forked from drikster80/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_engine_example.py
45 lines (36 loc) · 1.58 KB
/
llm_engine_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
from cacheflow import EngineArgs, LLMEngine, SamplingParams
def main(args: argparse.Namespace):
# Parse the CLI argument and initialize the engine.
engine_args = EngineArgs.from_cli_args(args)
engine = LLMEngine.from_engine_args(engine_args)
# Test the following prompts.
test_prompts = [
("A robot may not injure a human being", SamplingParams()),
("To be or not to be,",
SamplingParams(temperature=0.8, top_k=5, presence_penalty=0.2)),
("What is the meaning of life?",
SamplingParams(n=2, best_of=5, temperature=0.8, top_p=0.95, frequency_penalty=0.1)),
("It is only with the heart that one can see rightly",
SamplingParams(n=3, best_of=3, use_beam_search=True, temperature=0.0)),
]
# Run the engine by calling `engine.step()` manually.
request_id = 0
while True:
# To test iteration-level scheduling, we add one request at each step.
if test_prompts:
prompt, sampling_params = test_prompts.pop(0)
engine.add_request(str(request_id), prompt, sampling_params)
request_id += 1
request_outputs = engine.step()
for request_output in request_outputs:
if request_output.finished():
print(request_output)
if not (engine.has_unfinished_requests() or test_prompts):
break
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Demo on using the LLMEngine class directly')
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
main(args)