Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir][sparse] migrate datastructure tests to sparse_tensor.print #83956

Merged
merged 1 commit into from
Mar 5, 2024

Conversation

aartbik
Copy link
Contributor

@aartbik aartbik commented Mar 5, 2024

Continuing the efforts started in #83357

@llvmbot
Copy link
Member

llvmbot commented Mar 5, 2024

@llvm/pr-subscribers-mlir-sparse

@llvm/pr-subscribers-mlir

Author: Aart Bik (aartbik)

Changes

Continuing the efforts started in llvm#83357


Full diff: https://github.com/llvm/llvm-project/pull/83956.diff

2 Files Affected:

  • (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir (+23-39)
  • (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir (+49-127)
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
index bc7ecb08ab2f49..61c68507ea5198 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
@@ -10,7 +10,7 @@
 // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
 // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
 // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
 // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
 // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
 //
@@ -30,8 +30,6 @@
 // Do the same run, but now with direct IR generation and VLA vectorization.
 // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
 
-// Insertion example using pure codegen (no sparse runtime support lib).
-
 #SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
 
 #trait_mul_s = {
@@ -43,27 +41,7 @@
 }
 
 module {
-
-  // Dumps positions, indices, values for verification.
-  func.func @dump(%argx: tensor<1024xf32, #SparseVector>) {
-    %c0 = arith.constant 0 : index
-    %f0 = arith.constant 0.0 : f32
-    %p = sparse_tensor.positions %argx { level = 0 : index }
-       : tensor<1024xf32, #SparseVector> to memref<?xindex>
-    %i = sparse_tensor.coordinates %argx { level = 0 : index }
-       : tensor<1024xf32, #SparseVector> to memref<?xindex>
-    %v = sparse_tensor.values %argx
-       : tensor<1024xf32, #SparseVector> to memref<?xf32>
-    %vp = vector.transfer_read %p[%c0], %c0: memref<?xindex>, vector<2xindex>
-    %vi = vector.transfer_read %i[%c0], %c0: memref<?xindex>, vector<8xindex>
-    %vv = vector.transfer_read %v[%c0], %f0: memref<?xf32>,   vector<8xf32>
-    vector.print %vp : vector<2xindex>
-    vector.print %vi : vector<8xindex>
-    vector.print %vv : vector<8xf32>
-    return
-  }
-
-  func.func @entry() {
+  func.func @main() {
     %f1    = arith.constant 1.0 : f32
     %f2    = arith.constant 2.0 : f32
     %f3    = arith.constant 3.0 : f32
@@ -82,10 +60,17 @@ module {
     %4 = sparse_tensor.insert %f4 into %3[%c1023] : tensor<1024xf32, #SparseVector>
     %5 = sparse_tensor.load %4 hasInserts : tensor<1024xf32, #SparseVector>
 
-    // CHECK:      ( 0, 4 )
-    // CHECK-NEXT: ( 0, 1, 3, 1023
-    // CHECK-NEXT: ( 1, 2, 3, 4
-    call @dump(%5) : (tensor<1024xf32, #SparseVector>) -> ()
+    //
+    // CHECK:   ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 4
+    // CHECK-NEXT: dim = ( 1024 )
+    // CHECK-NEXT: lvl = ( 1024 )
+    // CHECK-NEXT: pos[0] : ( 0, 4,
+    // CHECK-NEXT: crd[0] : ( 0, 1, 3, 1023,
+    // CHECK-NEXT: values : ( 1, 2, 3, 4,
+    // CHECK-NEXT: ----
+    //
+    sparse_tensor.print %5 : tensor<1024xf32, #SparseVector>
 
     // Build another sparse vector in a loop.
     %6 = tensor.empty() : tensor<1024xf32, #SparseVector>
@@ -96,18 +81,17 @@ module {
     }
     %8 = sparse_tensor.load %7 hasInserts : tensor<1024xf32, #SparseVector>
 
-    // CHECK-NEXT: ( 0, 8 )
-    // CHECK-NEXT: ( 0, 3, 6, 9, 12, 15, 18, 21 )
-    // CHECK-NEXT: ( 1, 1, 1, 1, 1, 1, 1, 1 )
     //
-    call @dump(%8) : (tensor<1024xf32, #SparseVector>) -> ()
-
-    // CHECK-NEXT: 4
-    // CHECK-NEXT: 8
-    %noe1 = sparse_tensor.number_of_entries %5 : tensor<1024xf32, #SparseVector>
-    %noe2 = sparse_tensor.number_of_entries %8 : tensor<1024xf32, #SparseVector>
-    vector.print %noe1 : index
-    vector.print %noe2 : index
+    // CHECK-NEXT: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 8
+    // CHECK-NEXT: dim = ( 1024 )
+    // CHECK-NEXT: lvl = ( 1024 )
+    // CHECK-NEXT: pos[0] : ( 0, 8,
+    // CHECK-NEXT: crd[0] : ( 0, 3, 6, 9, 12, 15, 18, 21,
+    // CHECK-NEXT: values : ( 1, 1, 1, 1, 1, 1, 1, 1,
+    // CHECK-NEXT: ----
+    //
+    sparse_tensor.print %8 : tensor<1024xf32, #SparseVector>
 
     // Free resources.
     bufferization.dealloc_tensor %5 : tensor<1024xf32, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
index b8cc1997783aa5..d51b67792337d1 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
@@ -10,7 +10,7 @@
 // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
 // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
 // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
 // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
 // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
 //
@@ -32,7 +32,7 @@
 }>
 
 #SortedCOO = #sparse_tensor.encoding<{
-  map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
+  map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa))
 }>
 
 #CSR = #sparse_tensor.encoding<{
@@ -48,94 +48,11 @@
 }>
 
 module {
-
-  func.func @dump_dense(%arg0: tensor<4x3xf64, #Dense>) {
-    %c0 = arith.constant 0 : index
-    %fu = arith.constant 99.0 : f64
-    %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #Dense> to memref<?xf64>
-    %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<12xf64>
-    vector.print %vv : vector<12xf64>
-    return
-  }
-
-  func.func @dump_coo(%arg0: tensor<4x3xf64, #SortedCOO>) {
-    %c0 = arith.constant 0 : index
-    %cu = arith.constant -1 : index
-    %fu = arith.constant 99.0 : f64
-    %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<4x3xf64, #SortedCOO> to memref<?xindex>
-    %i0 = sparse_tensor.coordinates  %arg0 { level = 0 : index } : tensor<4x3xf64, #SortedCOO> to memref<?xindex, strided<[?], offset: ?>>
-    %i1 = sparse_tensor.coordinates  %arg0 { level = 1 : index } : tensor<4x3xf64, #SortedCOO> to memref<?xindex, strided<[?], offset: ?>>
-    %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #SortedCOO> to memref<?xf64>
-    %vp0 = vector.transfer_read %p0[%c0], %cu: memref<?xindex>, vector<2xindex>
-    vector.print %vp0 : vector<2xindex>
-    %vi0 = vector.transfer_read %i0[%c0], %cu: memref<?xindex, strided<[?], offset: ?>>, vector<4xindex>
-    vector.print %vi0 : vector<4xindex>
-    %vi1 = vector.transfer_read %i1[%c0], %cu: memref<?xindex, strided<[?], offset: ?>>, vector<4xindex>
-    vector.print %vi1 : vector<4xindex>
-    %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<4xf64>
-    vector.print %vv : vector<4xf64>
-    return
-  }
-
-  func.func @dump_csr(%arg0: tensor<4x3xf64, #CSR>) {
-    %c0 = arith.constant 0 : index
-    %cu = arith.constant -1 : index
-    %fu = arith.constant 99.0 : f64
-    %p1 = sparse_tensor.positions %arg0 { level = 1 : index } : tensor<4x3xf64, #CSR> to memref<?xindex>
-    %i1 = sparse_tensor.coordinates  %arg0 { level = 1 : index } : tensor<4x3xf64, #CSR> to memref<?xindex>
-    %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #CSR> to memref<?xf64>
-    %vp1 = vector.transfer_read %p1[%c0], %cu: memref<?xindex>, vector<5xindex>
-    vector.print %vp1 : vector<5xindex>
-    %vi1 = vector.transfer_read %i1[%c0], %cu: memref<?xindex>, vector<4xindex>
-    vector.print %vi1 : vector<4xindex>
-    %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<4xf64>
-    vector.print %vv : vector<4xf64>
-    return
-  }
-
-  func.func @dump_dcsr(%arg0: tensor<4x3xf64, #DCSR>) {
-    %c0 = arith.constant 0 : index
-    %cu = arith.constant -1 : index
-    %fu = arith.constant 99.0 : f64
-    %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<4x3xf64, #DCSR> to memref<?xindex>
-    %i0 = sparse_tensor.coordinates  %arg0 { level = 0 : index } : tensor<4x3xf64, #DCSR> to memref<?xindex>
-    %p1 = sparse_tensor.positions %arg0 { level = 1 : index } : tensor<4x3xf64, #DCSR> to memref<?xindex>
-    %i1 = sparse_tensor.coordinates  %arg0 { level = 1 : index } : tensor<4x3xf64, #DCSR> to memref<?xindex>
-    %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #DCSR> to memref<?xf64>
-    %vp0 = vector.transfer_read %p0[%c0], %cu: memref<?xindex>, vector<2xindex>
-    vector.print %vp0 : vector<2xindex>
-    %vi0 = vector.transfer_read %i0[%c0], %cu: memref<?xindex>, vector<3xindex>
-    vector.print %vi0 : vector<3xindex>
-    %vp1 = vector.transfer_read %p1[%c0], %cu: memref<?xindex>, vector<4xindex>
-    vector.print %vp1 : vector<4xindex>
-    %vi1 = vector.transfer_read %i1[%c0], %cu: memref<?xindex>, vector<4xindex>
-    vector.print %vi1 : vector<4xindex>
-    %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<4xf64>
-    vector.print %vv : vector<4xf64>
-    return
-  }
-
-  func.func @dump_row(%arg0: tensor<4x3xf64, #Row>) {
-    %c0 = arith.constant 0 : index
-    %cu = arith.constant -1 : index
-    %fu = arith.constant 99.0 : f64
-    %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<4x3xf64, #Row> to memref<?xindex>
-    %i0 = sparse_tensor.coordinates  %arg0 { level = 0 : index } : tensor<4x3xf64, #Row> to memref<?xindex>
-    %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #Row> to memref<?xf64>
-    %vp0 = vector.transfer_read %p0[%c0], %cu: memref<?xindex>, vector<2xindex>
-    vector.print %vp0 : vector<2xindex>
-    %vi0 = vector.transfer_read %i0[%c0], %cu: memref<?xindex>, vector<3xindex>
-    vector.print %vi0 : vector<3xindex>
-    %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<9xf64>
-    vector.print %vv : vector<9xf64>
-    return
-  }
-
   //
   // Main driver. We test the contents of various sparse tensor
   // schemes when they are still empty and after a few insertions.
   //
-  func.func @entry() {
+  func.func @main() {
     %c0 = arith.constant 0 : index
     %c2 = arith.constant 2 : index
     %c3 = arith.constant 3 : index
@@ -147,7 +64,12 @@ module {
     //
     // Dense case.
     //
-    // CHECK: ( 1, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 4 )
+    // CHECK:      ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 12
+    // CHECK-NEXT: dim = ( 4, 3 )
+    // CHECK-NEXT: lvl = ( 4, 3 )
+    // CHECK-NEXT: values : ( 1, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 4,
+    // CHECK-NEXT: ----
     //
     %densea = tensor.empty() : tensor<4x3xf64, #Dense>
     %dense1 = sparse_tensor.insert %f1 into %densea[%c0, %c0] : tensor<4x3xf64, #Dense>
@@ -155,15 +77,20 @@ module {
     %dense3 = sparse_tensor.insert %f3 into %dense2[%c3, %c0] : tensor<4x3xf64, #Dense>
     %dense4 = sparse_tensor.insert %f4 into %dense3[%c3, %c2] : tensor<4x3xf64, #Dense>
     %densem = sparse_tensor.load %dense4 hasInserts : tensor<4x3xf64, #Dense>
-    call @dump_dense(%densem) : (tensor<4x3xf64, #Dense>) -> ()
+    sparse_tensor.print %densem : tensor<4x3xf64, #Dense>
 
     //
     // COO case.
     //
-    // CHECK-NEXT: ( 0, 4 )
-    // CHECK-NEXT: ( 0, 2, 3, 3 )
-    // CHECK-NEXT: ( 0, 2, 0, 2 )
-    // CHECK-NEXT: ( 1, 2, 3, 4 )
+    // CHECK-NEXT: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 4
+    // CHECK-NEXT: dim = ( 4, 3 )
+    // CHECK-NEXT: lvl = ( 4, 3 )
+    // CHECK-NEXT: pos[0] : ( 0, 4,
+    // CHECK-NEXT: crd[0] : ( 0, 2, 3, 3,
+    // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2,
+    // CHECK-NEXT: values : ( 1, 2, 3, 4,
+    // CHECK-NEXT: ----
     //
     %cooa = tensor.empty() : tensor<4x3xf64, #SortedCOO>
     %coo1 = sparse_tensor.insert %f1 into %cooa[%c0, %c0] : tensor<4x3xf64, #SortedCOO>
@@ -171,14 +98,19 @@ module {
     %coo3 = sparse_tensor.insert %f3 into %coo2[%c3, %c0] : tensor<4x3xf64, #SortedCOO>
     %coo4 = sparse_tensor.insert %f4 into %coo3[%c3, %c2] : tensor<4x3xf64, #SortedCOO>
     %coom = sparse_tensor.load %coo4 hasInserts : tensor<4x3xf64, #SortedCOO>
-    call @dump_coo(%coom) : (tensor<4x3xf64, #SortedCOO>) -> ()
+    sparse_tensor.print %coom : tensor<4x3xf64, #SortedCOO>
 
     //
     // CSR case.
     //
-    // CHECK-NEXT: ( 0, 1, 1, 2, 4 )
-    // CHECK-NEXT: ( 0, 2, 0, 2 )
-    // CHECK-NEXT: ( 1, 2, 3, 4 )
+    // CHECK-NEXT: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 4
+    // CHECK-NEXT: dim = ( 4, 3 )
+    // CHECK-NEXT: lvl = ( 4, 3 )
+    // CHECK-NEXT: pos[1] : ( 0, 1, 1, 2, 4,
+    // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2,
+    // CHECK-NEXT: values : ( 1, 2, 3, 4,
+    // CHECK-NEXT: ----
     //
     %csra = tensor.empty() : tensor<4x3xf64, #CSR>
     %csr1 = sparse_tensor.insert %f1 into %csra[%c0, %c0] : tensor<4x3xf64, #CSR>
@@ -186,16 +118,21 @@ module {
     %csr3 = sparse_tensor.insert %f3 into %csr2[%c3, %c0] : tensor<4x3xf64, #CSR>
     %csr4 = sparse_tensor.insert %f4 into %csr3[%c3, %c2] : tensor<4x3xf64, #CSR>
     %csrm = sparse_tensor.load %csr4 hasInserts : tensor<4x3xf64, #CSR>
-    call @dump_csr(%csrm) : (tensor<4x3xf64, #CSR>) -> ()
+    sparse_tensor.print %csrm : tensor<4x3xf64, #CSR>
 
     //
     // DCSR case.
     //
-    // CHECK-NEXT: ( 0, 3 )
-    // CHECK-NEXT: ( 0, 2, 3 )
-    // CHECK-NEXT: ( 0, 1, 2, 4 )
-    // CHECK-NEXT: ( 0, 2, 0, 2 )
-    // CHECK-NEXT: ( 1, 2, 3, 4 )
+    // CHECK-NEXT: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 4
+    // CHECK-NEXT: dim = ( 4, 3 )
+    // CHECK-NEXT: lvl = ( 4, 3 )
+    // CHECK-NEXT: pos[0] : ( 0, 3,
+    // CHECK-NEXT: crd[0] : ( 0, 2, 3,
+    // CHECK-NEXT: pos[1] : ( 0, 1, 2, 4,
+    // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2,
+    // CHECK-NEXT: values : ( 1, 2, 3, 4,
+    // CHECK-NEXT: ----
     //
     %dcsra = tensor.empty() : tensor<4x3xf64, #DCSR>
     %dcsr1 = sparse_tensor.insert %f1 into %dcsra[%c0, %c0] : tensor<4x3xf64, #DCSR>
@@ -203,14 +140,19 @@ module {
     %dcsr3 = sparse_tensor.insert %f3 into %dcsr2[%c3, %c0] : tensor<4x3xf64, #DCSR>
     %dcsr4 = sparse_tensor.insert %f4 into %dcsr3[%c3, %c2] : tensor<4x3xf64, #DCSR>
     %dcsrm = sparse_tensor.load %dcsr4 hasInserts : tensor<4x3xf64, #DCSR>
-    call @dump_dcsr(%dcsrm) : (tensor<4x3xf64, #DCSR>) -> ()
+    sparse_tensor.print %dcsrm : tensor<4x3xf64, #DCSR>
 
     //
     // Row case.
     //
-    // CHECK-NEXT: ( 0, 3 )
-    // CHECK-NEXT: ( 0, 2, 3 )
-    // CHECK-NEXT: ( 1, 0, 0, 0, 0, 2, 3, 0, 4 )
+    // CHECK-NEXT: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 9
+    // CHECK-NEXT: dim = ( 4, 3 )
+    // CHECK-NEXT: lvl = ( 4, 3 )
+    // CHECK-NEXT: pos[0] : ( 0, 3,
+    // CHECK-NEXT: crd[0] : ( 0, 2, 3,
+    // CHECK-NEXT: values : ( 1, 0, 0, 0, 0, 2, 3, 0, 4,
+    // CHECK-NEXT: ----
     //
     %rowa = tensor.empty() : tensor<4x3xf64, #Row>
     %row1 = sparse_tensor.insert %f1 into %rowa[%c0, %c0] : tensor<4x3xf64, #Row>
@@ -218,27 +160,7 @@ module {
     %row3 = sparse_tensor.insert %f3 into %row2[%c3, %c0] : tensor<4x3xf64, #Row>
     %row4 = sparse_tensor.insert %f4 into %row3[%c3, %c2] : tensor<4x3xf64, #Row>
     %rowm = sparse_tensor.load %row4 hasInserts : tensor<4x3xf64, #Row>
-    call @dump_row(%rowm) : (tensor<4x3xf64, #Row>) -> ()
-
-    //
-    // NOE sanity check.
-    //
-    // CHECK-NEXT: 12
-    // CHECK-NEXT: 4
-    // CHECK-NEXT: 4
-    // CHECK-NEXT: 4
-    // CHECK-NEXT: 9
-    //
-    %noe1 = sparse_tensor.number_of_entries %densem : tensor<4x3xf64, #Dense>
-    %noe2 = sparse_tensor.number_of_entries %coom : tensor<4x3xf64, #SortedCOO>
-    %noe3 = sparse_tensor.number_of_entries %csrm : tensor<4x3xf64, #CSR>
-    %noe4 = sparse_tensor.number_of_entries %dcsrm : tensor<4x3xf64, #DCSR>
-    %noe5 = sparse_tensor.number_of_entries %rowm : tensor<4x3xf64, #Row>
-    vector.print %noe1 : index
-    vector.print %noe2 : index
-    vector.print %noe3 : index
-    vector.print %noe4 : index
-    vector.print %noe5 : index
+    sparse_tensor.print %rowm : tensor<4x3xf64, #Row>
 
     // Release resources.
     bufferization.dealloc_tensor %densem : tensor<4x3xf64, #Dense>

@aartbik aartbik merged commit 662d821 into llvm:main Mar 5, 2024
6 of 7 checks passed
@aartbik aartbik deleted the bik branch March 5, 2024 05:14
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
mlir:sparse Sparse compiler in MLIR mlir
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants