-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy pathltc_backend_bert.py
160 lines (128 loc) · 5.09 KB
/
ltc_backend_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
"""
Runs a training of the Bert model using the Lazy Tensor Core with the
example Torch MLIR backend.
Most of the code in this example was copied from the wonderful tutorial
https://huggingface.co/transformers/training.html#fine-tuning-in-native-pytorch
Based on LTC code samples by ramiro050
https://github.com/ramiro050/lazy-tensor-samples
"""
import argparse
import sys
from typing import List
import torch
import torch._C
import torch._lazy
from datasets import load_dataset
from datasets.dataset_dict import DatasetDict
from torch.utils.data import DataLoader
from transformers import BertForSequenceClassification, \
BertConfig, BertTokenizer, AdamW, get_scheduler
def tokenize_dataset(dataset: DatasetDict) -> DatasetDict:
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length",
truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns(['text'])
tokenized_datasets = tokenized_datasets.rename_column('label', 'labels')
tokenized_datasets.set_format('torch')
return tokenized_datasets
def train(model: BertForSequenceClassification,
num_epochs: int,
num_training_steps: int,
train_dataloader: DataLoader,
device: torch.device) -> List[torch.Tensor]:
optimizer = AdamW(model.parameters(), lr=5e-5)
lr_scheduler = get_scheduler('linear', optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps)
model.train()
losses = []
for _ in range(num_epochs):
for batch in train_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
losses.append(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if 'lazy' in str(model.device):
print("Calling Mark Step")
torch._lazy.mark_step()
return losses
def main(device='lazy', full_size=False):
"""
Load model to specified device. Ensure that any backends have been initialized by this point.
:param device: name of device to load tensors to
:param full_size: if true, use a full pretrained bert-base-cased model instead of a smaller variant
"""
torch.manual_seed(0)
tokenized_datasets = tokenize_dataset(load_dataset('imdb'))
small_train_dataset = tokenized_datasets['train'].shuffle(seed=42) \
.select(range(2))
train_dataloader = DataLoader(small_train_dataset, shuffle=True,
batch_size=8)
if full_size:
model = BertForSequenceClassification.from_pretrained('bert-base-cased',
num_labels=2)
else:
configuration = BertConfig(
vocab_size=28996,
hidden_size=32,
num_hidden_layers=1,
num_attention_heads=2,
intermediate_size=32,
hidden_act='gelu',
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=512,
layer_norm_eps=1.0e-05,
)
model = BertForSequenceClassification(configuration)
model.to(device)
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
losses = train(model, num_epochs, num_training_steps, train_dataloader, device)
# Get debug information from LTC
if 'torch_mlir._mlir_libs._REFERENCE_LAZY_BACKEND' in sys.modules:
computation = lazy_backend.get_latest_computation()
if computation:
print(computation.debug_string())
print('Loss: ', losses)
return model, losses
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--device",
type=str.upper,
choices=["CPU", "TS", "MLIR_EXAMPLE"],
default="MLIR_EXAMPLE",
help="The device type",
)
parser.add_argument(
"-f",
"--full_size",
action='store_true',
default=False,
help="Use full sized BERT model instead of one with smaller parameterization",
)
args = parser.parse_args()
if args.device in ("TS", "MLIR_EXAMPLE"):
if args.device == "TS":
import torch._lazy.ts_backend
torch._lazy.ts_backend.init()
elif args.device == "MLIR_EXAMPLE":
import torch_mlir._mlir_libs._REFERENCE_LAZY_BACKEND as lazy_backend
lazy_backend._initialize()
device = "lazy"
print("Initialized backend")
else:
device = args.device.lower()
main(device, args.full_size)