Skip to content

[mlir][vector] add unroll pattern for broadcast #142011

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jun 5, 2025

Conversation

chencha3
Copy link
Contributor

@chencha3 chencha3 commented May 29, 2025

This PR adds UnrollBroadcastPattern to VectorUnroll transform. To support this, it also extends BroadcastOp definition with VectorUnrollOpInterface

@llvmbot
Copy link
Member

llvmbot commented May 29, 2025

@llvm/pr-subscribers-mlir-vector

@llvm/pr-subscribers-mlir

Author: Chao Chen (chencha3)

Changes

This PR adds UnrollBroadcastPattern to VectorUnroll transform. To support this, it also extends BroadcastOp definition with VectorUnrollOpInterface


Full diff: https://github.com/llvm/llvm-project/pull/142011.diff

5 Files Affected:

  • (modified) mlir/include/mlir/Dialect/Vector/IR/VectorOps.td (+1)
  • (modified) mlir/lib/Dialect/Vector/IR/VectorOps.cpp (+4)
  • (modified) mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp (+60-5)
  • (modified) mlir/test/Dialect/Vector/vector-unroll-options.mlir (+24-1)
  • (modified) mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp (+8-6)
diff --git a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
index 3f5564541554e..e50cb459b99ac 100644
--- a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
+++ b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
@@ -347,6 +347,7 @@ def Vector_MultiDimReductionOp :
 
 def Vector_BroadcastOp :
   Vector_Op<"broadcast", [Pure,
+     DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
      DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>,
      PredOpTrait<"source operand and result have same element type",
                  TCresVTEtIsSameAsOpBase<0, 0>>]>,
diff --git a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
index 41777347975da..4487590bcb9b7 100644
--- a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
+++ b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
@@ -2401,6 +2401,10 @@ void BroadcastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
   setResultRanges(getResult(), argRanges.front());
 }
 
+std::optional<SmallVector<int64_t, 4>> BroadcastOp::getShapeForUnroll() {
+  return llvm::to_vector<4>(getResultVectorType().getShape());
+}
+
 /// Return the dimensions of the result vector that were formerly ones in the
 /// source tensor and thus correspond to "dim-1" broadcasting.
 static llvm::SetVector<int64_t>
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
index 1cc477d9dca91..1f50de15ad756 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
@@ -631,14 +631,69 @@ struct UnrollGatherPattern : public OpRewritePattern<vector::GatherOp> {
   vector::UnrollVectorOptions options;
 };
 
+struct UnrollBroadcastPattern : public OpRewritePattern<vector::BroadcastOp> {
+  UnrollBroadcastPattern(MLIRContext *context,
+                         const vector::UnrollVectorOptions &options,
+                         PatternBenefit benefit = 1)
+      : OpRewritePattern<vector::BroadcastOp>(context, benefit),
+        options(options) {}
+
+  LogicalResult matchAndRewrite(vector::BroadcastOp broadcastOp,
+                                PatternRewriter &rewriter) const override {
+    auto targetShape = getTargetShape(options, broadcastOp);
+    if (!targetShape)
+      return failure();
+
+    Location loc = broadcastOp.getLoc();
+    VectorType srcType = dyn_cast<VectorType>(broadcastOp.getSourceType());
+    VectorType resType = broadcastOp.getResultVectorType();
+    VectorType newType =
+        resType.cloneWith(*targetShape, resType.getElementType());
+    Value result = rewriter.create<arith::ConstantOp>(
+        loc, resType, rewriter.getZeroAttr(resType));
+
+    SmallVector<int64_t> originalShape = *broadcastOp.getShapeForUnroll();
+    SmallVector<int64_t> strides(originalShape.size(), 1);
+
+    for (SmallVector<int64_t> offsets :
+         StaticTileOffsetRange(originalShape, *targetShape)) {
+      Value newSrc;
+      // Scalar to vector broadcast.
+      if (!srcType) {
+        newSrc = broadcastOp.getSource();
+      } else {
+        int64_t rank = srcType.getRank();
+        auto srcOffsets = llvm::ArrayRef<int64_t>(offsets).drop_front(rank);
+        auto srcShape = llvm::ArrayRef<int64_t>(*targetShape).drop_front(rank);
+        auto srcStrides = llvm::ArrayRef<int64_t>(strides).drop_front(rank);
+        newSrc = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
+            loc, broadcastOp.getSource(), srcOffsets, srcShape, srcStrides);
+      }
+
+      Operation *newOp = cloneOpWithOperandsAndTypes(rewriter, loc, broadcastOp,
+                                                     newSrc, newType);
+
+      result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
+          loc, newOp->getResult(0), result, offsets, strides);
+    }
+
+    rewriter.replaceOp(broadcastOp, result);
+    return success();
+  }
+
+private:
+  vector::UnrollVectorOptions options;
+};
+
 } // namespace
 
 void mlir::vector::populateVectorUnrollPatterns(
     RewritePatternSet &patterns, const UnrollVectorOptions &options,
     PatternBenefit benefit) {
-  patterns.add<UnrollTransferReadPattern, UnrollTransferWritePattern,
-               UnrollContractionPattern, UnrollElementwisePattern,
-               UnrollReductionPattern, UnrollMultiReductionPattern,
-               UnrollTransposePattern, UnrollGatherPattern>(
-      patterns.getContext(), options, benefit);
+  patterns
+      .add<UnrollTransferReadPattern, UnrollTransferWritePattern,
+           UnrollContractionPattern, UnrollElementwisePattern,
+           UnrollReductionPattern, UnrollMultiReductionPattern,
+           UnrollTransposePattern, UnrollGatherPattern, UnrollBroadcastPattern>(
+          patterns.getContext(), options, benefit);
 }
diff --git a/mlir/test/Dialect/Vector/vector-unroll-options.mlir b/mlir/test/Dialect/Vector/vector-unroll-options.mlir
index 9c158d05b723c..fcbf1d13d1cee 100644
--- a/mlir/test/Dialect/Vector/vector-unroll-options.mlir
+++ b/mlir/test/Dialect/Vector/vector-unroll-options.mlir
@@ -196,7 +196,7 @@ func.func @negative_vector_fma_3d(%a: vector<3x2x2xf32>) -> vector<3x2x2xf32>{
 // CHECK-LABEL: func @negative_vector_fma_3d
 //   CHECK-NOT: vector.extract_strided_slice
 //       CHECK: %[[R0:.*]] = vector.fma %{{.+}} : vector<3x2x2xf32>
-//       CHECK: return 
+//       CHECK: return
 
 func.func @vector_multi_reduction(%v : vector<4x6xf32>, %acc: vector<4xf32>) -> vector<4xf32> {
   %0 = vector.multi_reduction #vector.kind<add>, %v, %acc [1] : vector<4x6xf32> to vector<4xf32>
@@ -311,3 +311,26 @@ func.func @vector_contract_batched(%lhs: vector<8x8x4xf32>, %rhs: vector<8x8x4xf
 // BATCHED-COUNT-16: vector.contract
 //      BATCHED-NOT: vector.contract
 //          BATCHED: return
+
+
+func.func @vector_broadcast(%v: vector<4xf32>) -> vector<4x4xf32> {
+  %0 = vector.broadcast %v : vector<4xf32> to vector<4x4xf32>
+  return %0 : vector<4x4xf32>
+}
+
+// CHECK-LABEL: func @vector_broadcast
+//  CHECK-SAME: [[arg0:%.+]]: vector<4xf32>
+//       CHECK: [[c:%.+]] = arith.constant dense<0.000000e+00> : vector<4x4xf32>
+//       CHECK: [[s0:%.+]] = vector.extract_strided_slice [[arg0]] {offsets = [0], sizes = [2], strides = [1]} : vector<4xf32> to vector<2xf32>
+//       CHECK: [[b0:%.+]] = vector.broadcast [[s0]] : vector<2xf32> to vector<2x2xf32>
+//       CHECK: [[r0:%.+]] = vector.insert_strided_slice [[b0]], [[c]] {offsets = [0, 0], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
+//       CHECK: [[s1:%.+]] = vector.extract_strided_slice [[arg0]] {offsets = [2], sizes = [2], strides = [1]} : vector<4xf32> to vector<2xf32>
+//       CHECK: [[b1:%.+]] = vector.broadcast [[s1]] : vector<2xf32> to vector<2x2xf32>
+//       CHECK: [[r1:%.+]] = vector.insert_strided_slice [[b1]], [[r0]] {offsets = [0, 2], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
+//       CHECK: [[s2:%.+]] = vector.extract_strided_slice [[arg0]] {offsets = [0], sizes = [2], strides = [1]} : vector<4xf32> to vector<2xf32>
+//       CHECK: [[b2:%.+]] = vector.broadcast [[s2]] : vector<2xf32> to vector<2x2xf32>
+//       CHECK: [[r2:%.+]] = vector.insert_strided_slice [[b2]], [[r1]] {offsets = [2, 0], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
+//       CHECK: [[s3:%.+]] = vector.extract_strided_slice [[arg0]] {offsets = [2], sizes = [2], strides = [1]} : vector<4xf32> to vector<2xf32>
+//       CHECK: [[b3:%.+]] = vector.broadcast [[s3]] : vector<2xf32> to vector<2x2xf32>
+//       CHECK: [[r3:%.+]] = vector.insert_strided_slice [[b3]], [[r2]] {offsets = [2, 2], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
+//       CHECK: return [[r3]]
diff --git a/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp b/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
index ccba2e2806862..c8d662c83c3af 100644
--- a/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
+++ b/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
@@ -157,12 +157,14 @@ struct TestVectorUnrollingPatterns
     MLIRContext *ctx = &getContext();
     RewritePatternSet patterns(ctx);
     populateVectorUnrollPatterns(
-        patterns, UnrollVectorOptions()
-                      .setNativeShape(ArrayRef<int64_t>{2, 2})
-                      .setFilterConstraint([](Operation *op) {
-                        return success(isa<arith::AddFOp, vector::FMAOp,
-                                           vector::MultiDimReductionOp>(op));
-                      }));
+        patterns,
+        UnrollVectorOptions()
+            .setNativeShape(ArrayRef<int64_t>{2, 2})
+            .setFilterConstraint([](Operation *op) {
+              return success(
+                  isa<arith::AddFOp, vector::FMAOp, vector::MultiDimReductionOp,
+                      vector::BroadcastOp>(op));
+            }));
     populateVectorUnrollPatterns(
         patterns, UnrollVectorOptions()
                       .setNativeShape(ArrayRef<int64_t>{2})

@chencha3
Copy link
Contributor Author

chencha3 commented Jun 4, 2025

Hi @banach-space, @dcaballe, and @hanhanW, could you help to have a look at this PR and give some feedback? Thanks!

Copy link
Contributor

@adam-smnk adam-smnk left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Overall looks good - minor comments

@chencha3 chencha3 merged commit def37f7 into main Jun 5, 2025
11 checks passed
@chencha3 chencha3 deleted the users/chencha3/vector/vector_unroll_broadcast branch June 5, 2025 17:42
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants