forked from hcs0/Hackers-Delight
-
Notifications
You must be signed in to change notification settings - Fork 0
/
divmnu64.c.txt
237 lines (213 loc) · 9.29 KB
/
divmnu64.c.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* This divides an n-word dividend by an m-word divisor, giving an
n-m+1-word quotient and m-word remainder. The bignums are in arrays of
words. Here a "word" is 32 bits. This routine is designed for a 64-bit
machine which has a 64/64 division instruction. */
#include <stdio.h>
#include <stdlib.h> //To define "exit", req'd by XLC.
#define max(x, y) ((x) > (y) ? (x) : (y))
int nlz(unsigned x) {
int n;
if (x == 0) return(32);
n = 0;
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
if (x <= 0x7FFFFFFF) {n = n + 1;}
return n;
}
void dumpit(char *msg, int n, unsigned v[]) {
int i;
printf(msg);
for (i = n-1; i >= 0; i--) printf(" %08x", v[i]);
printf("\n");
}
/* q[0], r[0], u[0], and v[0] contain the LEAST significant words.
(The sequence is in little-endian order).
This is a fairly precise implementation of Knuth's Algorithm D, for a
binary computer with base b = 2**32. The caller supplies:
1. Space q for the quotient, m - n + 1 words (at least one).
2. Space r for the remainder (optional), n words.
3. The dividend u, m words, m >= 1.
4. The divisor v, n words, n >= 2.
The most significant digit of the divisor, v[n-1], must be nonzero. The
dividend u may have leading zeros; this just makes the algorithm take
longer and makes the quotient contain more leading zeros. A value of
NULL may be given for the address of the remainder to signify that the
caller does not want the remainder.
The program does not alter the input parameters u and v.
The quotient and remainder returned may have leading zeros. The
function itself returns a value of 0 for success and 1 for invalid
parameters (e.g., division by 0).
For now, we must have m >= n. Knuth's Algorithm D also requires
that the dividend be at least as long as the divisor. (In his terms,
m >= 0 (unstated). Therefore m+n >= n.) */
int divmnu(unsigned q[], unsigned r[],
const unsigned u[], const unsigned v[],
int m, int n) {
const unsigned long long b = 4294967296LL; // Number base (2**32).
unsigned *un, *vn; // Normalized form of u, v.
unsigned long long qhat; // Estimated quotient digit.
unsigned long long rhat; // A remainder.
unsigned long long p; // Product of two digits.
long long t, k;
int s, i, j;
if (m < n || n <= 0 || v[n-1] == 0)
return 1; // Return if invalid param.
if (n == 1) { // Take care of
k = 0; // the case of a
for (j = m - 1; j >= 0; j--) { // single-digit
q[j] = (k*b + u[j])/v[0]; // divisor here.
k = (k*b + u[j]) - q[j]*v[0];
}
if (r != NULL) r[0] = k;
return 0;
}
/* Normalize by shifting v left just enough so that its high-order
bit is on, and shift u left the same amount. We may have to append a
high-order digit on the dividend; we do that unconditionally. */
s = nlz(v[n-1]); // 0 <= s <= 31.
vn = (unsigned *)alloca(4*n);
for (i = n - 1; i > 0; i--)
vn[i] = (v[i] << s) | ((unsigned long long)v[i-1] >> (32-s));
vn[0] = v[0] << s;
un = (unsigned *)alloca(4*(m + 1));
un[m] = (unsigned long long)u[m-1] >> (32-s);
for (i = m - 1; i > 0; i--)
un[i] = (u[i] << s) | ((unsigned long long)u[i-1] >> (32-s));
un[0] = u[0] << s;
for (j = m - n; j >= 0; j--) { // Main loop.
// Compute estimate qhat of q[j].
qhat = (un[j+n]*b + un[j+n-1])/vn[n-1];
rhat = (un[j+n]*b + un[j+n-1]) - qhat*vn[n-1];
again:
if (qhat >= b || qhat*vn[n-2] > b*rhat + un[j+n-2])
{ qhat = qhat - 1;
rhat = rhat + vn[n-1];
if (rhat < b) goto again;
}
// Multiply and subtract.
k = 0;
for (i = 0; i < n; i++) {
p = qhat*vn[i];
t = un[i+j] - k - (p & 0xFFFFFFFFLL);
un[i+j] = t;
k = (p >> 32) - (t >> 32);
}
t = un[j+n] - k;
un[j+n] = t;
q[j] = qhat; // Store quotient digit.
if (t < 0) { // If we subtracted too
q[j] = q[j] - 1; // much, add back.
k = 0;
for (i = 0; i < n; i++) {
t = (unsigned long long)un[i+j] + vn[i] + k;
un[i+j] = t;
k = t >> 32;
}
un[j+n] = un[j+n] + k;
}
} // End j.
// If the caller wants the remainder, unnormalize
// it and pass it back.
if (r != NULL) {
for (i = 0; i < n-1; i++)
r[i] = (un[i] >> s) | ((unsigned long long)un[i+1] << (32-s));
r[n-1] = un[n-1] >> s;
}
return 0;
}
int errors;
void check(unsigned q[], unsigned r[],
unsigned u[], unsigned v[],
int m, int n,
unsigned cq[], unsigned cr[]) {
int i, szq;
szq = max(m - n + 1, 1);
for (i = 0; i < szq; i++) {
if (q[i] != cq[i]) {
errors = errors + 1;
dumpit("Error, dividend u =", m, u);
dumpit(" divisor v =", n, v);
dumpit("For quotient, got:", m-n+1, q);
dumpit(" Should get:", m-n+1, cq);
return;
}
}
for (i = 0; i < n; i++) {
if (r[i] != cr[i]) {
errors = errors + 1;
dumpit("Error, dividend u =", m, u);
dumpit(" divisor v =", n, v);
dumpit("For remainder, got:", n, r);
dumpit(" Should get:", n, cr);
return;
}
}
return;
}
int main() {
static unsigned test[] = {
// m, n, u..., v..., cq..., cr....
1, 1, 3, 0, 1, 1, // Error, divide by 0.
1, 2, 7, 1,3, 0, 7,0, // Error, n > m.
2, 2, 0,0, 1,0, 0, 0,0, // Error, incorrect remainder cr.
1, 1, 3, 2, 1, 1,
1, 1, 3, 3, 1, 0,
1, 1, 3, 4, 0, 3,
1, 1, 0, 0xffffffff, 0, 0,
1, 1, 0xffffffff, 1, 0xffffffff, 0,
1, 1, 0xffffffff, 0xffffffff, 1, 0,
1, 1, 0xffffffff, 3, 0x55555555, 0,
2, 1, 0xffffffff,0xffffffff, 1, 0xffffffff,0xffffffff, 0,
2, 1, 0xffffffff,0xffffffff, 0xffffffff, 1,1, 0,
2, 1, 0xffffffff,0xfffffffe, 0xffffffff, 0xffffffff,0, 0xfffffffe,
2, 1, 0x00005678,0x00001234, 0x00009abc, 0x1e1dba76,0, 0x6bd0,
2, 2, 0,0, 0,1, 0, 0,0,
2, 2, 0,7, 0,3, 2, 0,1,
2, 2, 5,7, 0,3, 2, 5,1,
2, 2, 0,6, 0,2, 3, 0,0,
1, 1, 0x80000000, 0x40000001, 0x00000001, 0x3fffffff,
2, 1, 0x00000000,0x80000000, 0x40000001, 0xfffffff8,0x00000001, 0x00000008,
2, 2, 0x00000000,0x80000000, 0x00000001,0x40000000, 0x00000001, 0xffffffff,0x3fffffff,
2, 2, 0x0000789a,0x0000bcde, 0x0000789a,0x0000bcde, 1, 0,0,
2, 2, 0x0000789b,0x0000bcde, 0x0000789a,0x0000bcde, 1, 1,0,
2, 2, 0x00007899,0x0000bcde, 0x0000789a,0x0000bcde, 0, 0x00007899,0x0000bcde,
2, 2, 0x0000ffff,0x0000ffff, 0x0000ffff,0x0000ffff, 1, 0,0,
2, 2, 0x0000ffff,0x0000ffff, 0x00000000,0x00000001, 0x0000ffff, 0x0000ffff,0,
3, 2, 0x000089ab,0x00004567,0x00000123, 0x00000000,0x00000001, 0x00004567,0x00000123, 0x000089ab,0,
3, 2, 0x00000000,0x0000fffe,0x00008000, 0x0000ffff,0x00008000, 0xffffffff,0x00000000, 0x0000ffff,0x00007fff, // Shows that first qhat can = b + 1.
3, 3, 0x00000003,0x00000000,0x80000000, 0x00000001,0x00000000,0x20000000, 0x00000003, 0,0,0x20000000, // Adding back step req'd.
3, 3, 0x00000003,0x00000000,0x00008000, 0x00000001,0x00000000,0x00002000, 0x00000003, 0,0,0x00002000, // Adding back step req'd.
4, 3, 0,0,0x00008000,0x00007fff, 1,0,0x00008000, 0xfffe0000,0, 0x00020000,0xffffffff,0x00007fff, // Add back req'd.
4, 3, 0,0x0000fffe,0,0x00008000, 0x0000ffff,0,0x00008000, 0xffffffff,0, 0x0000ffff,0xffffffff,0x00007fff, // Shows that mult-sub quantity cannot be treated as signed.
4, 3, 0,0xfffffffe,0,0x80000000, 0x0000ffff,0,0x80000000, 0x00000000,1, 0x00000000,0xfffeffff,0x00000000, // Shows that mult-sub quantity cannot be treated as signed.
4, 3, 0,0xfffffffe,0,0x80000000, 0xffffffff,0,0x80000000, 0xffffffff,0, 0xffffffff,0xffffffff,0x7fffffff, // Shows that mult-sub quantity cannot be treated as signed.
};
int i, n, m, ncases, f;
unsigned q[10], r[10];
unsigned *u, *v, *cq, *cr;
printf("divmnu:\n");
i = 0;
ncases = 0;
while (i < sizeof(test)/4) {
m = test[i];
n = test[i+1];
u = &test[i+2];
v = &test[i+2+m];
cq = &test[i+2+m+n];
cr = &test[i+2+m+n+max(m-n+1, 1)];
f = divmnu(q, r, u, v, m, n);
if (f) {
dumpit("Error return code for dividend u =", m, u);
dumpit(" divisor v =", n, v);
errors = errors + 1;
}
else
check(q, r, u, v, m, n, cq, cr);
i = i + 2 + m + n + max(m-n+1, 1) + n;
ncases = ncases + 1;
}
printf("%d errors out of %d cases; there should be 3.\n", errors, ncases);
return 0;
}