forked from theroyallab/tabbyAPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
470 lines (355 loc) · 19.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import gc, time, pathlib
import torch
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Cache_8bit,
ExLlamaV2Tokenizer,
ExLlamaV2Lora
)
from exllamav2.generator import(
ExLlamaV2StreamingGenerator,
ExLlamaV2Sampler
)
from typing import List, Optional, Union
from utils import coalesce, unwrap
# Bytes to reserve on first device when loading with auto split
auto_split_reserve_bytes = 96 * 1024**2
class ModelContainer:
config: Optional[ExLlamaV2Config] = None
draft_config: Optional[ExLlamaV2Config] = None
model: Optional[ExLlamaV2] = None
draft_model: Optional[ExLlamaV2] = None
cache: Optional[ExLlamaV2Cache] = None
draft_cache: Optional[ExLlamaV2Cache] = None
tokenizer: Optional[ExLlamaV2Tokenizer] = None
generator: Optional[ExLlamaV2StreamingGenerator] = None
cache_fp8: bool = False
gpu_split_auto: bool = True
gpu_split: Optional[list] = None
active_loras: List[ExLlamaV2Lora] = []
def __init__(self, model_directory: pathlib.Path, quiet = False, **kwargs):
"""
Create model container
Args:
model_dir (int): Model directory containing config.json, tokenizer.model etc.
quiet (bool): Suppress console output
load_progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int, loading_draft: bool)
**kwargs:
`cache_mode` (str): Sets cache mode, "FP16" or "FP8" (defaulf: "FP16")
'max_seq_len' (int): Override model's default max sequence length (default: 4096)
'rope_scale' (float): Set RoPE scaling factor for model (default: 1.0)
'rope_alpha' (float): Set RoPE alpha (NTK) factor for model (default: 1.0)
'chunk_size' (int): Sets the maximum chunk size for the model (default: 2048)
Inferencing in chunks reduces overall VRAM overhead by processing very long sequences in smaller
batches. This limits the size of temporary buffers needed for the hidden state and attention
weights.
'draft_model_dir' (str): Draft model directory
'draft_rope_scale' (float): Set RoPE scaling factor for draft model (default: 1.0)
'draft_rope_alpha' (float): RoPE alpha (NTK) factor for draft model.
By default, the draft model's alpha value is calculated automatically to scale to the size of the
full model.
'lora_dir' (str): Lora directory
'loras' (list[dict]): List of loras to be loaded, consisting of 'name' and 'scaling'
'gpu_split_auto' (bool): Automatically split model across available devices (default: True)
'gpu_split' (list[float]): Allocation for weights and (some) tensors, per device
'no_flash_attn' (bool): Turns off flash attention (increases vram usage) (default: False)
"""
self.quiet = quiet
self.cache_fp8 = "cache_mode" in kwargs and kwargs["cache_mode"] == "FP8"
self.gpu_split = kwargs.get("gpu_split")
self.gpu_split_auto = unwrap(kwargs.get("gpu_split_auto"), True)
self.config = ExLlamaV2Config()
self.config.model_dir = str(model_directory.resolve())
self.config.prepare()
# Grab the base model's sequence length before overrides for rope calculations
base_seq_len = self.config.max_seq_len
# Then override the max_seq_len if present
self.config.max_seq_len = unwrap(kwargs.get("max_seq_len"), 4096)
self.config.scale_pos_emb = unwrap(kwargs.get("rope_scale"), 1.0)
# Automatically calculate rope alpha
self.config.scale_alpha_value = unwrap(kwargs.get("rope_alpha"), self.calculate_rope_alpha(base_seq_len))
# Turn off flash attention?
self.config.no_flash_attn = unwrap(kwargs.get("no_flash_attn"), False)
# low_mem is currently broken in exllamav2. Don't use it until it's fixed.
"""
if "low_mem" in kwargs and kwargs["low_mem"]:
self.config.set_low_mem()
"""
chunk_size = min(unwrap(kwargs.get("chunk_size"), 2048), self.config.max_seq_len)
self.config.max_input_len = chunk_size
self.config.max_attn_size = chunk_size ** 2
draft_args = unwrap(kwargs.get("draft"), {})
draft_model_name = draft_args.get("draft_model_name")
enable_draft = draft_args and draft_model_name
# Always disable draft if params are incorrectly configured
if draft_args and draft_model_name is None:
print("A draft config was found but a model name was not given. Please check your config.yml! Skipping draft load.")
enable_draft = False
if enable_draft:
self.draft_config = ExLlamaV2Config()
draft_model_path = pathlib.Path(unwrap(draft_args.get("draft_model_dir"), "models"))
draft_model_path = draft_model_path / draft_model_name
self.draft_config.model_dir = str(draft_model_path.resolve())
self.draft_config.prepare()
self.draft_config.scale_pos_emb = unwrap(draft_args.get("draft_rope_scale"), 1.0)
self.draft_config.scale_alpha_value = unwrap(draft_args.get("draft_rope_alpha"), self.calculate_rope_alpha(self.draft_config.max_seq_len))
self.draft_config.max_seq_len = self.config.max_seq_len
if "chunk_size" in kwargs:
self.draft_config.max_input_len = kwargs["chunk_size"]
self.draft_config.max_attn_size = kwargs["chunk_size"] ** 2
def calculate_rope_alpha(self, base_seq_len):
ratio = self.config.max_seq_len / base_seq_len
# Default to a 1 alpha if the sequence length is ever less than or equal to 1
alpha = 1 if ratio <= 1.0 else -0.13436 + 0.80541 * ratio + 0.28833 * ratio ** 2
return alpha
def get_model_path(self):
model_path = pathlib.Path(self.config.model_dir)
return model_path
def load(self, progress_callback = None):
"""
Load model
Args:
progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int)
"""
for _ in self.load_gen(progress_callback): pass
def load_loras(self, lora_directory: pathlib.Path, **kwargs):
"""
Load loras
"""
loras = unwrap(kwargs.get("loras"), [])
success: List[str] = []
failure: List[str] = []
for lora in loras:
lora_name = lora.get("name")
lora_scaling = unwrap(lora.get("scaling"), 1.0)
if lora_name is None:
print("One of your loras does not have a name. Please check your config.yml! Skipping lora load.")
failure.append(lora_name)
continue
print(f"Loading lora: {lora_name} at scaling {lora_scaling}")
lora_path = lora_directory / lora_name
self.active_loras.append(ExLlamaV2Lora.from_directory(self.model, lora_path, lora_scaling))
print("Lora successfully loaded.")
success.append(lora_name)
# Return success and failure names
return { 'success': success, 'failure': failure }
def load_gen(self, progress_callback = None):
"""
Load model, generator function
Args:
progress_callback (function, optional): A function to call for each module loaded. Prototype:
def progress(loaded_modules: int, total_modules: int)
"""
# Load tokenizer
self.tokenizer = ExLlamaV2Tokenizer(self.config)
# Load draft model if a config is present
if self.draft_config:
self.draft_model = ExLlamaV2(self.draft_config)
if not self.quiet:
print("Loading draft model: " + self.draft_config.model_dir)
self.draft_cache = ExLlamaV2Cache(self.draft_model, lazy = True)
reserve = [auto_split_reserve_bytes] + [0] * 16
yield from self.draft_model.load_autosplit_gen(self.draft_cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
# Test VRAM allocation with a full-length forward pass
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
self.draft_model.forward(input_ids, cache = self.cache, preprocess_only = True)
# Load model
self.model = ExLlamaV2(self.config)
if not self.quiet:
print("Loading model: " + self.config.model_dir)
if not self.gpu_split_auto:
for value in self.model.load_gen(self.gpu_split, callback_gen = progress_callback):
if isinstance(value, str):
yield value
if self.cache_fp8:
self.cache = ExLlamaV2Cache_8bit(self.model, lazy = self.gpu_split_auto)
else:
self.cache = ExLlamaV2Cache(self.model, lazy = self.gpu_split_auto)
if self.gpu_split_auto:
reserve = [auto_split_reserve_bytes] + [0] * 16
yield from self.model.load_autosplit_gen(self.cache, reserve_vram = reserve, last_id_only = True, callback_gen = progress_callback)
# Test VRAM allocation with a full-length forward pass
input_ids = torch.zeros((1, self.config.max_input_len), dtype = torch.long)
self.model.forward(input_ids, cache = self.cache, preprocess_only = True)
# Create generator
self.generator = ExLlamaV2StreamingGenerator(self.model, self.cache, self.tokenizer, self.draft_model, self.draft_cache)
print("Model successfully loaded.")
def unload(self, loras_only: bool = False):
"""
Free all VRAM resources used by this model
"""
for lora in self.active_loras:
lora.unload()
self.active_loras = []
# Unload the entire model if not just unloading loras
if not loras_only:
if self.model: self.model.unload()
self.model = None
if self.draft_model: self.draft_model.unload()
self.draft_model = None
self.config = None
self.cache = None
self.tokenizer = None
self.generator = None
gc.collect()
torch.cuda.empty_cache()
# Common function for token operations
def get_tokens(self, text: Optional[str], ids: Optional[List[int]], **kwargs):
if text:
# Assume token encoding
return self.tokenizer.encode(
text,
add_bos = unwrap(kwargs.get("add_bos_token"), True),
encode_special_tokens = unwrap(kwargs.get("encode_special_tokens"), True)
)
if ids:
# Assume token decoding
ids = torch.tensor([ids])
return self.tokenizer.decode(ids, decode_special_tokens = unwrap(kwargs.get("decode_special_tokens"), True))[0]
def generate(self, prompt: str, **kwargs):
gen = list(self.generate_gen(prompt, **kwargs))
reponse = "".join(map(lambda o: o[0], gen))
return reponse, gen[-1][1], gen[-1][2]
def generate_gen(self, prompt: str, **kwargs):
"""
Create generator function for prompt completion
Args:
prompt (str): Input prompt
**kwargs:
'token_healing' (bool): Use token healing (default: False)
'temperature' (float): Sampling temperature (default: 1.0)
'temperature_last' (bool): Apply temperature after all other samplers (default: False)
'top_k' (int): Sampling top-K (default: 0)
'top_p' (float): Sampling top-P (default: 1.0)
'min_p' (float): Sampling min-P (default: 0.0)
'tfs' (float): Tail-free sampling (default: 0.0)
'typical' (float): Sampling typical (default: 0.0)
'mirostat' (bool): Use Mirostat (default: False)
'mirostat_tau' (float) Mirostat tau parameter (default: 1.5)
'mirostat_eta' (float) Mirostat eta parameter (default: 0.1)
'repetition_penalty' (float): Token repetition/presence penalty (default: 1.15)
'repetition_range' (int): Repetition penalty range (default: whole context)
'repetition_decay' (int): Repetition penalty range (default: same as range)
'stop' (List[Union[str, int]]): List of stop strings/tokens to end response (default: [EOS])
'max_tokens' (int): Max no. tokens in response (default: 150)
'add_bos_token' (bool): Adds the BOS token to the start of the prompt (default: True)
'ban_eos_token' (bool): Bans the EOS token from generation (default: False)
'stream_interval' (float): Interval in seconds between each output chunk (default: immediate)
'generate_window' (int): Space to reserve at the end of the model's context when generating.
Rolls context window by the same amount if context length is exceeded to allow generating past
the models max_seq_len.
"""
token_healing = unwrap(kwargs.get("token_healing"), False)
max_tokens = unwrap(kwargs.get("max_tokens"), 150)
stream_interval = unwrap(kwargs.get("stream_interval"), 0)
generate_window = min(unwrap(kwargs.get("generate_window"), 512), max_tokens)
# Sampler settings
gen_settings = ExLlamaV2Sampler.Settings()
# Warn of unsupported settings if the setting is enabled
if (unwrap(kwargs.get("mirostat"), False)) and not hasattr(gen_settings, "mirostat"):
print(" !! Warning: Currently installed ExLlamaV2 does not support Mirostat sampling")
if (unwrap(kwargs.get("min_p"), 0.0)) not in [0.0, 1.0] and not hasattr(gen_settings, "min_p"):
print(" !! Warning: Currently installed ExLlamaV2 does not support min-P sampling")
if (unwrap(kwargs.get("tfs"), 0.0)) not in [0.0, 1.0] and not hasattr(gen_settings, "tfs"):
print(" !! Warning: Currently installed ExLlamaV2 does not support tail-free sampling (TFS)")
if (unwrap(kwargs.get("temperature_last"), False)) and not hasattr(gen_settings, "temperature_last"):
print(" !! Warning: Currently installed ExLlamaV2 does not support temperature_last")
#Apply settings
gen_settings.temperature = unwrap(kwargs.get("temperature"), 1.0)
gen_settings.temperature_last = unwrap(kwargs.get("temperature_last"), False)
gen_settings.top_k = unwrap(kwargs.get("top_k"), 0)
gen_settings.top_p = unwrap(kwargs.get("top_p"), 1.0)
gen_settings.min_p = unwrap(kwargs.get("min_p"), 0.0)
gen_settings.tfs = unwrap(kwargs.get("tfs"), 1.0)
gen_settings.typical = unwrap(kwargs.get("typical"), 1.0)
gen_settings.mirostat = unwrap(kwargs.get("mirostat"), False)
# Default tau and eta fallbacks don't matter if mirostat is off
gen_settings.mirostat_tau = unwrap(kwargs.get("mirostat_tau"), 1.5)
gen_settings.mirostat_eta = unwrap(kwargs.get("mirostat_eta"), 0.1)
gen_settings.token_repetition_penalty = unwrap(kwargs.get("repetition_penalty"), 1.0)
gen_settings.token_repetition_range = unwrap(kwargs.get("repetition_range"), self.config.max_seq_len)
# Always make sure the fallback is 0 if range < 0
# It's technically fine to use -1, but this just validates the passed fallback
# Always default to 0 if something goes wrong
fallback_decay = 0 if gen_settings.token_repetition_range <= 0 else gen_settings.token_repetition_range
gen_settings.token_repetition_decay = coalesce(kwargs.get("repetition_decay"), fallback_decay, 0)
stop_conditions: List[Union[str, int]] = unwrap(kwargs.get("stop"), [])
ban_eos_token = unwrap(kwargs.get("ban_eos_token"), False)
# Ban the EOS token if specified. If not, append to stop conditions as well.
if ban_eos_token:
gen_settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
else:
stop_conditions.append(self.tokenizer.eos_token_id)
# Override sampler settings for temp = 0
if gen_settings.temperature == 0:
gen_settings.temperature = 1.0
gen_settings.top_k = 1
gen_settings.top_p = 0
gen_settings.typical = 0
# Stop conditions
self.generator.set_stop_conditions(stop_conditions)
# Tokenized context
ids = self.tokenizer.encode(
prompt,
add_bos = unwrap(kwargs.get("add_bos_token"), True),
encode_special_tokens = True
)
context_len = len(ids[0])
if context_len > self.config.max_seq_len:
print(
f"WARNING: The context length {context_len} is greater than the max_seq_len {self.config.max_seq_len}.",
"Generation is truncated and metrics may not be accurate."
)
prompt_tokens = ids.shape[-1]
# Begin
generated_tokens = 0
full_response = ""
start_time = time.time()
last_chunk_time = start_time
save_tokens = torch.empty((1, 0), dtype = torch.bool)
chunk_buffer = ""
chunk_tokens = 0
while True:
# Ingest prompt
if chunk_tokens == 0:
ids = torch.cat((ids, save_tokens), dim = - 1)
save_tokens = torch.empty((1, 0), dtype = torch.bool)
overflow = ids.shape[-1] + generate_window - self.config.max_seq_len
active_ids = ids[:, max(0, overflow):]
chunk_tokens = self.config.max_seq_len - active_ids.shape[-1]
self.generator.begin_stream(active_ids, gen_settings, token_healing = token_healing, loras = self.active_loras)
# Generate
chunk, eos, tokens = self.generator.stream()
if token_healing:
ids[:, -1] = self.generator.sequence_ids[:, -2] # Extract healed token
token_healing = False
save_tokens = torch.cat((save_tokens, tokens), dim=-1)
chunk_buffer += chunk
generated_tokens += 1
chunk_tokens -= 1
# Yield output
now = time.time()
elapsed = now - last_chunk_time
if chunk_buffer != "" and (elapsed > stream_interval or eos or generated_tokens == max_tokens):
yield chunk_buffer, prompt_tokens, generated_tokens
full_response += chunk_buffer
chunk_buffer = ""
last_chunk_time = now
if eos or generated_tokens == max_tokens: break
elapsed_time = last_chunk_time - start_time
initial_response = f"Response: {generated_tokens} tokens generated in {round(elapsed_time, 2)} seconds"
itemization = []
extra_parts = []
# Add tokens per second
itemization.append(f"{'Indeterminate' if elapsed_time == 0 else round(generated_tokens / elapsed_time, 2)} T/s")
# Add context (original token count)
if ids is not None:
itemization.append(f"context {context_len} tokens")
if context_len > self.config.max_seq_len:
extra_parts.append("<-- Not accurate (truncated)")
# Print output
print(initial_response + " (" + ", ".join(itemization) + ") " + " ".join(extra_parts))