Skip to content

Latest commit

 

History

History

benchmark

Node.js core benchmark

This folder contains benchmarks to measure the performance of the Node.js APIs.

Table of Content

Prerequisites

Most of the HTTP benchmarks require a benchmarker to be installed, this can be either wrk or autocannon.

Autocannon is a Node script that can be installed using npm install -g autocannon. It will use the Node executable that is in the path, hence if you want to compare two HTTP benchmark runs make sure that the Node version in the path is not altered.

wrk may be available through your preferred package manger. If not, you can easily build it from source via make.

By default wrk will be used as benchmarker. If it is not available autocannon will be used in it its place. When creating a HTTP benchmark you can specify which benchmarker should be used. You can force a specific benchmarker to be used by providing it as an argument, e. g.:

node benchmark/run.js --set benchmarker=autocannon http

node benchmark/http/simple.js benchmarker=autocannon

Basic Unix tools are required for some benchmarks. Git for Windows includes Git Bash and the necessary tools, which need to be included in the global Windows PATH.

To analyze the results R should be installed. Check you package manager or download it from https://www.r-project.org/.

The R packages ggplot2 and plyr are also used and can be installed using the R REPL.

$ R
install.packages("ggplot2")
install.packages("plyr")

CRAN Mirror Issues

In the event you get a message that you need to select a CRAN mirror first.

You can specify a mirror by adding in the repo parameter.

If we used the "http://cran.us.r-project.org" mirror, it could look somehting like this:

install.packages("ggplot2", repo="http://cran.us.r-project.org")

Of course, use the mirror that suits your location. A list of mirrors is located here.

Running benchmarks

Running individual benchmarks

This can be useful for debugging a benchmark or doing a quick performance measure. But it does not provide the statistical information to make any conclusions about the performance.

Individual benchmarks can be executed by simply executing the benchmark script with node.

$ node benchmark/buffers/buffer-tostring.js

buffers/buffer-tostring.js n=10000000 len=0 arg=true: 62710590.393305704
buffers/buffer-tostring.js n=10000000 len=1 arg=true: 9178624.591787899
buffers/buffer-tostring.js n=10000000 len=64 arg=true: 7658962.8891432695
buffers/buffer-tostring.js n=10000000 len=1024 arg=true: 4136904.4060201733
buffers/buffer-tostring.js n=10000000 len=0 arg=false: 22974354.231509723
buffers/buffer-tostring.js n=10000000 len=1 arg=false: 11485945.656765845
buffers/buffer-tostring.js n=10000000 len=64 arg=false: 8718280.70650129
buffers/buffer-tostring.js n=10000000 len=1024 arg=false: 4103857.0726124765

Each line represents a single benchmark with parameters specified as ${variable}=${value}. Each configuration combination is executed in a separate process. This ensures that benchmark results aren't affected by the execution order due to v8 optimizations. The last number is the rate of operations measured in ops/sec (higher is better).

Furthermore you can specify a subset of the configurations, by setting them in the process arguments:

$ node benchmark/buffers/buffer-tostring.js len=1024

buffers/buffer-tostring.js n=10000000 len=1024 arg=true: 3498295.68561504
buffers/buffer-tostring.js n=10000000 len=1024 arg=false: 3783071.1678948295

Running all benchmarks

Similar to running individual benchmarks, a group of benchmarks can be executed by using the run.js tool. Again this does not provide the statistical information to make any conclusions.

$ node benchmark/run.js arrays

arrays/var-int.js
arrays/var-int.js n=25 type=Array: 71.90148040747789
arrays/var-int.js n=25 type=Buffer: 92.89648382795582
...

arrays/zero-float.js
arrays/zero-float.js n=25 type=Array: 75.46208316171496
arrays/zero-float.js n=25 type=Buffer: 101.62785630273159
...

arrays/zero-int.js
arrays/zero-int.js n=25 type=Array: 72.31023859816062
arrays/zero-int.js n=25 type=Buffer: 90.49906662339653
...

It is possible to execute more groups by adding extra process arguments.

$ node benchmark/run.js arrays buffers

Comparing node versions

To compare the effect of a new node version use the compare.js tool. This will run each benchmark multiple times, making it possible to calculate statistics on the performance measures.

As an example on how to check for a possible performance improvement, the #5134 pull request will be used as an example. This pull request claims to improve the performance of the string_decoder module.

First build two versions of node, one from the master branch (here called ./node-master) and another with the pull request applied (here called ./node-pr-5135).

The compare.js tool will then produce a csv file with the benchmark results.

$ node benchmark/compare.js --old ./node-master --new ./node-pr-5134 string_decoder > compare-pr-5134.csv

For analysing the benchmark results use the compare.R tool.

$ cat compare-pr-5134.csv | Rscript benchmark/compare.R

                                                                                      improvement significant      p.value
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii           12.46 %         *** 1.165345e-04
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-ascii    24.70 %         *** 1.820615e-15
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-utf8     23.60 %         *** 2.105625e-12
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=utf8            14.04 %         *** 1.291105e-07
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128  encoding=ascii            6.70 %           * 2.928003e-02
...

In the output, improvement is the relative improvement of the new version, hopefully this is positive. significant tells if there is enough statistical evidence to validate the improvement. If there is enough evidence then there will be at least one star (*), more stars is just better. However if there are no stars, then you shouldn't make any conclusions based on the improvement. Sometimes this is fine, for example if you are expecting there to be no improvements, then there shouldn't be any stars.

A word of caution: Statistics is not a foolproof tool. If a benchmark shows a statistical significant difference, there is a 5% risk that this difference doesn't actually exists. For a single benchmark this is not an issue. But when considering 20 benchmarks it's normal that one of them will show significance, when it shouldn't. A possible solution is to instead consider at least two stars (**) as the threshold, in that case the risk is 1%. If three stars (***) is considered the risk is 0.1%. However this may require more runs to obtain (can be set with --runs).

For the statistically minded, the R script performs an independent/unpaired 2-group t-test, with the null hypothesis that the performance is the same for both versions. The significant field will show a star if the p-value is less than 0.05.

The compare.R tool can also produce a box plot by using the --plot filename option. In this case there are 48 different benchmark combinations, thus you may want to filter the csv file. This can be done while benchmarking using the --set parameter (e.g. --set encoding=ascii) or by filtering results afterwards using tools such as sed or grep. In the sed case be sure to keep the first line since that contains the header information.

$ cat compare-pr-5134.csv | sed '1p;/encoding=ascii/!d' | Rscript benchmark/compare.R --plot compare-plot.png

                                                                               improvement significant      p.value
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii    12.46 %         *** 1.165345e-04
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii      6.70 %           * 2.928003e-02
string_decoder/string-decoder.js n=250000 chunk=1024 inlen=32 encoding=ascii       7.47 %         *** 5.780583e-04
string_decoder/string-decoder.js n=250000 chunk=16 inlen=1024 encoding=ascii       8.94 %         *** 1.788579e-04
string_decoder/string-decoder.js n=250000 chunk=16 inlen=128 encoding=ascii       10.54 %         *** 4.016172e-05
...

compare tool boxplot

Comparing parameters

It can be useful to compare the performance for different parameters, for example to analyze the time complexity.

To do this use the scatter.js tool, this will run a benchmark multiple times and generate a csv with the results.

$ node benchmark/scatter.js benchmark/string_decoder/string-decoder.js > scatter.csv

After generating the csv, a comparison table can be created using the scatter.R tool. Even more useful it creates an actual scatter plot when using the --plot filename option.

$ cat scatter.csv | Rscript benchmark/scatter.R --xaxis chunk --category encoding --plot scatter-plot.png --log

aggregating variable: inlen

chunk     encoding      mean confidence.interval
   16        ascii 1111933.3           221502.48
   16 base64-ascii  167508.4            33116.09
   16  base64-utf8  122666.6            25037.65
   16         utf8  783254.8           159601.79
   64        ascii 2623462.9           399791.36
   64 base64-ascii  462008.3            85369.45
   64  base64-utf8  420108.4            85612.05
   64         utf8 1358327.5           235152.03
  256        ascii 3730343.4           371530.47
  256 base64-ascii  663281.2            80302.73
  256  base64-utf8  632911.7            81393.07
  256         utf8 1554216.9           236066.53
 1024        ascii 4399282.0           186436.46
 1024 base64-ascii  730426.6            63806.12
 1024  base64-utf8  680954.3            68076.33
 1024         utf8 1554832.5           237532.07

Because the scatter plot can only show two variables (in this case chunk and encoding) the rest is aggregated. Sometimes aggregating is a problem, this can be solved by filtering. This can be done while benchmarking using the --set parameter (e.g. --set encoding=ascii) or by filtering results afterwards using tools such as sed or grep. In the sed case be sure to keep the first line since that contains the header information.

$ cat scatter.csv | sed -E '1p;/([^,]+, ){3}128,/!d' | Rscript benchmark/scatter.R --xaxis chunk --category encoding --plot scatter-plot.png --log

chunk     encoding       mean confidence.interval
   16        ascii  701285.96           21233.982
   16 base64-ascii  107719.07            3339.439
   16  base64-utf8   72966.95            2438.448
   16         utf8  475340.84           17685.450
   64        ascii 2554105.08           87067.132
   64 base64-ascii  330120.32            8551.707
   64  base64-utf8  249693.19            8990.493
   64         utf8 1128671.90           48433.862
  256        ascii 4841070.04          181620.768
  256 base64-ascii  849545.53           29931.656
  256  base64-utf8  809629.89           33773.496
  256         utf8 1489525.15           49616.334
 1024        ascii 4931512.12          165402.805
 1024 base64-ascii  863933.22           27766.982
 1024  base64-utf8  827093.97           24376.522
 1024         utf8 1487176.43           50128.721

compare tool boxplot

Creating a benchmark

All benchmarks use the require('../common.js') module. This contains the createBenchmark(main, configs) method which will setup your benchmark.

The first argument main is the benchmark function, the second argument specifies the benchmark parameters. createBenchmark will run all possible combinations of these parameters, unless specified otherwise. Note that the configuration values can only be strings or numbers.

createBenchmark also creates a bench object, which is used for timing the runtime of the benchmark. Run bench.start() after the initialization and bench.end(n) when the benchmark is done. n is the number of operations you performed in the benchmark.

'use strict';
const common = require('../common.js');
const SlowBuffer = require('buffer').SlowBuffer;

const bench = common.createBenchmark(main, {
  n: [1024],
  type: ['fast', 'slow'],
  size: [16, 128, 1024]
});

function main(conf) {
  bench.start();

  const BufferConstructor = conf.type === 'fast' ? Buffer : SlowBuffer;

  for (let i = 0; i < conf.n; i++) {
    new BufferConstructor(conf.size);
  }
  bench.end(conf.n);
}

Creating HTTP benchmark

The bench object returned by createBenchmark implements http(options, callback) method. It can be used to run external tool to benchmark HTTP servers.

'use strict';

const common = require('../common.js');

const bench = common.createBenchmark(main, {
  kb: [64, 128, 256, 1024],
  connections: [100, 500]
});

function main(conf) {
  const http = require('http');
  const len = conf.kb * 1024;
  const chunk = Buffer.alloc(len, 'x');
  const server = http.createServer(function(req, res) {
    res.end(chunk);
  });

  server.listen(common.PORT, function() {
    bench.http({
      connections: conf.connections,
    }, function() {
      server.close();
    });
  });
}

Supported options keys are:

  • port - defaults to common.PORT
  • path - defaults to /
  • connections - number of concurrent connections to use, defaults to 100
  • duration - duration of the benchmark in seconds, defaults to 10
  • benchmarker - benchmarker to use, defaults to common.default_http_benchmarker