-
Notifications
You must be signed in to change notification settings - Fork 12.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][sparse] migrate datastructure tests to sparse_tensor.print #83956
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Continuing the efforts started in llvm#83357
@llvm/pr-subscribers-mlir-sparse @llvm/pr-subscribers-mlir Author: Aart Bik (aartbik) ChangesContinuing the efforts started in llvm#83357 Full diff: https://github.com/llvm/llvm-project/pull/83956.diff 2 Files Affected:
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
index bc7ecb08ab2f49..61c68507ea5198 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -30,8 +30,6 @@
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
-// Insertion example using pure codegen (no sparse runtime support lib).
-
#SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
#trait_mul_s = {
@@ -43,27 +41,7 @@
}
module {
-
- // Dumps positions, indices, values for verification.
- func.func @dump(%argx: tensor<1024xf32, #SparseVector>) {
- %c0 = arith.constant 0 : index
- %f0 = arith.constant 0.0 : f32
- %p = sparse_tensor.positions %argx { level = 0 : index }
- : tensor<1024xf32, #SparseVector> to memref<?xindex>
- %i = sparse_tensor.coordinates %argx { level = 0 : index }
- : tensor<1024xf32, #SparseVector> to memref<?xindex>
- %v = sparse_tensor.values %argx
- : tensor<1024xf32, #SparseVector> to memref<?xf32>
- %vp = vector.transfer_read %p[%c0], %c0: memref<?xindex>, vector<2xindex>
- %vi = vector.transfer_read %i[%c0], %c0: memref<?xindex>, vector<8xindex>
- %vv = vector.transfer_read %v[%c0], %f0: memref<?xf32>, vector<8xf32>
- vector.print %vp : vector<2xindex>
- vector.print %vi : vector<8xindex>
- vector.print %vv : vector<8xf32>
- return
- }
-
- func.func @entry() {
+ func.func @main() {
%f1 = arith.constant 1.0 : f32
%f2 = arith.constant 2.0 : f32
%f3 = arith.constant 3.0 : f32
@@ -82,10 +60,17 @@ module {
%4 = sparse_tensor.insert %f4 into %3[%c1023] : tensor<1024xf32, #SparseVector>
%5 = sparse_tensor.load %4 hasInserts : tensor<1024xf32, #SparseVector>
- // CHECK: ( 0, 4 )
- // CHECK-NEXT: ( 0, 1, 3, 1023
- // CHECK-NEXT: ( 1, 2, 3, 4
- call @dump(%5) : (tensor<1024xf32, #SparseVector>) -> ()
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: dim = ( 1024 )
+ // CHECK-NEXT: lvl = ( 1024 )
+ // CHECK-NEXT: pos[0] : ( 0, 4,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 3, 1023,
+ // CHECK-NEXT: values : ( 1, 2, 3, 4,
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %5 : tensor<1024xf32, #SparseVector>
// Build another sparse vector in a loop.
%6 = tensor.empty() : tensor<1024xf32, #SparseVector>
@@ -96,18 +81,17 @@ module {
}
%8 = sparse_tensor.load %7 hasInserts : tensor<1024xf32, #SparseVector>
- // CHECK-NEXT: ( 0, 8 )
- // CHECK-NEXT: ( 0, 3, 6, 9, 12, 15, 18, 21 )
- // CHECK-NEXT: ( 1, 1, 1, 1, 1, 1, 1, 1 )
//
- call @dump(%8) : (tensor<1024xf32, #SparseVector>) -> ()
-
- // CHECK-NEXT: 4
- // CHECK-NEXT: 8
- %noe1 = sparse_tensor.number_of_entries %5 : tensor<1024xf32, #SparseVector>
- %noe2 = sparse_tensor.number_of_entries %8 : tensor<1024xf32, #SparseVector>
- vector.print %noe1 : index
- vector.print %noe2 : index
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 8
+ // CHECK-NEXT: dim = ( 1024 )
+ // CHECK-NEXT: lvl = ( 1024 )
+ // CHECK-NEXT: pos[0] : ( 0, 8,
+ // CHECK-NEXT: crd[0] : ( 0, 3, 6, 9, 12, 15, 18, 21,
+ // CHECK-NEXT: values : ( 1, 1, 1, 1, 1, 1, 1, 1,
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %8 : tensor<1024xf32, #SparseVector>
// Free resources.
bufferization.dealloc_tensor %5 : tensor<1024xf32, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
index b8cc1997783aa5..d51b67792337d1 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -32,7 +32,7 @@
}>
#SortedCOO = #sparse_tensor.encoding<{
- map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
+ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa))
}>
#CSR = #sparse_tensor.encoding<{
@@ -48,94 +48,11 @@
}>
module {
-
- func.func @dump_dense(%arg0: tensor<4x3xf64, #Dense>) {
- %c0 = arith.constant 0 : index
- %fu = arith.constant 99.0 : f64
- %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #Dense> to memref<?xf64>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<12xf64>
- vector.print %vv : vector<12xf64>
- return
- }
-
- func.func @dump_coo(%arg0: tensor<4x3xf64, #SortedCOO>) {
- %c0 = arith.constant 0 : index
- %cu = arith.constant -1 : index
- %fu = arith.constant 99.0 : f64
- %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<4x3xf64, #SortedCOO> to memref<?xindex>
- %i0 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<4x3xf64, #SortedCOO> to memref<?xindex, strided<[?], offset: ?>>
- %i1 = sparse_tensor.coordinates %arg0 { level = 1 : index } : tensor<4x3xf64, #SortedCOO> to memref<?xindex, strided<[?], offset: ?>>
- %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #SortedCOO> to memref<?xf64>
- %vp0 = vector.transfer_read %p0[%c0], %cu: memref<?xindex>, vector<2xindex>
- vector.print %vp0 : vector<2xindex>
- %vi0 = vector.transfer_read %i0[%c0], %cu: memref<?xindex, strided<[?], offset: ?>>, vector<4xindex>
- vector.print %vi0 : vector<4xindex>
- %vi1 = vector.transfer_read %i1[%c0], %cu: memref<?xindex, strided<[?], offset: ?>>, vector<4xindex>
- vector.print %vi1 : vector<4xindex>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<4xf64>
- vector.print %vv : vector<4xf64>
- return
- }
-
- func.func @dump_csr(%arg0: tensor<4x3xf64, #CSR>) {
- %c0 = arith.constant 0 : index
- %cu = arith.constant -1 : index
- %fu = arith.constant 99.0 : f64
- %p1 = sparse_tensor.positions %arg0 { level = 1 : index } : tensor<4x3xf64, #CSR> to memref<?xindex>
- %i1 = sparse_tensor.coordinates %arg0 { level = 1 : index } : tensor<4x3xf64, #CSR> to memref<?xindex>
- %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #CSR> to memref<?xf64>
- %vp1 = vector.transfer_read %p1[%c0], %cu: memref<?xindex>, vector<5xindex>
- vector.print %vp1 : vector<5xindex>
- %vi1 = vector.transfer_read %i1[%c0], %cu: memref<?xindex>, vector<4xindex>
- vector.print %vi1 : vector<4xindex>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<4xf64>
- vector.print %vv : vector<4xf64>
- return
- }
-
- func.func @dump_dcsr(%arg0: tensor<4x3xf64, #DCSR>) {
- %c0 = arith.constant 0 : index
- %cu = arith.constant -1 : index
- %fu = arith.constant 99.0 : f64
- %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<4x3xf64, #DCSR> to memref<?xindex>
- %i0 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<4x3xf64, #DCSR> to memref<?xindex>
- %p1 = sparse_tensor.positions %arg0 { level = 1 : index } : tensor<4x3xf64, #DCSR> to memref<?xindex>
- %i1 = sparse_tensor.coordinates %arg0 { level = 1 : index } : tensor<4x3xf64, #DCSR> to memref<?xindex>
- %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #DCSR> to memref<?xf64>
- %vp0 = vector.transfer_read %p0[%c0], %cu: memref<?xindex>, vector<2xindex>
- vector.print %vp0 : vector<2xindex>
- %vi0 = vector.transfer_read %i0[%c0], %cu: memref<?xindex>, vector<3xindex>
- vector.print %vi0 : vector<3xindex>
- %vp1 = vector.transfer_read %p1[%c0], %cu: memref<?xindex>, vector<4xindex>
- vector.print %vp1 : vector<4xindex>
- %vi1 = vector.transfer_read %i1[%c0], %cu: memref<?xindex>, vector<4xindex>
- vector.print %vi1 : vector<4xindex>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<4xf64>
- vector.print %vv : vector<4xf64>
- return
- }
-
- func.func @dump_row(%arg0: tensor<4x3xf64, #Row>) {
- %c0 = arith.constant 0 : index
- %cu = arith.constant -1 : index
- %fu = arith.constant 99.0 : f64
- %p0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<4x3xf64, #Row> to memref<?xindex>
- %i0 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<4x3xf64, #Row> to memref<?xindex>
- %v = sparse_tensor.values %arg0 : tensor<4x3xf64, #Row> to memref<?xf64>
- %vp0 = vector.transfer_read %p0[%c0], %cu: memref<?xindex>, vector<2xindex>
- vector.print %vp0 : vector<2xindex>
- %vi0 = vector.transfer_read %i0[%c0], %cu: memref<?xindex>, vector<3xindex>
- vector.print %vi0 : vector<3xindex>
- %vv = vector.transfer_read %v[%c0], %fu: memref<?xf64>, vector<9xf64>
- vector.print %vv : vector<9xf64>
- return
- }
-
//
// Main driver. We test the contents of various sparse tensor
// schemes when they are still empty and after a few insertions.
//
- func.func @entry() {
+ func.func @main() {
%c0 = arith.constant 0 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
@@ -147,7 +64,12 @@ module {
//
// Dense case.
//
- // CHECK: ( 1, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 4 )
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 12
+ // CHECK-NEXT: dim = ( 4, 3 )
+ // CHECK-NEXT: lvl = ( 4, 3 )
+ // CHECK-NEXT: values : ( 1, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 4,
+ // CHECK-NEXT: ----
//
%densea = tensor.empty() : tensor<4x3xf64, #Dense>
%dense1 = sparse_tensor.insert %f1 into %densea[%c0, %c0] : tensor<4x3xf64, #Dense>
@@ -155,15 +77,20 @@ module {
%dense3 = sparse_tensor.insert %f3 into %dense2[%c3, %c0] : tensor<4x3xf64, #Dense>
%dense4 = sparse_tensor.insert %f4 into %dense3[%c3, %c2] : tensor<4x3xf64, #Dense>
%densem = sparse_tensor.load %dense4 hasInserts : tensor<4x3xf64, #Dense>
- call @dump_dense(%densem) : (tensor<4x3xf64, #Dense>) -> ()
+ sparse_tensor.print %densem : tensor<4x3xf64, #Dense>
//
// COO case.
//
- // CHECK-NEXT: ( 0, 4 )
- // CHECK-NEXT: ( 0, 2, 3, 3 )
- // CHECK-NEXT: ( 0, 2, 0, 2 )
- // CHECK-NEXT: ( 1, 2, 3, 4 )
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: dim = ( 4, 3 )
+ // CHECK-NEXT: lvl = ( 4, 3 )
+ // CHECK-NEXT: pos[0] : ( 0, 4,
+ // CHECK-NEXT: crd[0] : ( 0, 2, 3, 3,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2,
+ // CHECK-NEXT: values : ( 1, 2, 3, 4,
+ // CHECK-NEXT: ----
//
%cooa = tensor.empty() : tensor<4x3xf64, #SortedCOO>
%coo1 = sparse_tensor.insert %f1 into %cooa[%c0, %c0] : tensor<4x3xf64, #SortedCOO>
@@ -171,14 +98,19 @@ module {
%coo3 = sparse_tensor.insert %f3 into %coo2[%c3, %c0] : tensor<4x3xf64, #SortedCOO>
%coo4 = sparse_tensor.insert %f4 into %coo3[%c3, %c2] : tensor<4x3xf64, #SortedCOO>
%coom = sparse_tensor.load %coo4 hasInserts : tensor<4x3xf64, #SortedCOO>
- call @dump_coo(%coom) : (tensor<4x3xf64, #SortedCOO>) -> ()
+ sparse_tensor.print %coom : tensor<4x3xf64, #SortedCOO>
//
// CSR case.
//
- // CHECK-NEXT: ( 0, 1, 1, 2, 4 )
- // CHECK-NEXT: ( 0, 2, 0, 2 )
- // CHECK-NEXT: ( 1, 2, 3, 4 )
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: dim = ( 4, 3 )
+ // CHECK-NEXT: lvl = ( 4, 3 )
+ // CHECK-NEXT: pos[1] : ( 0, 1, 1, 2, 4,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2,
+ // CHECK-NEXT: values : ( 1, 2, 3, 4,
+ // CHECK-NEXT: ----
//
%csra = tensor.empty() : tensor<4x3xf64, #CSR>
%csr1 = sparse_tensor.insert %f1 into %csra[%c0, %c0] : tensor<4x3xf64, #CSR>
@@ -186,16 +118,21 @@ module {
%csr3 = sparse_tensor.insert %f3 into %csr2[%c3, %c0] : tensor<4x3xf64, #CSR>
%csr4 = sparse_tensor.insert %f4 into %csr3[%c3, %c2] : tensor<4x3xf64, #CSR>
%csrm = sparse_tensor.load %csr4 hasInserts : tensor<4x3xf64, #CSR>
- call @dump_csr(%csrm) : (tensor<4x3xf64, #CSR>) -> ()
+ sparse_tensor.print %csrm : tensor<4x3xf64, #CSR>
//
// DCSR case.
//
- // CHECK-NEXT: ( 0, 3 )
- // CHECK-NEXT: ( 0, 2, 3 )
- // CHECK-NEXT: ( 0, 1, 2, 4 )
- // CHECK-NEXT: ( 0, 2, 0, 2 )
- // CHECK-NEXT: ( 1, 2, 3, 4 )
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: dim = ( 4, 3 )
+ // CHECK-NEXT: lvl = ( 4, 3 )
+ // CHECK-NEXT: pos[0] : ( 0, 3,
+ // CHECK-NEXT: crd[0] : ( 0, 2, 3,
+ // CHECK-NEXT: pos[1] : ( 0, 1, 2, 4,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2,
+ // CHECK-NEXT: values : ( 1, 2, 3, 4,
+ // CHECK-NEXT: ----
//
%dcsra = tensor.empty() : tensor<4x3xf64, #DCSR>
%dcsr1 = sparse_tensor.insert %f1 into %dcsra[%c0, %c0] : tensor<4x3xf64, #DCSR>
@@ -203,14 +140,19 @@ module {
%dcsr3 = sparse_tensor.insert %f3 into %dcsr2[%c3, %c0] : tensor<4x3xf64, #DCSR>
%dcsr4 = sparse_tensor.insert %f4 into %dcsr3[%c3, %c2] : tensor<4x3xf64, #DCSR>
%dcsrm = sparse_tensor.load %dcsr4 hasInserts : tensor<4x3xf64, #DCSR>
- call @dump_dcsr(%dcsrm) : (tensor<4x3xf64, #DCSR>) -> ()
+ sparse_tensor.print %dcsrm : tensor<4x3xf64, #DCSR>
//
// Row case.
//
- // CHECK-NEXT: ( 0, 3 )
- // CHECK-NEXT: ( 0, 2, 3 )
- // CHECK-NEXT: ( 1, 0, 0, 0, 0, 2, 3, 0, 4 )
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: dim = ( 4, 3 )
+ // CHECK-NEXT: lvl = ( 4, 3 )
+ // CHECK-NEXT: pos[0] : ( 0, 3,
+ // CHECK-NEXT: crd[0] : ( 0, 2, 3,
+ // CHECK-NEXT: values : ( 1, 0, 0, 0, 0, 2, 3, 0, 4,
+ // CHECK-NEXT: ----
//
%rowa = tensor.empty() : tensor<4x3xf64, #Row>
%row1 = sparse_tensor.insert %f1 into %rowa[%c0, %c0] : tensor<4x3xf64, #Row>
@@ -218,27 +160,7 @@ module {
%row3 = sparse_tensor.insert %f3 into %row2[%c3, %c0] : tensor<4x3xf64, #Row>
%row4 = sparse_tensor.insert %f4 into %row3[%c3, %c2] : tensor<4x3xf64, #Row>
%rowm = sparse_tensor.load %row4 hasInserts : tensor<4x3xf64, #Row>
- call @dump_row(%rowm) : (tensor<4x3xf64, #Row>) -> ()
-
- //
- // NOE sanity check.
- //
- // CHECK-NEXT: 12
- // CHECK-NEXT: 4
- // CHECK-NEXT: 4
- // CHECK-NEXT: 4
- // CHECK-NEXT: 9
- //
- %noe1 = sparse_tensor.number_of_entries %densem : tensor<4x3xf64, #Dense>
- %noe2 = sparse_tensor.number_of_entries %coom : tensor<4x3xf64, #SortedCOO>
- %noe3 = sparse_tensor.number_of_entries %csrm : tensor<4x3xf64, #CSR>
- %noe4 = sparse_tensor.number_of_entries %dcsrm : tensor<4x3xf64, #DCSR>
- %noe5 = sparse_tensor.number_of_entries %rowm : tensor<4x3xf64, #Row>
- vector.print %noe1 : index
- vector.print %noe2 : index
- vector.print %noe3 : index
- vector.print %noe4 : index
- vector.print %noe5 : index
+ sparse_tensor.print %rowm : tensor<4x3xf64, #Row>
// Release resources.
bufferization.dealloc_tensor %densem : tensor<4x3xf64, #Dense>
|
PeimingLiu
approved these changes
Mar 5, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Continuing the efforts started in #83357