-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy pathsetup.py
273 lines (242 loc) · 9.46 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
# Script for generating the torch-mlir wheel.
# ```
# $ python setup.py bdist_wheel
# ```
# Environment variables you are probably interested in:
#
# TORCH_MLIR_PYTHON_PACKAGE_VERSION:
# specify the version of torch-mlir, for example, this can be "20220330.357"
# for a snapshot release on 2022-03-30 with build number 357.
#
# TORCH_MLIR_ENABLE_LTC:
# enables the Lazy Tensor Core Backend
#
# LLVM_INSTALL_DIR:
# build the project *out-of-tree* using the built llvm-project
#
# CMAKE_BUILD_TYPE:
# specify the build type: DEBUG/RelWithDebInfo/Release
#
# TORCH_MLIR_CMAKE_BUILD_DIR:
# specify the cmake build directory
#
# TORCH_MLIR_CMAKE_ALREADY_BUILT:
# the `TORCH_MLIR_CMAKE_BUILD_DIR` directory has already been compiled,
# and the CMake compilation process will not be executed again.
# On CIs, it is often advantageous to re-use/control the CMake build directory.
#
# MAX_JOBS:
# maximum number of compile jobs we should use to compile your code
#
# It is recommended to build with Ninja and ccache. To do so, set environment
# variables by prefixing to above invocations:
# ```
# CMAKE_GENERATOR=Ninja CMAKE_C_COMPILER_LAUNCHER=ccache CMAKE_CXX_COMPILER_LAUNCHER=ccache
# ```
#
# Implementation notes:
# The contents of the wheel is just the contents of the `python_packages`
# directory that our CMake build produces. We go through quite a bit of effort
# on the CMake side to organize that directory already, so we avoid duplicating
# that here, and just package up its contents.
import os
import pathlib
import shutil
import subprocess
import sys
import multiprocessing
from distutils.command.build import build as _build
from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext
from setuptools.command.build_py import build_py
if "develop" in sys.argv:
print("Warning: The setup.py script is only used for building the wheel package.")
print(
"For initializing the development environment,"
"please use the cmake commands introduced in the docs/development.md."
)
sys.exit(1)
def _check_env_flag(name: str, default=None) -> bool:
return str(os.getenv(name, default)).upper() in ["ON", "1", "YES", "TRUE", "Y"]
PACKAGE_VERSION = os.getenv("TORCH_MLIR_PYTHON_PACKAGE_VERSION", "0.0.1")
# If true, enable LTC build by default
TORCH_MLIR_ENABLE_LTC = _check_env_flag("TORCH_MLIR_ENABLE_LTC", True)
TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS = _check_env_flag(
"TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS", True
)
LLVM_INSTALL_DIR = os.getenv("LLVM_INSTALL_DIR", None)
SRC_DIR = pathlib.Path(__file__).parent.absolute()
CMAKE_BUILD_TYPE = os.getenv("CMAKE_BUILD_TYPE", "Release")
TORCH_MLIR_CMAKE_ALREADY_BUILT = _check_env_flag(
"TORCH_MLIR_CMAKE_ALREADY_BUILT", False
)
TORCH_MLIR_CMAKE_BUILD_DIR = os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR")
MAX_JOBS = os.getenv("MAX_JOBS", str(multiprocessing.cpu_count()))
# Build phase discovery is unreliable. Just tell it what phases to run.
class CustomBuild(_build):
def initialize_options(self):
_build.initialize_options(self)
# Make setuptools not steal the build directory name,
# because the mlir c++ developers are quite
# used to having build/ be for cmake
self.build_base = "setup_build"
def run(self):
self.run_command("build_py")
self.run_command("build_ext")
self.run_command("build_scripts")
class CMakeBuild(build_py):
def cmake_build(self, cmake_build_dir):
llvm_dir = str(SRC_DIR / "externals" / "llvm-project" / "llvm")
cmake_config_args = [
f"cmake",
f"-DCMAKE_BUILD_TYPE={CMAKE_BUILD_TYPE}",
f"-DPython3_EXECUTABLE={sys.executable}",
f"-DPython3_FIND_VIRTUALENV=ONLY",
f"-DMLIR_ENABLE_BINDINGS_PYTHON=ON",
f"-DLLVM_TARGETS_TO_BUILD=host",
f"-DLLVM_ENABLE_ZSTD=OFF",
# Optimization options for building wheels.
f"-DCMAKE_VISIBILITY_INLINES_HIDDEN=ON",
f"-DCMAKE_C_VISIBILITY_PRESET=hidden",
f"-DCMAKE_CXX_VISIBILITY_PRESET=hidden",
f"-DTORCH_MLIR_ENABLE_LTC={'ON' if TORCH_MLIR_ENABLE_LTC else 'OFF'}",
f"-DTORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS={'OFF' if TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else 'ON'}",
]
if LLVM_INSTALL_DIR:
cmake_config_args += [
f"-DMLIR_DIR='{LLVM_INSTALL_DIR}/lib/cmake/mlir/'",
f"-DLLVM_DIR='{LLVM_INSTALL_DIR}/lib/cmake/llvm/'",
f"{SRC_DIR}",
]
else:
cmake_config_args += [
f"-DLLVM_ENABLE_PROJECTS=mlir",
f"-DLLVM_EXTERNAL_PROJECTS='torch-mlir'",
f"-DLLVM_EXTERNAL_TORCH_MLIR_SOURCE_DIR={SRC_DIR}",
f"{llvm_dir}",
]
cmake_build_args = [
f"cmake",
f"--build",
f".",
f"--config",
f"{CMAKE_BUILD_TYPE}",
f"--target",
f"TorchMLIRPythonModules",
f"--",
f"-j{MAX_JOBS}",
]
try:
subprocess.check_call(cmake_config_args, cwd=cmake_build_dir)
subprocess.check_call(cmake_build_args, cwd=cmake_build_dir)
except subprocess.CalledProcessError as e:
print("cmake build failed with\n", e)
print("debug by follow cmake command:")
sys.exit(e.returncode)
finally:
print(f"cmake config: {' '.join(cmake_config_args)}")
print(f"cmake build: {' '.join(cmake_build_args)}")
print(f"cmake workspace: {cmake_build_dir}")
def run(self):
target_dir = self.build_lib
cmake_build_dir = TORCH_MLIR_CMAKE_BUILD_DIR
if not cmake_build_dir:
cmake_build_dir = os.path.abspath(
os.path.join(target_dir, "..", "cmake_build")
)
if LLVM_INSTALL_DIR:
python_package_dir = os.path.join(
cmake_build_dir, "python_packages", "torch_mlir"
)
else:
python_package_dir = os.path.join(
cmake_build_dir, "tools", "torch-mlir", "python_packages", "torch_mlir"
)
if not TORCH_MLIR_CMAKE_ALREADY_BUILT:
os.makedirs(cmake_build_dir, exist_ok=True)
cmake_cache_file = os.path.join(cmake_build_dir, "CMakeCache.txt")
if os.path.exists(cmake_cache_file):
os.remove(cmake_cache_file)
# NOTE: With repeated builds for different Python versions, the
# prior version binaries will continue to accumulate. IREE uses
# a separate install step and cleans the install directory to
# keep this from happening. That is the most robust. Here we just
# delete the directory where we build native extensions to keep
# this from happening but still take advantage of most of the
# build cache.
mlir_libs_dir = os.path.join(python_package_dir, "torch_mlir", "_mlir_libs")
if os.path.exists(mlir_libs_dir):
print(f"Removing _mlir_mlibs dir to force rebuild: {mlir_libs_dir}")
shutil.rmtree(mlir_libs_dir)
else:
print(f"Not removing _mlir_libs dir (does not exist): {mlir_libs_dir}")
self.cmake_build(cmake_build_dir)
if os.path.exists(target_dir):
shutil.rmtree(target_dir, ignore_errors=False, onerror=None)
shutil.copytree(python_package_dir, target_dir, symlinks=False)
class CMakeExtension(Extension):
def __init__(self, name, sourcedir=""):
Extension.__init__(self, name, sources=[])
self.sourcedir = os.path.abspath(sourcedir)
class NoopBuildExtension(build_ext):
def build_extension(self, ext):
pass
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
# Requires and extension modules depend on whether building PyTorch
# extensions.
INSTALL_REQUIRES = [
"numpy",
"packaging",
]
EXT_MODULES = [
CMakeExtension("torch_mlir._mlir_libs._torchMlir"),
]
NAME = "torch-mlir"
# If building PyTorch extensions, customize.
if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS:
import torch
NAME = "torch-mlir-ext"
INSTALL_REQUIRES.extend(
[
f"torch=={torch.__version__}".split("+", 1)[0],
]
)
EXT_MODULES.extend(
[
CMakeExtension("torch_mlir._mlir_libs._jit_ir_importer"),
]
)
setup(
name=NAME,
version=f"{PACKAGE_VERSION}",
author="Sean Silva",
author_email="silvasean@google.com",
description="First-class interop between PyTorch and MLIR",
long_description=long_description,
long_description_content_type="text/markdown",
include_package_data=True,
cmdclass={
"build": CustomBuild,
"built_ext": NoopBuildExtension,
"build_py": CMakeBuild,
},
ext_modules=EXT_MODULES,
python_requires=">=3.8",
install_requires=INSTALL_REQUIRES,
extras_require={
"onnx": [
"onnx>=1.15.0",
],
},
entry_points={
"console_scripts": [
"torch-mlir-import-onnx = torch_mlir.tools.import_onnx:_cli_main",
],
},
zip_safe=False,
)