * 4] = v3 - v4;
++src; /* Next column */
}
/* Process rows */
src -= 8;
for (int i = 0; i < 8; ++i) {
/* Get and Process the odd elements */
v4 = src[1];
v5 = src[7] + v4;
v4 = (v4 << 1) - v5;
v6 = src[5];
v7 = src[3] + v6;
v6 = (v6 << 1) - v7;
v7 += v5;
v5 = (v5 << 1) - v7;
t13 = v4 + v6;
t13 = t13 * M5 >> 8;
v6 = v6 * M4 >> 8;
v6 += v7;
v6 = t13 - v6;
v5 = v5 * M13 >> 8;
v5 -= v6;
v4 = v4 * M2 >> 8;
v4 += v5;
v4 = t13 - v4;
/* Get and Process the even elements */
v0 = src[0] + (128L << 8); /* remove DC offset (-128) here */
v2 = src[4];
t10 = v0 + v2;
t12 = v0 - v2;
v1 = src[2];
v3 = src[6] + v1;
t11 = (v1 << 1) - v3;
t11 = t11 * M13 >> 8;
t11 -= v3;
v0 = t10 + v3;
v3 = t10 - v3;
v1 = t12 + t11;
v2 = t12 - t11;
dst[0] = (v0 + v7) >> 8;
dst[7] = (v0 - v7) >> 8;
dst[1] = (v1 + v6) >> 8;
dst[6] = (v1 - v6) >> 8;
dst[2] = (v2 + v5) >> 8;
dst[5] = (v2 - v5) >> 8;
dst[3] = (v3 + v4) >> 8;
dst[4] = (v3 - v4) >> 8;
dst += 8;
src += 8; /* Next row */
}
}
/*-----------------------------------------------------------------------*/
/* Load all blocks in the MCU into working buffer */
/*-----------------------------------------------------------------------*/
static JRESULT mcu_load (
lgfxJdec* jd /* Pointer to the decompressor object */
)
{
int32_t *tmp = (int32_t*)jd->workbuf; /* Block working buffer for de-quantize and IDCT */
int32_t b, d, e;
uint32_t blk, nby, nbc;
int16_t *bp;
const uint8_t *hb, *hd;
const uint16_t *hc;
nby = jd->msx * jd->msy; /* Number of Y blocks (1, 2 or 4) */
nbc = jd->comps_in_frame - 1; /* Number of C blocks (2 or 0(grayscale)) */
bp = jd->mcubuf; /* Pointer to the first block */
for (blk = 0; blk < nby + nbc; ++blk) {
size_t cmp = (blk < nby) ? 0 : blk - nby + 1; /* Component number 0:Y, 1:Cb, 2:Cr */
size_t id = cmp ? 1 : 0; /* Huffman table ID of the component */
/* Extract a DC element from input stream */
hb = jd->huffbits[id][0]; /* Huffman table for the DC element */
hc = jd->huffcode[id][0];
hd = jd->huffdata[id][0];
b = huffext(jd, hb, hc, hd); /* Extract a huffman coded data (bit length) */
if (b < 0) return (JRESULT)(-b); /* Err: invalid code or input */
d = jd->dcv[cmp]; /* DC value of previous block */
if (b) { /* If there is any difference from previous block */
e = bitext(jd, b); /* Extract data bits */
if (e < 0) return (JRESULT)(-e); /* Err: input */
b = 1 << (b - 1); /* MSB position */
if (!(e & b)) e -= (b << 1) - 1; /* Restore sign if needed */
d += e; /* Get current value */
jd->dcv[cmp] = d; /* Save current DC value for next block */
}
const int32_t *dqf = jd->qttbl[jd->qtid[cmp]]; /* De-quantizer table ID for this component */
tmp[0] = d * dqf[0] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
/* Extract following 63 AC elements from input stream */
memset(&tmp[1], 0, 63*sizeof(int32_t)); /* Clear rest of elements */
hb = jd->huffbits[id][1]; /* Huffman table for the AC elements */
hc = jd->huffcode[id][1];
hd = jd->huffdata[id][1];
uint_fast8_t i = 1; /* Top of the AC elements */
do {
b = huffext(jd, hb, hc, hd); /* Extract a huffman coded value (zero runs and bit length) */
if (b == 0) break; /* EOB? */
if (b < 0) return (JRESULT)(-b); /* Err: invalid code or input error */
i += b >> 4; /* Number of leading zero elements Skip zero elements */
if (b &= 0x0F) { /* Bit length */
d = bitext(jd, b); /* Extract data bits */
if (d < 0) return (JRESULT)(-d);/* Err: input device */
b = 1 << (b - 1); /* MSB position */
if (!(d & b)) d -= (b << 1) - 1;/* Restore negative value if needed */
uint_fast8_t z = Zig[i]; /* Zigzag-order to raster-order converted index */
tmp[z] = d * dqf[z] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
}
} while (++i < 64); /* Next AC element */
if (i == 1 || (JD_USE_SCALE && jd->scale == 3)) {
d = (int16_t)((*tmp >> 8) + 128); /* If scale ratio is 1/8, IDCT can be ommited and only DC element is used */
for (i = 0; i < 64; bp[i++] = d) ;
} else {
block_idct(tmp, bp); /* Apply IDCT and store the block to the MCU buffer */
}
bp += 64; /* Next block */
}
return JDR_OK; /* All blocks have been loaded successfully */
}
/*-----------------------------------------------------------------------*/
/* Output an MCU: Convert YCrCb to RGB and output it in RGB form */
/*-----------------------------------------------------------------------*/
static JRESULT mcu_output (
lgfxJdec* jd, /* Pointer to the decompressor object */
uint32_t (*outfunc)(void*, void*, JRECT*), /* RGB output function */
uint32_t x, /* MCU position in the image (left of the MCU) */
uint32_t y /* MCU position in the image (top of the MCU) */
)
{
const int_fast16_t FP_SHIFT = 8;
uint32_t ix, iy, mx, my, rx, ry;
int32_t yy, cb, cr;
int16_t *py, *pc;
uint8_t *rgb24;
JRECT rect;
mx = jd->msx << 3; my = jd->msy << 3; /* MCU size (pixel) */
rx = (mx < jd->width - x) ? mx : jd->width - x; /* Output rectangular size (it may be clipped at right/bottom end) */
ry = (my < jd->height - y) ? my : jd->height - y;
if (JD_USE_SCALE) {
rx >>= jd->scale; ry >>= jd->scale;
if (!rx || !ry) return JDR_OK; /* Skip this MCU if all pixel is to be rounded off */
x >>= jd->scale; y >>= jd->scale;
}
rect.left = x; rect.right = x + rx - 1; /* Rectangular area in the frame buffer */
rect.top = y; rect.bottom = y + ry - 1;
uint8_t* workbuf = (uint8_t*)jd->workbuf;
if (!JD_USE_SCALE || jd->scale != 3) { /* Not for 1/8 scaling */
uint_fast8_t ixshift = (mx == 16);
uint_fast8_t iyshift = (my == 16);
/* Build an RGB MCU from discrete comopnents */
rgb24 = workbuf;
iy = 0;
do {
#if JD_BAYER
const int8_t* btbl = &Bayer[(iy & 3) << 2];
#endif
py = &jd->mcubuf[((iy & 8) + iy) << 3];
pc = &jd->mcubuf[((mx << iyshift) + (iy >> iyshift)) << 3];
ix = 0;
do {
do {
cb = (pc[ 0] - 128); /* Get Cb/Cr component and restore right level */
cr = (pc[64] - 128);
++pc;
/* Convert CbCr to RGB */
int32_t rr = ((int32_t)(1.402 * (1<<FP_SHIFT)) * cr) >> FP_SHIFT;
int32_t gg = ((int32_t)(0.34414 * (1<<FP_SHIFT)) * cb
+ (int32_t)(0.71414 * (1<<FP_SHIFT)) * cr) >> FP_SHIFT;
int32_t bb = ((int32_t)(1.772 * (1<<FP_SHIFT)) * cb) >> FP_SHIFT;
do {
#if JD_BAYER
yy = *py + btbl[ix & 3]; /* Get Y component */
#else
yy = *py; /* Get Y component */
#endif
++py;
/* Convert YCbCr to RGB */
rgb24[0] = BYTECLIP(yy + rr);
rgb24[1] = BYTECLIP(yy - gg);
rgb24[2] = BYTECLIP(yy + bb);
rgb24 += 3;
} while (++ix & ixshift);
} while (ix & 7);
py += 64 - 8; /* Jump to next block if double block heigt */
} while (ix != mx);
} while (++iy < my);
/* Descale the MCU rectangular if needed */
if (JD_USE_SCALE && jd->scale) {
uint32_t x_, y_, r_, g_, b_, s_, w_;
uint8_t *op;
/* Get averaged RGB value of each square correcponds to a pixel */
s_ = jd->scale * 2; /* Bumber of shifts for averaging */
w_ = 1 << jd->scale; /* Width of square */
op = workbuf;
iy = 0;
do {
ix = 0;
do {
rgb24 = &workbuf[(iy * mx + ix) * 3];
r_ = g_ = b_ = 0;
y_ = 0;
do { /* Accumulate RGB value in the square */
x_ = 0;
do {
r_ += rgb24[x_*3 ];
g_ += rgb24[x_*3+1];
b_ += rgb24[x_*3+2];
} while (++x_ < w_);
rgb24 += mx * 3;
} while (++y_ < w_);
/* Put the averaged RGB value as a pixel */
op[0] = r_ >> s_;
op[1] = g_ >> s_;
op[2] = b_ >> s_;
op += 3;
} while ((ix += w_) < mx);
} while ((iy += w_) < my);
}
} else { /* For only 1/8 scaling (left-top pixel in each block are the DC value of the block) */
/* Build a 1/8 descaled RGB MCU from discrete comopnents */
rgb24 = workbuf;
pc = jd->mcubuf + mx * my;
cb = pc[0] - 128; /* Get Cb/Cr component and restore right level */
cr = pc[64] - 128;
iy = 0;
do {
py = jd->mcubuf;
if (iy == 8) py += 64 * 2;
ix = 0;
do {
yy = *py; /* Get Y component */
py += 64;
/* Convert YCbCr to RGB */
rgb24[0] = BYTECLIP(yy + (((int32_t)(1.402 * (1<<FP_SHIFT)) * cr) >> FP_SHIFT));
rgb24[1] = BYTECLIP(yy - (((int32_t)(0.34414 * (1<<FP_SHIFT)) * cb
+ (int32_t)(0.71414 * (1<<FP_SHIFT)) * cr) >> FP_SHIFT));
rgb24[2] = BYTECLIP(yy + (((int32_t)(1.772 * (1<<FP_SHIFT)) * cb) >> FP_SHIFT));
rgb24 += 3;
} while ((ix += 8) < mx);
} while ((iy += 8) < my);
}
/* Squeeze up pixel table if a part of MCU is to be truncated */
mx >>= jd->scale;
if (rx < mx) {
uint8_t *s_, *d;
s_ = d = workbuf;
for (size_t y_ = 1; y_ < ry; ++y_) {
memcpy(d += rx * 3, s_ += mx * 3, rx * 3); /* Copy effective pixels */
}
}
/* Convert RGB888 to RGB565 if needed */
if (JD_FORMAT == 1) {
uint8_t *s = workbuf;
uint16_t *d = (uint16_t*)s;
uint_fast16_t w;
uint_fast16_t n = rx * ry;
do {
w = (*s++ & 0xF8) << 8; /* RRRRR----------- */
w |= (*s++ & 0xFC) << 3; /* -----GGGGGG----- */
w |= *s++ >> 3; /* -----------BBBBB */
*d++ = w;
} while (--n);
}
/* Output the RGB rectangular */
return outfunc(jd->device, workbuf, &rect) ? JDR_OK : JDR_INTR;
}
/*-----------------------------------------------------------------------*/
/* Process restart interval */
/*-----------------------------------------------------------------------*/
static JRESULT restart (
lgfxJdec* jd, /* Pointer to the decompressor object */
uint16_t rstn /* Expected restert sequense number */
)
{
uint16_t d;
uint8_t *dp = jd->dptr, *dpend = jd->dpend;
/* Discard padding bits and get two bytes from the input stream */
d = 0;
for (int i = 0; i < 2; ++i) {
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf;
jd->dpend = dpend = dp + jd->infunc(jd->device, dp, JD_SZBUF);
if (dp == dpend) return JDR_INP;
}
d = (d << 8) | *dp; /* Get a byte */
}
jd->dptr = dp; jd->dbit = 0;
/* Check the marker */
if ((d & 0xFFD8) != 0xFFD0 || (d & 7) != (rstn & 7)) {
return JDR_FMT1; /* Err: expected RSTn marker is not detected (may be collapted data) */
}
/* Reset DC offset */
jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0;
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Analyze the JPEG image and Initialize decompressor object */
/*-----------------------------------------------------------------------*/
//#define LDB_WORD(ptr) (uint16_t)(((uint16_t)*((uint8_t*)(ptr))<<8)|(uint16_t)*(uint8_t*)((ptr)+1))
static inline uint16_t LDB_WORD(uint8_t* ptr) {
return ptr[0]<<8 | ptr[1];
}
JRESULT lgfx_jd_prepare (
lgfxJdec* jd, /* Blank decompressor object */
uint32_t (*infunc)(void*, uint8_t*, uint32_t), /* JPEG strem input function */
void* pool, /* Working buffer for the decompression session */
uint_fast16_t sz_pool, /* Size of working buffer */
void* dev /* I/O device identifier for the session */
)
{
uint8_t *seg;
uint32_t ofs;
size_t n;
int32_t rc;
if (!pool) return JDR_PAR;
jd->pool = (uint8_t*)pool; /* Work memroy */
jd->sz_pool = sz_pool; /* Size of given work memory */
jd->infunc = infunc; /* Stream input function */
jd->device = dev; /* I/O device identifier */
jd->nrst = 0; /* No restart interval (default) */
// memset(jd->huffbits, 0, sizeof(uint8_t*) * 4); /* Nulls pointers */
// memset(jd->huffcode, 0, sizeof(uint16_t*) * 4);
// memset(jd->huffdata, 0, sizeof(uint8_t*) * 4);
// memset(jd->qttbl, 0, sizeof(uint32_t*) * 4);
jd->inbuf = seg = alloc_pool(jd, JD_SZBUF); /* Allocate stream input buffer */
if (!seg) return JDR_MEM1;
if (infunc(dev, seg, 2) != 2) return JDR_INP;/* Check SOI marker */
if (LDB_WORD(seg) != 0xFFD8) return JDR_FMT1; /* Err: SOI is not detected */
ofs = 2;
for (;;) {
if (infunc(dev, seg, 1) != 1) return JDR_INP;
if (seg[0] != 0xFF) return JDR_FMT1; /* Check a JPEG marker */
do
{
if (infunc(dev, &seg[1], 1) != 1) return JDR_INP;
} while (seg[1] == 0xFF);
if (infunc(dev, &seg[2], 2) != 2) return JDR_INP;
uint_fast16_t len = LDB_WORD(seg + 2) - 2; /* Length field */
ofs += 4 + len; /* Number of bytes loaded */
switch (seg[1]) { /* Marker */
case 0xC0: /* SOF0 (baseline JPEG) */
{/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (infunc(dev, seg, len) != len) return JDR_INP;
jd->width = LDB_WORD(seg+3); /* Image width in unit of pixel */
jd->height = LDB_WORD(seg+1); /* Image height in unit of pixel */
jd->comps_in_frame = seg[5];
if (seg[5] != 1 && seg[5] != 3)
return JDR_FMT3; /* Err: Supports only Y/Cb/Cr or Y(Grayscale) format */
/* Check three image components */
for (size_t i = 0; i < seg[5]; ++i) {
uint_fast8_t b = seg[7 + 3 * i]; /* Get sampling factor */
if (!i) { /* Y component */
if (b != 0x11 && b != 0x22 && b != 0x21) { /* Check sampling factor */
return JDR_FMT3; /* Err: Supports only 4:4:4, 4:2:0 or 4:2:2 */
}
jd->msx = b >> 4; jd->msy = b & 15; /* Size of MCU [blocks] */
} else { /* Cb/Cr component */
if (b != 0x11) return JDR_FMT3; /* Err: Sampling factor of Cr/Cb must be 1 */
}
b = seg[8 + 3 * i]; /* Get dequantizer table ID for this component */
if (b > 3) return JDR_FMT3; /* Err: Invalid ID */
jd->qtid[i] = b;
}
}
break;
case 0xDD: /* DRI */
{/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (infunc(dev, seg, len) != len) return JDR_INP;
/* Get restart interval (MCUs) */
jd->nrst = LDB_WORD(seg);
}
break;
case 0xC4: /* DHT */
{/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (infunc(dev, seg, len) != len) return JDR_INP;
/* Create huffman tables */
rc = create_huffman_tbl(jd, seg, len);
if (rc) return (JRESULT)rc;
}
break;
case 0xDB: /* DQT */
{/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (infunc(dev, seg, len) != len) return JDR_INP;
/* Create de-quantizer tables */
rc = create_qt_tbl(jd, seg, len);
if (rc) return (JRESULT)rc;
}
break;
case 0xDA: /* SOS */
{/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (infunc(dev, seg, len) != len) return JDR_INP;
if (!jd->width || !jd->height) return JDR_FMT1; /* Err: Invalid image size */
if (seg[0] != jd->comps_in_frame) return JDR_FMT3; /* Err: Supports only three color or grayscale components format */
/* Check if all tables corresponding to each components have been loaded */
for (size_t i = 0; i < jd->comps_in_frame; ++i) {
uint_fast8_t b = seg[2 + 2 * i]; /* Get huffman table ID */
if (b != 0x00 && b != 0x11) return JDR_FMT3; /* Err: Different table number for DC/AC element */
b = i ? 1 : 0;
if (!jd->huffbits[b][0] || !jd->huffbits[b][1]) { /* Check dc/ac huffman table for this component */
return JDR_FMT1; /* Err: Nnot loaded */
}
if (!jd->qttbl[jd->qtid[i]]) { /* Check dequantizer table for this component */
return JDR_FMT1; /* Err: Not loaded */
}
}
/* Allocate working buffer for MCU and RGB */
n = jd->msy * jd->msx; /* Number of Y blocks in the MCU */
if (!n) return JDR_FMT1; /* Err: SOF0 has not been loaded */
len = n * 64 * 2 + 64; /* Allocate buffer for IDCT and RGB output */
if (len < 256) len = 256; /* but at least 256 byte is required for IDCT */
jd->workbuf = alloc_pool(jd, len); /* and it may occupy a part of following MCU working buffer for RGB output */
if (!jd->workbuf) return JDR_MEM1; /* Err: not enough memory */
size_t mcubuf_len = (n + 2) * 64;
jd->mcubuf = (int16_t*)alloc_pool(jd, mcubuf_len * sizeof(int16_t)); /* Allocate MCU working buffer */
if (!jd->mcubuf) return JDR_MEM1; /* Err: not enough memory */
if (jd->comps_in_frame == 1) {
for (size_t i = n * 16; i < mcubuf_len; ++i) {
jd->mcubuf[i] = 128; /* Cb/Cr clear ( for grayscale )*/
}
}
/* Pre-load the JPEG data to extract it from the bit stream */
ofs %= JD_SZBUF; /* Align read offset to JD_SZBUF */
int32_t dc = infunc(dev, seg + ofs, JD_SZBUF - ofs);
jd->dptr = seg + ofs - 1;
jd->dpend = seg + ofs + dc;
jd->dbit = 0; /* Prepare to read bit stream */
}
return JDR_OK; /* Initialization succeeded. Ready to decompress the JPEG image. */
case 0xC1: /* SOF1 */
case 0xC2: /* SOF2 */
case 0xC3: /* SOF3 */
case 0xC5: /* SOF5 */
case 0xC6: /* SOF6 */
case 0xC7: /* SOF7 */
case 0xC9: /* SOF9 */
case 0xCA: /* SOF10 */
case 0xCB: /* SOF11 */
case 0xCD: /* SOF13 */
case 0xCE: /* SOF14 */
case 0xCF: /* SOF15 */
case 0xD9: /* EOI */
return JDR_FMT3; /* Unsuppoted JPEG standard (may be progressive JPEG) */
default: /* Unknown segment (comment, exif or etc..) */
/* Skip segment data */
if (infunc(dev, 0, len) != len) { /* Null pointer specifies to skip bytes of stream */
return JDR_INP;
}
}
}
}
/*-----------------------------------------------------------------------*/
/* Start to decompress the JPEG picture */
/*-----------------------------------------------------------------------*/
JRESULT lgfx_jd_decomp (
lgfxJdec* jd, /* Initialized decompression object */
uint32_t (*outfunc)(void*, void*, JRECT*), /* RGB output function */
uint_fast8_t scale /* Output de-scaling factor (0 to 3) */
)
{
uint32_t x, y, mx, my;
uint32_t nrst, rst, rsc;
JRESULT rc;
if (scale > (JD_USE_SCALE ? 3 : 0)) return JDR_PAR;
jd->scale = scale;
nrst = jd->nrst;
mx = jd->msx << 3; my = jd->msy << 3; /* Size of the MCU (pixel) */
jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0; /* Initialize DC values */
rst = rsc = 0;
rc = JDR_OK;
for (y = 0; y < jd->height; y += my) { /* Vertical loop of MCUs */
x = 0;
do { /* Horizontal loop of MCUs */
if (nrst && rst++ == nrst) { /* Process restart interval if enabled */
rc = restart(jd, rsc++);
if (rc != JDR_OK) return rc;
rst = 1;
}
rc = mcu_load(jd); /* Load an MCU (decompress huffman coded stream and apply IDCT) */
if (rc != JDR_OK) return rc;
rc = mcu_output(jd, outfunc, x, y); /* Output the MCU (color space conversion, scaling and output) */
if (rc != JDR_OK) return rc;
} while ( (x += mx) < jd->width);
}
return rc;
}